MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhmf Structured version   Visualization version   GIF version

Theorem mhmf 18802
Description: A monoid homomorphism is a function. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypotheses
Ref Expression
mhmf.b 𝐵 = (Base‘𝑆)
mhmf.c 𝐶 = (Base‘𝑇)
Assertion
Ref Expression
mhmf (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:𝐵𝐶)

Proof of Theorem mhmf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmf.b . . . 4 𝐵 = (Base‘𝑆)
2 mhmf.c . . . 4 𝐶 = (Base‘𝑇)
3 eqid 2737 . . . 4 (+g𝑆) = (+g𝑆)
4 eqid 2737 . . . 4 (+g𝑇) = (+g𝑇)
5 eqid 2737 . . . 4 (0g𝑆) = (0g𝑆)
6 eqid 2737 . . . 4 (0g𝑇) = (0g𝑇)
71, 2, 3, 4, 5, 6ismhm 18798 . . 3 (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑇))))
87simprbi 496 . 2 (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑇)))
98simp1d 1143 1 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wf 6557  cfv 6561  (class class class)co 7431  Basecbs 17247  +gcplusg 17297  0gc0g 17484  Mndcmnd 18747   MndHom cmhm 18794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8868  df-mhm 18796
This theorem is referenced by:  mhmf1o  18809  mhmvlin  18814  resmhm  18833  resmhm2  18834  resmhm2b  18835  mhmco  18836  mhmimalem  18837  mhmima  18838  mhmeql  18839  pwsco2mhm  18846  gsumwmhm  18858  frmdup3lem  18879  frmdup3  18880  mhmmulg  19133  ghmmhmb  19245  cntzmhm  19359  cntzmhm2  19360  frgpup3lem  19795  gsumzmhm  19955  gsummhm2  19957  gsummptmhm  19958  rhmimasubrnglem  20565  mhmcompl  22384  mdetleib2  22594  mdetf  22601  mdetdiaglem  22604  mdetrlin  22608  mdetrsca  22609  mdetralt  22614  mdetunilem7  22624  mdetunilem8  22625  dchrelbas2  27281  dchrn0  27294  mhmhmeotmd  33926  mhmcopsr  42559
  Copyright terms: Public domain W3C validator