| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhmf | Structured version Visualization version GIF version | ||
| Description: A monoid homomorphism is a function. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| mhmf.b | ⊢ 𝐵 = (Base‘𝑆) |
| mhmf.c | ⊢ 𝐶 = (Base‘𝑇) |
| Ref | Expression |
|---|---|
| mhmf | ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:𝐵⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhmf.b | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
| 2 | mhmf.c | . . . 4 ⊢ 𝐶 = (Base‘𝑇) | |
| 3 | eqid 2733 | . . . 4 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 4 | eqid 2733 | . . . 4 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
| 5 | eqid 2733 | . . . 4 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 6 | eqid 2733 | . . . 4 ⊢ (0g‘𝑇) = (0g‘𝑇) | |
| 7 | 1, 2, 3, 4, 5, 6 | ismhm 18697 | . . 3 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇)))) |
| 8 | 7 | simprbi 496 | . 2 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) |
| 9 | 8 | simp1d 1142 | 1 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:𝐵⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ⟶wf 6484 ‘cfv 6488 (class class class)co 7354 Basecbs 17124 +gcplusg 17165 0gc0g 17347 Mndcmnd 18646 MndHom cmhm 18693 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 df-map 8760 df-mhm 18695 |
| This theorem is referenced by: mhmf1o 18708 mhmvlin 18713 resmhm 18732 resmhm2 18733 resmhm2b 18734 mhmco 18735 mhmimalem 18736 mhmima 18737 mhmeql 18738 pwsco2mhm 18745 gsumwmhm 18757 frmdup3lem 18778 frmdup3 18779 mhmmulg 19032 ghmmhmb 19143 cntzmhm 19257 cntzmhm2 19258 frgpup3lem 19693 gsumzmhm 19853 gsummhm2 19855 gsummptmhm 19856 rhmimasubrnglem 20484 mhmcompl 22298 mdetleib2 22506 mdetf 22513 mdetdiaglem 22516 mdetrlin 22520 mdetrsca 22521 mdetralt 22526 mdetunilem7 22536 mdetunilem8 22537 dchrelbas2 27178 dchrn0 27191 mhmhmeotmd 33963 mhmcopsr 42670 |
| Copyright terms: Public domain | W3C validator |