Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mndrid | Structured version Visualization version GIF version |
Description: The identity element of a monoid is a right identity. (Contributed by NM, 18-Aug-2011.) |
Ref | Expression |
---|---|
mndlrid.b | ⊢ 𝐵 = (Base‘𝐺) |
mndlrid.p | ⊢ + = (+g‘𝐺) |
mndlrid.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
mndrid | ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndlrid.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | mndlrid.p | . . 3 ⊢ + = (+g‘𝐺) | |
3 | mndlrid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
4 | 1, 2, 3 | mndlrid 18010 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋)) |
5 | 4 | simprd 499 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ‘cfv 6340 (class class class)co 7156 Basecbs 16555 +gcplusg 16637 0gc0g 16785 Mndcmnd 17991 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-iota 6299 df-fun 6342 df-fv 6348 df-riota 7114 df-ov 7159 df-0g 16787 df-mgm 17932 df-sgrp 17981 df-mnd 17992 |
This theorem is referenced by: mndpfo 18014 issubmnd 18018 ress0g 18019 submnd0 18020 mndinvmod 18021 prdsidlem 18023 imasmnd 18029 mndind 18072 gsumccatOLD 18085 gsumccat 18086 grprid 18215 mhmid 18301 mhmmnd 18302 mulgnn0dir 18338 cntzsubm 18547 oppgmnd 18563 lsmub1x 18852 gsumval3 19109 gsumzsplit 19129 srgbinomlem3 19374 mndvrid 21110 mndifsplit 21350 gsummatr01 21373 smadiadet 21384 pmatcollpw3fi1lem1 21500 chfacfscmulgsum 21574 chfacfpmmulgsum 21578 tsmssplit 22866 tsmsxp 22869 gsummptres 30851 gsummptres2 30852 cntzsnid 30860 slmd0vrid 31015 |
Copyright terms: Public domain | W3C validator |