| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhmf | Structured version Visualization version GIF version | ||
| Description: A monoid homomorphism is a function. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| mhmf.b | ⊢ 𝐵 = (Base‘𝑆) |
| mhmf.c | ⊢ 𝐶 = (Base‘𝑇) |
| Ref | Expression |
|---|---|
| mhmf | ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:𝐵⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhmf.b | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
| 2 | mhmf.c | . . . 4 ⊢ 𝐶 = (Base‘𝑇) | |
| 3 | eqid 2729 | . . . 4 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 4 | eqid 2729 | . . . 4 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
| 5 | eqid 2729 | . . . 4 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 6 | eqid 2729 | . . . 4 ⊢ (0g‘𝑇) = (0g‘𝑇) | |
| 7 | 1, 2, 3, 4, 5, 6 | ismhm 18712 | . . 3 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇)))) |
| 8 | 7 | simprbi 496 | . 2 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) |
| 9 | 8 | simp1d 1142 | 1 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:𝐵⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 0gc0g 17402 Mndcmnd 18661 MndHom cmhm 18708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-mhm 18710 |
| This theorem is referenced by: mhmf1o 18723 mhmvlin 18728 resmhm 18747 resmhm2 18748 resmhm2b 18749 mhmco 18750 mhmimalem 18751 mhmima 18752 mhmeql 18753 pwsco2mhm 18760 gsumwmhm 18772 frmdup3lem 18793 frmdup3 18794 mhmmulg 19047 ghmmhmb 19159 cntzmhm 19273 cntzmhm2 19274 frgpup3lem 19707 gsumzmhm 19867 gsummhm2 19869 gsummptmhm 19870 rhmimasubrnglem 20474 mhmcompl 22267 mdetleib2 22475 mdetf 22482 mdetdiaglem 22485 mdetrlin 22489 mdetrsca 22490 mdetralt 22495 mdetunilem7 22505 mdetunilem8 22506 dchrelbas2 27148 dchrn0 27161 mhmhmeotmd 33917 mhmcopsr 42537 |
| Copyright terms: Public domain | W3C validator |