| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndlid | Structured version Visualization version GIF version | ||
| Description: The identity element of a monoid is a left identity. (Contributed by NM, 18-Aug-2011.) |
| Ref | Expression |
|---|---|
| mndlrid.b | ⊢ 𝐵 = (Base‘𝐺) |
| mndlrid.p | ⊢ + = (+g‘𝐺) |
| mndlrid.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| mndlid | ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndlrid.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | mndlrid.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 3 | mndlrid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 4 | 1, 2, 3 | mndlrid 18736 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋)) |
| 5 | 4 | simpld 494 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 +gcplusg 17276 0gc0g 17458 Mndcmnd 18717 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-riota 7367 df-ov 7413 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 |
| This theorem is referenced by: issubmnd 18744 ress0g 18745 submnd0 18746 mndinvmod 18747 mndpsuppss 18748 prdsidlem 18752 imasmnd 18758 xpsmnd0 18761 mndvlid 18782 0subm 18800 0mhm 18802 mndind 18811 gsumccat 18824 dfgrp2 18950 grplid 18955 dfgrp3 19027 mhmid 19051 mhmmnd 19052 mulgnn0p1 19073 mulgnn0z 19089 mulgnn0dir 19092 cntzsubm 19326 oppgmnd 19342 odmodnn0 19526 lsmub2x 19633 mulgnn0di 19811 gsumval3 19893 gsumzaddlem 19907 gsumzsplit 19913 srgbinomlem4 20194 c0mgm 20424 c0mhm 20425 c0snmgmhm 20427 dsmmacl 21706 dmatmul 22440 mndifsplit 22579 tsmssplit 24095 mndlrinv 33024 mndlactf1 33026 mndlactfo 33027 mndlactf1o 33030 mndractf1o 33031 gsumwun 33064 cntzsnid 33068 omndmul2 33085 omndmul3 33086 slmd0vlid 33224 mndmolinv 42113 primrootsunit1 42115 primrootscoprmpow 42117 primrootscoprbij 42120 cznrng 48203 mndtccatid 49431 |
| Copyright terms: Public domain | W3C validator |