| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndlid | Structured version Visualization version GIF version | ||
| Description: The identity element of a monoid is a left identity. (Contributed by NM, 18-Aug-2011.) |
| Ref | Expression |
|---|---|
| mndlrid.b | ⊢ 𝐵 = (Base‘𝐺) |
| mndlrid.p | ⊢ + = (+g‘𝐺) |
| mndlrid.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| mndlid | ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndlrid.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | mndlrid.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 3 | mndlrid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 4 | 1, 2, 3 | mndlrid 18665 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋)) |
| 5 | 4 | simpld 494 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ‘cfv 6488 (class class class)co 7354 Basecbs 17124 +gcplusg 17165 0gc0g 17347 Mndcmnd 18646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6444 df-fun 6490 df-fv 6496 df-riota 7311 df-ov 7357 df-0g 17349 df-mgm 18552 df-sgrp 18631 df-mnd 18647 |
| This theorem is referenced by: issubmnd 18673 ress0g 18674 submnd0 18675 mndinvmod 18676 mndpsuppss 18677 prdsidlem 18681 imasmnd 18687 xpsmnd0 18690 mndvlid 18711 0subm 18729 0mhm 18731 mndind 18740 gsumccat 18753 dfgrp2 18879 grplid 18884 dfgrp3 18956 mhmid 18980 mhmmnd 18981 mulgnn0p1 19002 mulgnn0z 19018 mulgnn0dir 19021 cntzsubm 19254 oppgmnd 19270 odmodnn0 19456 lsmub2x 19563 mulgnn0di 19741 gsumval3 19823 gsumzaddlem 19837 gsumzsplit 19843 omndmul2 20049 omndmul3 20050 srgbinomlem4 20151 c0mgm 20381 c0mhm 20382 c0snmgmhm 20384 dsmmacl 21682 dmatmul 22415 mndifsplit 22554 tsmssplit 24070 mndlrinv 33014 mndlactf1 33016 mndlactfo 33017 mndlactf1o 33020 mndractf1o 33021 gsumwun 33054 cntzsnid 33058 slmd0vlid 33200 mndmolinv 42211 primrootsunit1 42213 primrootscoprmpow 42215 primrootscoprbij 42218 cznrng 48388 mndtccatid 49715 |
| Copyright terms: Public domain | W3C validator |