| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhmf | Structured version Visualization version GIF version | ||
| Description: A monoid homomorphism is a function. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| mhmf.b | ⊢ 𝐵 = (Base‘𝑆) |
| mhmf.c | ⊢ 𝐶 = (Base‘𝑇) |
| Ref | Expression |
|---|---|
| mhmf | ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:𝐵⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhmf.b | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
| 2 | mhmf.c | . . . 4 ⊢ 𝐶 = (Base‘𝑇) | |
| 3 | eqid 2736 | . . . 4 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 4 | eqid 2736 | . . . 4 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
| 5 | eqid 2736 | . . . 4 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 6 | eqid 2736 | . . . 4 ⊢ (0g‘𝑇) = (0g‘𝑇) | |
| 7 | 1, 2, 3, 4, 5, 6 | ismhm 18768 | . . 3 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇)))) |
| 8 | 7 | simprbi 496 | . 2 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) |
| 9 | 8 | simp1d 1142 | 1 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:𝐵⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 +gcplusg 17276 0gc0g 17458 Mndcmnd 18717 MndHom cmhm 18764 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-map 8847 df-mhm 18766 |
| This theorem is referenced by: mhmf1o 18779 mhmvlin 18784 resmhm 18803 resmhm2 18804 resmhm2b 18805 mhmco 18806 mhmimalem 18807 mhmima 18808 mhmeql 18809 pwsco2mhm 18816 gsumwmhm 18828 frmdup3lem 18849 frmdup3 18850 mhmmulg 19103 ghmmhmb 19215 cntzmhm 19329 cntzmhm2 19330 frgpup3lem 19763 gsumzmhm 19923 gsummhm2 19925 gsummptmhm 19926 rhmimasubrnglem 20530 mhmcompl 22323 mdetleib2 22531 mdetf 22538 mdetdiaglem 22541 mdetrlin 22545 mdetrsca 22546 mdetralt 22551 mdetunilem7 22561 mdetunilem8 22562 dchrelbas2 27205 dchrn0 27218 mhmhmeotmd 33963 mhmcopsr 42539 |
| Copyright terms: Public domain | W3C validator |