MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndrid Structured version   Visualization version   GIF version

Theorem mndrid 18658
Description: The identity element of a monoid is a right identity. (Contributed by NM, 18-Aug-2011.)
Hypotheses
Ref Expression
mndlrid.b 𝐵 = (Base‘𝐺)
mndlrid.p + = (+g𝐺)
mndlrid.o 0 = (0g𝐺)
Assertion
Ref Expression
mndrid ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (𝑋 + 0 ) = 𝑋)

Proof of Theorem mndrid
StepHypRef Expression
1 mndlrid.b . . 3 𝐵 = (Base‘𝐺)
2 mndlrid.p . . 3 + = (+g𝐺)
3 mndlrid.o . . 3 0 = (0g𝐺)
41, 2, 3mndlrid 18656 . 2 ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋))
54simprd 495 1 ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (𝑋 + 0 ) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  0gc0g 17378  Mndcmnd 18637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-riota 7326  df-ov 7372  df-0g 17380  df-mgm 18543  df-sgrp 18622  df-mnd 18638
This theorem is referenced by:  mndpfo  18660  issubmnd  18664  ress0g  18665  submnd0  18666  mndinvmod  18667  prdsidlem  18672  imasmnd  18678  xpsmnd0  18681  mndvrid  18703  mndind  18731  gsumccat  18744  grprid  18876  mhmid  18971  mhmmnd  18972  mulgnn0dir  19012  cntzsubm  19246  oppgmnd  19262  lsmub1x  19552  gsumval3  19813  gsumzsplit  19833  srgbinomlem3  20113  mndifsplit  22499  gsummatr01  22522  smadiadet  22533  pmatcollpw3fi1lem1  22649  chfacfscmulgsum  22723  chfacfpmmulgsum  22727  tsmssplit  24015  tsmsxp  24018  mndlrinv  32938  mndractf1  32942  mndractfo  32943  mndlactf1o  32944  mndractf1o  32945  gsummptres  32965  gsummptres2  32966  cntzsnid  32982  slmd0vrid  33149  mndmolinv  42056  primrootscoprbij  42063  aks6d1c1  42077  aks6d1c2lem3  42087  mndtccatid  49549
  Copyright terms: Public domain W3C validator