| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndlid | Structured version Visualization version GIF version | ||
| Description: The identity element of a monoid is a left identity. (Contributed by NM, 18-Aug-2011.) |
| Ref | Expression |
|---|---|
| mndlrid.b | ⊢ 𝐵 = (Base‘𝐺) |
| mndlrid.p | ⊢ + = (+g‘𝐺) |
| mndlrid.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| mndlid | ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndlrid.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | mndlrid.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 3 | mndlrid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 4 | 1, 2, 3 | mndlrid 18661 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋)) |
| 5 | 4 | simpld 494 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 +gcplusg 17161 0gc0g 17343 Mndcmnd 18642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-riota 7303 df-ov 7349 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 |
| This theorem is referenced by: issubmnd 18669 ress0g 18670 submnd0 18671 mndinvmod 18672 mndpsuppss 18673 prdsidlem 18677 imasmnd 18683 xpsmnd0 18686 mndvlid 18707 0subm 18725 0mhm 18727 mndind 18736 gsumccat 18749 dfgrp2 18875 grplid 18880 dfgrp3 18952 mhmid 18976 mhmmnd 18977 mulgnn0p1 18998 mulgnn0z 19014 mulgnn0dir 19017 cntzsubm 19251 oppgmnd 19267 odmodnn0 19453 lsmub2x 19560 mulgnn0di 19738 gsumval3 19820 gsumzaddlem 19834 gsumzsplit 19840 omndmul2 20046 omndmul3 20047 srgbinomlem4 20148 c0mgm 20378 c0mhm 20379 c0snmgmhm 20381 dsmmacl 21679 dmatmul 22413 mndifsplit 22552 tsmssplit 24068 mndlrinv 33003 mndlactf1 33005 mndlactfo 33006 mndlactf1o 33009 mndractf1o 33010 gsumwun 33043 cntzsnid 33047 slmd0vlid 33189 mndmolinv 42134 primrootsunit1 42136 primrootscoprmpow 42138 primrootscoprbij 42141 cznrng 48298 mndtccatid 49625 |
| Copyright terms: Public domain | W3C validator |