MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndrid Structured version   Visualization version   GIF version

Theorem mndrid 18781
Description: The identity element of a monoid is a right identity. (Contributed by NM, 18-Aug-2011.)
Hypotheses
Ref Expression
mndlrid.b 𝐵 = (Base‘𝐺)
mndlrid.p + = (+g𝐺)
mndlrid.o 0 = (0g𝐺)
Assertion
Ref Expression
mndrid ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (𝑋 + 0 ) = 𝑋)

Proof of Theorem mndrid
StepHypRef Expression
1 mndlrid.b . . 3 𝐵 = (Base‘𝐺)
2 mndlrid.p . . 3 + = (+g𝐺)
3 mndlrid.o . . 3 0 = (0g𝐺)
41, 2, 3mndlrid 18779 . 2 ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋))
54simprd 495 1 ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (𝑋 + 0 ) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  0gc0g 17486  Mndcmnd 18760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-riota 7388  df-ov 7434  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761
This theorem is referenced by:  mndpfo  18783  issubmnd  18787  ress0g  18788  submnd0  18789  mndinvmod  18790  prdsidlem  18795  imasmnd  18801  xpsmnd0  18804  mndvrid  18826  mndind  18854  gsumccat  18867  grprid  18999  mhmid  19094  mhmmnd  19095  mulgnn0dir  19135  cntzsubm  19369  oppgmnd  19388  lsmub1x  19679  gsumval3  19940  gsumzsplit  19960  srgbinomlem3  20246  mndifsplit  22658  gsummatr01  22681  smadiadet  22692  pmatcollpw3fi1lem1  22808  chfacfscmulgsum  22882  chfacfpmmulgsum  22886  tsmssplit  24176  tsmsxp  24179  mndlrinv  33012  mndractf1  33016  mndractfo  33017  mndlactf1o  33018  mndractf1o  33019  gsummptres  33038  gsummptres2  33039  cntzsnid  33055  slmd0vrid  33212  mndmolinv  42077  primrootscoprbij  42084  aks6d1c1  42098  aks6d1c2lem3  42108  mndtccatid  48896
  Copyright terms: Public domain W3C validator