| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndrid | Structured version Visualization version GIF version | ||
| Description: The identity element of a monoid is a right identity. (Contributed by NM, 18-Aug-2011.) |
| Ref | Expression |
|---|---|
| mndlrid.b | ⊢ 𝐵 = (Base‘𝐺) |
| mndlrid.p | ⊢ + = (+g‘𝐺) |
| mndlrid.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| mndrid | ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndlrid.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | mndlrid.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 3 | mndlrid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 4 | 1, 2, 3 | mndlrid 18687 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋)) |
| 5 | 4 | simprd 495 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 0gc0g 17409 Mndcmnd 18668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-riota 7347 df-ov 7393 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 |
| This theorem is referenced by: mndpfo 18691 issubmnd 18695 ress0g 18696 submnd0 18697 mndinvmod 18698 prdsidlem 18703 imasmnd 18709 xpsmnd0 18712 mndvrid 18734 mndind 18762 gsumccat 18775 grprid 18907 mhmid 19002 mhmmnd 19003 mulgnn0dir 19043 cntzsubm 19277 oppgmnd 19293 lsmub1x 19583 gsumval3 19844 gsumzsplit 19864 srgbinomlem3 20144 mndifsplit 22530 gsummatr01 22553 smadiadet 22564 pmatcollpw3fi1lem1 22680 chfacfscmulgsum 22754 chfacfpmmulgsum 22758 tsmssplit 24046 tsmsxp 24049 mndlrinv 32972 mndractf1 32976 mndractfo 32977 mndlactf1o 32978 mndractf1o 32979 gsummptres 32999 gsummptres2 33000 cntzsnid 33016 slmd0vrid 33183 mndmolinv 42090 primrootscoprbij 42097 aks6d1c1 42111 aks6d1c2lem3 42121 mndtccatid 49580 |
| Copyright terms: Public domain | W3C validator |