MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndrid Structured version   Visualization version   GIF version

Theorem mndrid 18451
Description: The identity element of a monoid is a right identity. (Contributed by NM, 18-Aug-2011.)
Hypotheses
Ref Expression
mndlrid.b 𝐵 = (Base‘𝐺)
mndlrid.p + = (+g𝐺)
mndlrid.o 0 = (0g𝐺)
Assertion
Ref Expression
mndrid ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (𝑋 + 0 ) = 𝑋)

Proof of Theorem mndrid
StepHypRef Expression
1 mndlrid.b . . 3 𝐵 = (Base‘𝐺)
2 mndlrid.p . . 3 + = (+g𝐺)
3 mndlrid.o . . 3 0 = (0g𝐺)
41, 2, 3mndlrid 18449 . 2 ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋))
54simprd 497 1 ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (𝑋 + 0 ) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wcel 2104  cfv 6458  (class class class)co 7307  Basecbs 16957  +gcplusg 17007  0gc0g 17195  Mndcmnd 18430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-iota 6410  df-fun 6460  df-fv 6466  df-riota 7264  df-ov 7310  df-0g 17197  df-mgm 18371  df-sgrp 18420  df-mnd 18431
This theorem is referenced by:  mndpfo  18453  issubmnd  18457  ress0g  18458  submnd0  18459  mndinvmod  18460  prdsidlem  18462  imasmnd  18468  mndind  18511  gsumccatOLD  18524  gsumccat  18525  grprid  18655  mhmid  18741  mhmmnd  18742  mulgnn0dir  18778  cntzsubm  18987  oppgmnd  19006  lsmub1x  19296  gsumval3  19553  gsumzsplit  19573  srgbinomlem3  19823  mndvrid  21588  mndifsplit  21830  gsummatr01  21853  smadiadet  21864  pmatcollpw3fi1lem1  21980  chfacfscmulgsum  22054  chfacfpmmulgsum  22058  tsmssplit  23348  tsmsxp  23351  gsummptres  31357  gsummptres2  31358  cntzsnid  31366  slmd0vrid  31521  mndtccatid  46432
  Copyright terms: Public domain W3C validator