Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mhmf | Structured version Visualization version GIF version |
Description: A monoid homomorphism is a function. (Contributed by Mario Carneiro, 7-Mar-2015.) |
Ref | Expression |
---|---|
mhmf.b | ⊢ 𝐵 = (Base‘𝑆) |
mhmf.c | ⊢ 𝐶 = (Base‘𝑇) |
Ref | Expression |
---|---|
mhmf | ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:𝐵⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhmf.b | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
2 | mhmf.c | . . . 4 ⊢ 𝐶 = (Base‘𝑇) | |
3 | eqid 2738 | . . . 4 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
4 | eqid 2738 | . . . 4 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
5 | eqid 2738 | . . . 4 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
6 | eqid 2738 | . . . 4 ⊢ (0g‘𝑇) = (0g‘𝑇) | |
7 | 1, 2, 3, 4, 5, 6 | ismhm 18347 | . . 3 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇)))) |
8 | 7 | simprbi 496 | . 2 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) |
9 | 8 | simp1d 1140 | 1 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:𝐵⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 0gc0g 17067 Mndcmnd 18300 MndHom cmhm 18343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-mhm 18345 |
This theorem is referenced by: mhmf1o 18355 resmhm 18374 resmhm2 18375 resmhm2b 18376 mhmco 18377 mhmima 18378 mhmeql 18379 pwsco2mhm 18386 gsumwmhm 18399 frmdup3lem 18420 frmdup3 18421 mhmmulg 18659 ghmmhmb 18760 cntzmhm 18860 cntzmhm2 18861 frgpup3lem 19298 gsumzmhm 19453 gsummhm2 19455 gsummptmhm 19456 mhmvlin 21456 mdetleib2 21645 mdetf 21652 mdetdiaglem 21655 mdetrlin 21659 mdetrsca 21660 mdetralt 21665 mdetunilem7 21675 mdetunilem8 21676 dchrelbas2 26290 dchrn0 26303 mhmhmeotmd 31779 |
Copyright terms: Public domain | W3C validator |