![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mndrid | Structured version Visualization version GIF version |
Description: The identity element of a monoid is a right identity. (Contributed by NM, 18-Aug-2011.) |
Ref | Expression |
---|---|
mndlrid.b | ⊢ 𝐵 = (Base‘𝐺) |
mndlrid.p | ⊢ + = (+g‘𝐺) |
mndlrid.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
mndrid | ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndlrid.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | mndlrid.p | . . 3 ⊢ + = (+g‘𝐺) | |
3 | mndlrid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
4 | 1, 2, 3 | mndlrid 18779 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋)) |
5 | 4 | simprd 495 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 +gcplusg 17298 0gc0g 17486 Mndcmnd 18760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-riota 7388 df-ov 7434 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 |
This theorem is referenced by: mndpfo 18783 issubmnd 18787 ress0g 18788 submnd0 18789 mndinvmod 18790 prdsidlem 18795 imasmnd 18801 xpsmnd0 18804 mndvrid 18826 mndind 18854 gsumccat 18867 grprid 18999 mhmid 19094 mhmmnd 19095 mulgnn0dir 19135 cntzsubm 19369 oppgmnd 19388 lsmub1x 19679 gsumval3 19940 gsumzsplit 19960 srgbinomlem3 20246 mndifsplit 22658 gsummatr01 22681 smadiadet 22692 pmatcollpw3fi1lem1 22808 chfacfscmulgsum 22882 chfacfpmmulgsum 22886 tsmssplit 24176 tsmsxp 24179 mndlrinv 33012 mndractf1 33016 mndractfo 33017 mndlactf1o 33018 mndractf1o 33019 gsummptres 33038 gsummptres2 33039 cntzsnid 33055 slmd0vrid 33212 mndmolinv 42077 primrootscoprbij 42084 aks6d1c1 42098 aks6d1c2lem3 42108 mndtccatid 48896 |
Copyright terms: Public domain | W3C validator |