| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndrid | Structured version Visualization version GIF version | ||
| Description: The identity element of a monoid is a right identity. (Contributed by NM, 18-Aug-2011.) |
| Ref | Expression |
|---|---|
| mndlrid.b | ⊢ 𝐵 = (Base‘𝐺) |
| mndlrid.p | ⊢ + = (+g‘𝐺) |
| mndlrid.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| mndrid | ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndlrid.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | mndlrid.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 3 | mndlrid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 4 | 1, 2, 3 | mndlrid 18731 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋)) |
| 5 | 4 | simprd 495 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 +gcplusg 17271 0gc0g 17453 Mndcmnd 18712 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-riota 7362 df-ov 7408 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 |
| This theorem is referenced by: mndpfo 18735 issubmnd 18739 ress0g 18740 submnd0 18741 mndinvmod 18742 prdsidlem 18747 imasmnd 18753 xpsmnd0 18756 mndvrid 18778 mndind 18806 gsumccat 18819 grprid 18951 mhmid 19046 mhmmnd 19047 mulgnn0dir 19087 cntzsubm 19321 oppgmnd 19337 lsmub1x 19627 gsumval3 19888 gsumzsplit 19908 srgbinomlem3 20188 mndifsplit 22574 gsummatr01 22597 smadiadet 22608 pmatcollpw3fi1lem1 22724 chfacfscmulgsum 22798 chfacfpmmulgsum 22802 tsmssplit 24090 tsmsxp 24093 mndlrinv 33019 mndractf1 33023 mndractfo 33024 mndlactf1o 33025 mndractf1o 33026 gsummptres 33046 gsummptres2 33047 cntzsnid 33063 slmd0vrid 33220 mndmolinv 42108 primrootscoprbij 42115 aks6d1c1 42129 aks6d1c2lem3 42139 mndtccatid 49464 |
| Copyright terms: Public domain | W3C validator |