![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mhmf | Structured version Visualization version GIF version |
Description: A monoid homomorphism is a function. (Contributed by Mario Carneiro, 7-Mar-2015.) |
Ref | Expression |
---|---|
mhmf.b | ⊢ 𝐵 = (Base‘𝑆) |
mhmf.c | ⊢ 𝐶 = (Base‘𝑇) |
Ref | Expression |
---|---|
mhmf | ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:𝐵⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhmf.b | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
2 | mhmf.c | . . . 4 ⊢ 𝐶 = (Base‘𝑇) | |
3 | eqid 2799 | . . . 4 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
4 | eqid 2799 | . . . 4 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
5 | eqid 2799 | . . . 4 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
6 | eqid 2799 | . . . 4 ⊢ (0g‘𝑇) = (0g‘𝑇) | |
7 | 1, 2, 3, 4, 5, 6 | ismhm 17652 | . . 3 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇)))) |
8 | 7 | simprbi 491 | . 2 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) |
9 | 8 | simp1d 1173 | 1 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:𝐵⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ∀wral 3089 ⟶wf 6097 ‘cfv 6101 (class class class)co 6878 Basecbs 16184 +gcplusg 16267 0gc0g 16415 Mndcmnd 17609 MndHom cmhm 17648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-map 8097 df-mhm 17650 |
This theorem is referenced by: mhmf1o 17660 resmhm 17674 resmhm2 17675 resmhm2b 17676 mhmco 17677 mhmima 17678 mhmeql 17679 pwsco2mhm 17686 gsumwmhm 17698 frmdup3lem 17719 frmdup3 17720 mhmmulg 17896 ghmmhmb 17984 cntzmhm 18083 cntzmhm2 18084 frgpup3lem 18505 gsumzmhm 18652 gsummhm2 18654 gsummptmhm 18655 mhmvlin 20528 mdetleib2 20720 mdetf 20727 mdetdiaglem 20730 mdetrlin 20734 mdetrsca 20735 mdetralt 20740 mdetunilem7 20750 mdetunilem8 20751 dchrelbas2 25314 dchrn0 25327 mhmhmeotmd 30489 |
Copyright terms: Public domain | W3C validator |