| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndrid | Structured version Visualization version GIF version | ||
| Description: The identity element of a monoid is a right identity. (Contributed by NM, 18-Aug-2011.) |
| Ref | Expression |
|---|---|
| mndlrid.b | ⊢ 𝐵 = (Base‘𝐺) |
| mndlrid.p | ⊢ + = (+g‘𝐺) |
| mndlrid.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| mndrid | ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndlrid.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | mndlrid.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 3 | mndlrid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 4 | 1, 2, 3 | mndlrid 18646 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋)) |
| 5 | 4 | simprd 495 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 Basecbs 17139 +gcplusg 17180 0gc0g 17362 Mndcmnd 18627 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-riota 7310 df-ov 7356 df-0g 17364 df-mgm 18533 df-sgrp 18612 df-mnd 18628 |
| This theorem is referenced by: mndpfo 18650 issubmnd 18654 ress0g 18655 submnd0 18656 mndinvmod 18657 prdsidlem 18662 imasmnd 18668 xpsmnd0 18671 mndvrid 18693 mndind 18721 gsumccat 18734 grprid 18866 mhmid 18961 mhmmnd 18962 mulgnn0dir 19002 cntzsubm 19236 oppgmnd 19252 lsmub1x 19544 gsumval3 19805 gsumzsplit 19825 srgbinomlem3 20132 mndifsplit 22540 gsummatr01 22563 smadiadet 22574 pmatcollpw3fi1lem1 22690 chfacfscmulgsum 22764 chfacfpmmulgsum 22768 tsmssplit 24056 tsmsxp 24059 mndlrinv 32997 mndractf1 33001 mndractfo 33002 mndlactf1o 33003 mndractf1o 33004 gsummptres 33024 gsummptres2 33025 cntzsnid 33041 slmd0vrid 33184 mndmolinv 42088 primrootscoprbij 42095 aks6d1c1 42109 aks6d1c2lem3 42119 mndtccatid 49592 |
| Copyright terms: Public domain | W3C validator |