MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhmf Structured version   Visualization version   GIF version

Theorem mhmf 18697
Description: A monoid homomorphism is a function. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypotheses
Ref Expression
mhmf.b 𝐵 = (Base‘𝑆)
mhmf.c 𝐶 = (Base‘𝑇)
Assertion
Ref Expression
mhmf (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:𝐵𝐶)

Proof of Theorem mhmf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmf.b . . . 4 𝐵 = (Base‘𝑆)
2 mhmf.c . . . 4 𝐶 = (Base‘𝑇)
3 eqid 2731 . . . 4 (+g𝑆) = (+g𝑆)
4 eqid 2731 . . . 4 (+g𝑇) = (+g𝑇)
5 eqid 2731 . . . 4 (0g𝑆) = (0g𝑆)
6 eqid 2731 . . . 4 (0g𝑇) = (0g𝑇)
71, 2, 3, 4, 5, 6ismhm 18693 . . 3 (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑇))))
87simprbi 496 . 2 (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑇)))
98simp1d 1142 1 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wf 6477  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  0gc0g 17343  Mndcmnd 18642   MndHom cmhm 18689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-mhm 18691
This theorem is referenced by:  mhmf1o  18704  mhmvlin  18709  resmhm  18728  resmhm2  18729  resmhm2b  18730  mhmco  18731  mhmimalem  18732  mhmima  18733  mhmeql  18734  pwsco2mhm  18741  gsumwmhm  18753  frmdup3lem  18774  frmdup3  18775  mhmmulg  19028  ghmmhmb  19140  cntzmhm  19254  cntzmhm2  19255  frgpup3lem  19690  gsumzmhm  19850  gsummhm2  19852  gsummptmhm  19853  rhmimasubrnglem  20481  mhmcompl  22296  mdetleib2  22504  mdetf  22511  mdetdiaglem  22514  mdetrlin  22518  mdetrsca  22519  mdetralt  22524  mdetunilem7  22534  mdetunilem8  22535  dchrelbas2  27176  dchrn0  27189  mhmhmeotmd  33938  mhmcopsr  42588
  Copyright terms: Public domain W3C validator