MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhmco Structured version   Visualization version   GIF version

Theorem mhmco 18634
Description: The composition of monoid homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.)
Assertion
Ref Expression
mhmco ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 MndHom 𝑈))

Proof of Theorem mhmco
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmrcl2 18606 . . 3 (𝐹 ∈ (𝑇 MndHom 𝑈) → 𝑈 ∈ Mnd)
2 mhmrcl1 18605 . . 3 (𝐺 ∈ (𝑆 MndHom 𝑇) → 𝑆 ∈ Mnd)
31, 2anim12ci 614 . 2 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → (𝑆 ∈ Mnd ∧ 𝑈 ∈ Mnd))
4 eqid 2736 . . . . 5 (Base‘𝑇) = (Base‘𝑇)
5 eqid 2736 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
64, 5mhmf 18607 . . . 4 (𝐹 ∈ (𝑇 MndHom 𝑈) → 𝐹:(Base‘𝑇)⟶(Base‘𝑈))
7 eqid 2736 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
87, 4mhmf 18607 . . . 4 (𝐺 ∈ (𝑆 MndHom 𝑇) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇))
9 fco 6692 . . . 4 ((𝐹:(Base‘𝑇)⟶(Base‘𝑈) ∧ 𝐺:(Base‘𝑆)⟶(Base‘𝑇)) → (𝐹𝐺):(Base‘𝑆)⟶(Base‘𝑈))
106, 8, 9syl2an 596 . . 3 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → (𝐹𝐺):(Base‘𝑆)⟶(Base‘𝑈))
11 eqid 2736 . . . . . . . . . 10 (+g𝑆) = (+g𝑆)
12 eqid 2736 . . . . . . . . . 10 (+g𝑇) = (+g𝑇)
137, 11, 12mhmlin 18609 . . . . . . . . 9 ((𝐺 ∈ (𝑆 MndHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐺‘(𝑥(+g𝑆)𝑦)) = ((𝐺𝑥)(+g𝑇)(𝐺𝑦)))
14133expb 1120 . . . . . . . 8 ((𝐺 ∈ (𝑆 MndHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐺‘(𝑥(+g𝑆)𝑦)) = ((𝐺𝑥)(+g𝑇)(𝐺𝑦)))
1514adantll 712 . . . . . . 7 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐺‘(𝑥(+g𝑆)𝑦)) = ((𝐺𝑥)(+g𝑇)(𝐺𝑦)))
1615fveq2d 6846 . . . . . 6 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝐺‘(𝑥(+g𝑆)𝑦))) = (𝐹‘((𝐺𝑥)(+g𝑇)(𝐺𝑦))))
17 simpll 765 . . . . . . 7 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝐹 ∈ (𝑇 MndHom 𝑈))
188ad2antlr 725 . . . . . . . 8 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇))
19 simprl 769 . . . . . . . 8 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝑥 ∈ (Base‘𝑆))
2018, 19ffvelcdmd 7036 . . . . . . 7 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐺𝑥) ∈ (Base‘𝑇))
21 simprr 771 . . . . . . . 8 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝑦 ∈ (Base‘𝑆))
2218, 21ffvelcdmd 7036 . . . . . . 7 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐺𝑦) ∈ (Base‘𝑇))
23 eqid 2736 . . . . . . . 8 (+g𝑈) = (+g𝑈)
244, 12, 23mhmlin 18609 . . . . . . 7 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ (𝐺𝑥) ∈ (Base‘𝑇) ∧ (𝐺𝑦) ∈ (Base‘𝑇)) → (𝐹‘((𝐺𝑥)(+g𝑇)(𝐺𝑦))) = ((𝐹‘(𝐺𝑥))(+g𝑈)(𝐹‘(𝐺𝑦))))
2517, 20, 22, 24syl3anc 1371 . . . . . 6 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘((𝐺𝑥)(+g𝑇)(𝐺𝑦))) = ((𝐹‘(𝐺𝑥))(+g𝑈)(𝐹‘(𝐺𝑦))))
2616, 25eqtrd 2776 . . . . 5 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝐺‘(𝑥(+g𝑆)𝑦))) = ((𝐹‘(𝐺𝑥))(+g𝑈)(𝐹‘(𝐺𝑦))))
272adantl 482 . . . . . . 7 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → 𝑆 ∈ Mnd)
287, 11mndcl 18564 . . . . . . . 8 ((𝑆 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆))
29283expb 1120 . . . . . . 7 ((𝑆 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆))
3027, 29sylan 580 . . . . . 6 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆))
31 fvco3 6940 . . . . . 6 ((𝐺:(Base‘𝑆)⟶(Base‘𝑇) ∧ (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆)) → ((𝐹𝐺)‘(𝑥(+g𝑆)𝑦)) = (𝐹‘(𝐺‘(𝑥(+g𝑆)𝑦))))
3218, 30, 31syl2anc 584 . . . . 5 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹𝐺)‘(𝑥(+g𝑆)𝑦)) = (𝐹‘(𝐺‘(𝑥(+g𝑆)𝑦))))
33 fvco3 6940 . . . . . . 7 ((𝐺:(Base‘𝑆)⟶(Base‘𝑇) ∧ 𝑥 ∈ (Base‘𝑆)) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
3418, 19, 33syl2anc 584 . . . . . 6 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
35 fvco3 6940 . . . . . . 7 ((𝐺:(Base‘𝑆)⟶(Base‘𝑇) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
3618, 21, 35syl2anc 584 . . . . . 6 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
3734, 36oveq12d 7375 . . . . 5 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (((𝐹𝐺)‘𝑥)(+g𝑈)((𝐹𝐺)‘𝑦)) = ((𝐹‘(𝐺𝑥))(+g𝑈)(𝐹‘(𝐺𝑦))))
3826, 32, 373eqtr4d 2786 . . . 4 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹𝐺)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝐺)‘𝑥)(+g𝑈)((𝐹𝐺)‘𝑦)))
3938ralrimivva 3197 . . 3 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)((𝐹𝐺)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝐺)‘𝑥)(+g𝑈)((𝐹𝐺)‘𝑦)))
408adantl 482 . . . . 5 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇))
41 eqid 2736 . . . . . . 7 (0g𝑆) = (0g𝑆)
427, 41mndidcl 18571 . . . . . 6 (𝑆 ∈ Mnd → (0g𝑆) ∈ (Base‘𝑆))
4327, 42syl 17 . . . . 5 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → (0g𝑆) ∈ (Base‘𝑆))
44 fvco3 6940 . . . . 5 ((𝐺:(Base‘𝑆)⟶(Base‘𝑇) ∧ (0g𝑆) ∈ (Base‘𝑆)) → ((𝐹𝐺)‘(0g𝑆)) = (𝐹‘(𝐺‘(0g𝑆))))
4540, 43, 44syl2anc 584 . . . 4 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → ((𝐹𝐺)‘(0g𝑆)) = (𝐹‘(𝐺‘(0g𝑆))))
46 eqid 2736 . . . . . . 7 (0g𝑇) = (0g𝑇)
4741, 46mhm0 18610 . . . . . 6 (𝐺 ∈ (𝑆 MndHom 𝑇) → (𝐺‘(0g𝑆)) = (0g𝑇))
4847adantl 482 . . . . 5 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → (𝐺‘(0g𝑆)) = (0g𝑇))
4948fveq2d 6846 . . . 4 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → (𝐹‘(𝐺‘(0g𝑆))) = (𝐹‘(0g𝑇)))
50 eqid 2736 . . . . . 6 (0g𝑈) = (0g𝑈)
5146, 50mhm0 18610 . . . . 5 (𝐹 ∈ (𝑇 MndHom 𝑈) → (𝐹‘(0g𝑇)) = (0g𝑈))
5251adantr 481 . . . 4 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → (𝐹‘(0g𝑇)) = (0g𝑈))
5345, 49, 523eqtrd 2780 . . 3 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → ((𝐹𝐺)‘(0g𝑆)) = (0g𝑈))
5410, 39, 533jca 1128 . 2 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → ((𝐹𝐺):(Base‘𝑆)⟶(Base‘𝑈) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)((𝐹𝐺)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝐺)‘𝑥)(+g𝑈)((𝐹𝐺)‘𝑦)) ∧ ((𝐹𝐺)‘(0g𝑆)) = (0g𝑈)))
557, 5, 11, 23, 41, 50ismhm 18603 . 2 ((𝐹𝐺) ∈ (𝑆 MndHom 𝑈) ↔ ((𝑆 ∈ Mnd ∧ 𝑈 ∈ Mnd) ∧ ((𝐹𝐺):(Base‘𝑆)⟶(Base‘𝑈) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)((𝐹𝐺)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝐺)‘𝑥)(+g𝑈)((𝐹𝐺)‘𝑦)) ∧ ((𝐹𝐺)‘(0g𝑆)) = (0g𝑈))))
563, 54, 55sylanbrc 583 1 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 MndHom 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  ccom 5637  wf 6492  cfv 6496  (class class class)co 7357  Basecbs 17083  +gcplusg 17133  0gc0g 17321  Mndcmnd 18556   MndHom cmhm 18599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-map 8767  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601
This theorem is referenced by:  ghmco  19028  rhmco  20171  zrhpsgnmhm  20988  lgseisenlem4  26726
  Copyright terms: Public domain W3C validator