Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mhmf | Structured version Visualization version GIF version |
Description: A monoid homomorphism is a function. (Contributed by Mario Carneiro, 7-Mar-2015.) |
Ref | Expression |
---|---|
mhmf.b | ⊢ 𝐵 = (Base‘𝑆) |
mhmf.c | ⊢ 𝐶 = (Base‘𝑇) |
Ref | Expression |
---|---|
mhmf | ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:𝐵⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhmf.b | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
2 | mhmf.c | . . . 4 ⊢ 𝐶 = (Base‘𝑇) | |
3 | eqid 2737 | . . . 4 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
4 | eqid 2737 | . . . 4 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
5 | eqid 2737 | . . . 4 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
6 | eqid 2737 | . . . 4 ⊢ (0g‘𝑇) = (0g‘𝑇) | |
7 | 1, 2, 3, 4, 5, 6 | ismhm 18220 | . . 3 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇)))) |
8 | 7 | simprbi 500 | . 2 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) |
9 | 8 | simp1d 1144 | 1 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:𝐵⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ∀wral 3061 ⟶wf 6376 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 +gcplusg 16802 0gc0g 16944 Mndcmnd 18173 MndHom cmhm 18216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-map 8510 df-mhm 18218 |
This theorem is referenced by: mhmf1o 18228 resmhm 18247 resmhm2 18248 resmhm2b 18249 mhmco 18250 mhmima 18251 mhmeql 18252 pwsco2mhm 18259 gsumwmhm 18272 frmdup3lem 18293 frmdup3 18294 mhmmulg 18532 ghmmhmb 18633 cntzmhm 18733 cntzmhm2 18734 frgpup3lem 19167 gsumzmhm 19322 gsummhm2 19324 gsummptmhm 19325 mhmvlin 21296 mdetleib2 21485 mdetf 21492 mdetdiaglem 21495 mdetrlin 21499 mdetrsca 21500 mdetralt 21505 mdetunilem7 21515 mdetunilem8 21516 dchrelbas2 26118 dchrn0 26131 mhmhmeotmd 31591 |
Copyright terms: Public domain | W3C validator |