Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mndrid | Structured version Visualization version GIF version |
Description: The identity element of a monoid is a right identity. (Contributed by NM, 18-Aug-2011.) |
Ref | Expression |
---|---|
mndlrid.b | ⊢ 𝐵 = (Base‘𝐺) |
mndlrid.p | ⊢ + = (+g‘𝐺) |
mndlrid.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
mndrid | ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndlrid.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | mndlrid.p | . . 3 ⊢ + = (+g‘𝐺) | |
3 | mndlrid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
4 | 1, 2, 3 | mndlrid 18449 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋)) |
5 | 4 | simprd 497 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ‘cfv 6458 (class class class)co 7307 Basecbs 16957 +gcplusg 17007 0gc0g 17195 Mndcmnd 18430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-iota 6410 df-fun 6460 df-fv 6466 df-riota 7264 df-ov 7310 df-0g 17197 df-mgm 18371 df-sgrp 18420 df-mnd 18431 |
This theorem is referenced by: mndpfo 18453 issubmnd 18457 ress0g 18458 submnd0 18459 mndinvmod 18460 prdsidlem 18462 imasmnd 18468 mndind 18511 gsumccatOLD 18524 gsumccat 18525 grprid 18655 mhmid 18741 mhmmnd 18742 mulgnn0dir 18778 cntzsubm 18987 oppgmnd 19006 lsmub1x 19296 gsumval3 19553 gsumzsplit 19573 srgbinomlem3 19823 mndvrid 21588 mndifsplit 21830 gsummatr01 21853 smadiadet 21864 pmatcollpw3fi1lem1 21980 chfacfscmulgsum 22054 chfacfpmmulgsum 22058 tsmssplit 23348 tsmsxp 23351 gsummptres 31357 gsummptres2 31358 cntzsnid 31366 slmd0vrid 31521 mndtccatid 46432 |
Copyright terms: Public domain | W3C validator |