MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhmf Structured version   Visualization version   GIF version

Theorem mhmf 18679
Description: A monoid homomorphism is a function. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypotheses
Ref Expression
mhmf.b 𝐵 = (Base‘𝑆)
mhmf.c 𝐶 = (Base‘𝑇)
Assertion
Ref Expression
mhmf (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:𝐵𝐶)

Proof of Theorem mhmf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmf.b . . . 4 𝐵 = (Base‘𝑆)
2 mhmf.c . . . 4 𝐶 = (Base‘𝑇)
3 eqid 2732 . . . 4 (+g𝑆) = (+g𝑆)
4 eqid 2732 . . . 4 (+g𝑇) = (+g𝑇)
5 eqid 2732 . . . 4 (0g𝑆) = (0g𝑆)
6 eqid 2732 . . . 4 (0g𝑇) = (0g𝑇)
71, 2, 3, 4, 5, 6ismhm 18675 . . 3 (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑇))))
87simprbi 497 . 2 (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑇)))
98simp1d 1142 1 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3061  wf 6539  cfv 6543  (class class class)co 7411  Basecbs 17146  +gcplusg 17199  0gc0g 17387  Mndcmnd 18627   MndHom cmhm 18671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-map 8824  df-mhm 18673
This theorem is referenced by:  mhmf1o  18684  resmhm  18703  resmhm2  18704  resmhm2b  18705  mhmco  18706  mhmimalem  18707  mhmima  18708  mhmeql  18709  pwsco2mhm  18716  gsumwmhm  18728  frmdup3lem  18749  frmdup3  18750  mhmmulg  18997  ghmmhmb  19105  cntzmhm  19207  cntzmhm2  19208  frgpup3lem  19647  gsumzmhm  19807  gsummhm2  19809  gsummptmhm  19810  mhmvlin  21906  mdetleib2  22097  mdetf  22104  mdetdiaglem  22107  mdetrlin  22111  mdetrsca  22112  mdetralt  22117  mdetunilem7  22127  mdetunilem8  22128  dchrelbas2  26747  dchrn0  26760  mhmhmeotmd  32976  mhmcompl  41208  rhmimasubrnglem  46829
  Copyright terms: Public domain W3C validator