| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndlid | Structured version Visualization version GIF version | ||
| Description: The identity element of a monoid is a left identity. (Contributed by NM, 18-Aug-2011.) |
| Ref | Expression |
|---|---|
| mndlrid.b | ⊢ 𝐵 = (Base‘𝐺) |
| mndlrid.p | ⊢ + = (+g‘𝐺) |
| mndlrid.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| mndlid | ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndlrid.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | mndlrid.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 3 | mndlrid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 4 | 1, 2, 3 | mndlrid 18680 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋)) |
| 5 | 4 | simpld 494 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 0gc0g 17402 Mndcmnd 18661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-riota 7344 df-ov 7390 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 |
| This theorem is referenced by: issubmnd 18688 ress0g 18689 submnd0 18690 mndinvmod 18691 mndpsuppss 18692 prdsidlem 18696 imasmnd 18702 xpsmnd0 18705 mndvlid 18726 0subm 18744 0mhm 18746 mndind 18755 gsumccat 18768 dfgrp2 18894 grplid 18899 dfgrp3 18971 mhmid 18995 mhmmnd 18996 mulgnn0p1 19017 mulgnn0z 19033 mulgnn0dir 19036 cntzsubm 19270 oppgmnd 19286 odmodnn0 19470 lsmub2x 19577 mulgnn0di 19755 gsumval3 19837 gsumzaddlem 19851 gsumzsplit 19857 srgbinomlem4 20138 c0mgm 20368 c0mhm 20369 c0snmgmhm 20371 dsmmacl 21650 dmatmul 22384 mndifsplit 22523 tsmssplit 24039 mndlrinv 32965 mndlactf1 32967 mndlactfo 32968 mndlactf1o 32971 mndractf1o 32972 gsumwun 33005 cntzsnid 33009 omndmul2 33026 omndmul3 33027 slmd0vlid 33175 mndmolinv 42083 primrootsunit1 42085 primrootscoprmpow 42087 primrootscoprbij 42090 cznrng 48246 mndtccatid 49573 |
| Copyright terms: Public domain | W3C validator |