| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndlid | Structured version Visualization version GIF version | ||
| Description: The identity element of a monoid is a left identity. (Contributed by NM, 18-Aug-2011.) |
| Ref | Expression |
|---|---|
| mndlrid.b | ⊢ 𝐵 = (Base‘𝐺) |
| mndlrid.p | ⊢ + = (+g‘𝐺) |
| mndlrid.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| mndlid | ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndlrid.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | mndlrid.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 3 | mndlrid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 4 | 1, 2, 3 | mndlrid 18645 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋)) |
| 5 | 4 | simpld 494 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 +gcplusg 17179 0gc0g 17361 Mndcmnd 18626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-riota 7310 df-ov 7356 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 |
| This theorem is referenced by: issubmnd 18653 ress0g 18654 submnd0 18655 mndinvmod 18656 mndpsuppss 18657 prdsidlem 18661 imasmnd 18667 xpsmnd0 18670 mndvlid 18691 0subm 18709 0mhm 18711 mndind 18720 gsumccat 18733 dfgrp2 18859 grplid 18864 dfgrp3 18936 mhmid 18960 mhmmnd 18961 mulgnn0p1 18982 mulgnn0z 18998 mulgnn0dir 19001 cntzsubm 19235 oppgmnd 19251 odmodnn0 19437 lsmub2x 19544 mulgnn0di 19722 gsumval3 19804 gsumzaddlem 19818 gsumzsplit 19824 omndmul2 20030 omndmul3 20031 srgbinomlem4 20132 c0mgm 20362 c0mhm 20363 c0snmgmhm 20365 dsmmacl 21666 dmatmul 22400 mndifsplit 22539 tsmssplit 24055 mndlrinv 32991 mndlactf1 32993 mndlactfo 32994 mndlactf1o 32997 mndractf1o 32998 gsumwun 33031 cntzsnid 33035 slmd0vlid 33177 mndmolinv 42071 primrootsunit1 42073 primrootscoprmpow 42075 primrootscoprbij 42078 cznrng 48249 mndtccatid 49576 |
| Copyright terms: Public domain | W3C validator |