![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mndrid | Structured version Visualization version GIF version |
Description: The identity element of a monoid is a right identity. (Contributed by NM, 18-Aug-2011.) |
Ref | Expression |
---|---|
mndlrid.b | ⊢ 𝐵 = (Base‘𝐺) |
mndlrid.p | ⊢ + = (+g‘𝐺) |
mndlrid.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
mndrid | ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndlrid.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | mndlrid.p | . . 3 ⊢ + = (+g‘𝐺) | |
3 | mndlrid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
4 | 1, 2, 3 | mndlrid 18791 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋)) |
5 | 4 | simprd 495 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 0gc0g 17499 Mndcmnd 18772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-riota 7404 df-ov 7451 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 |
This theorem is referenced by: mndpfo 18795 issubmnd 18799 ress0g 18800 submnd0 18801 mndinvmod 18802 prdsidlem 18804 imasmnd 18810 xpsmnd0 18813 mndvrid 18835 mndind 18863 gsumccat 18876 grprid 19008 mhmid 19103 mhmmnd 19104 mulgnn0dir 19144 cntzsubm 19378 oppgmnd 19397 lsmub1x 19688 gsumval3 19949 gsumzsplit 19969 srgbinomlem3 20255 mndifsplit 22663 gsummatr01 22686 smadiadet 22697 pmatcollpw3fi1lem1 22813 chfacfscmulgsum 22887 chfacfpmmulgsum 22891 tsmssplit 24181 tsmsxp 24184 mndlrinv 33010 mndractf1 33014 mndractfo 33015 mndlactf1o 33016 mndractf1o 33017 gsummptres 33035 gsummptres2 33036 cntzsnid 33045 slmd0vrid 33202 mndmolinv 42052 primrootscoprbij 42059 aks6d1c1 42073 aks6d1c2lem3 42083 mndtccatid 48760 |
Copyright terms: Public domain | W3C validator |