MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndlid Structured version   Visualization version   GIF version

Theorem mndlid 18193
Description: The identity element of a monoid is a left identity. (Contributed by NM, 18-Aug-2011.)
Hypotheses
Ref Expression
mndlrid.b 𝐵 = (Base‘𝐺)
mndlrid.p + = (+g𝐺)
mndlrid.o 0 = (0g𝐺)
Assertion
Ref Expression
mndlid ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → ( 0 + 𝑋) = 𝑋)

Proof of Theorem mndlid
StepHypRef Expression
1 mndlrid.b . . 3 𝐵 = (Base‘𝐺)
2 mndlrid.p . . 3 + = (+g𝐺)
3 mndlrid.o . . 3 0 = (0g𝐺)
41, 2, 3mndlrid 18192 . 2 ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋))
54simpld 498 1 ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → ( 0 + 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  cfv 6380  (class class class)co 7213  Basecbs 16760  +gcplusg 16802  0gc0g 16944  Mndcmnd 18173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-iota 6338  df-fun 6382  df-fv 6388  df-riota 7170  df-ov 7216  df-0g 16946  df-mgm 18114  df-sgrp 18163  df-mnd 18174
This theorem is referenced by:  issubmnd  18200  ress0g  18201  submnd0  18202  mndinvmod  18203  prdsidlem  18205  imasmnd  18211  0subm  18244  0mhm  18246  mndind  18254  gsumccatOLD  18267  gsumccat  18268  dfgrp2  18392  grplid  18397  dfgrp3  18462  mhmid  18484  mhmmnd  18485  mulgnn0p1  18503  mulgnn0z  18518  mulgnn0dir  18521  cntzsubm  18730  oppgmnd  18746  odmodnn0  18932  lsmub2x  19036  mulgnn0di  19211  gsumval3  19292  gsumzaddlem  19306  gsumzsplit  19312  srgbinomlem4  19558  dsmmacl  20703  mndvlid  21292  dmatmul  21394  mndifsplit  21533  tsmssplit  23049  cntzsnid  31040  omndmul2  31057  omndmul3  31058  slmd0vlid  31194  c0mgm  45140  c0mhm  45141  c0snmgmhm  45145  cznrng  45186  mndpsuppss  45380  mndtccatid  46045
  Copyright terms: Public domain W3C validator