Step | Hyp | Ref
| Expression |
1 | | mthmval.r |
. . . 4
β’ π
= (mStRedβπ) |
2 | | mthmval.j |
. . . 4
β’ π½ = (mPPStβπ) |
3 | | mthmval.u |
. . . 4
β’ π = (mThmβπ) |
4 | 1, 2, 3 | mthmval 34862 |
. . 3
β’ π = (β‘π
β (π
β π½)) |
5 | 4 | eleq2i 2823 |
. 2
β’ (π β π β π β (β‘π
β (π
β π½))) |
6 | | eqid 2730 |
. . . . 5
β’
(mPreStβπ) =
(mPreStβπ) |
7 | 6, 1 | msrf 34829 |
. . . 4
β’ π
:(mPreStβπ)βΆ(mPreStβπ) |
8 | | ffn 6718 |
. . . 4
β’ (π
:(mPreStβπ)βΆ(mPreStβπ) β π
Fn (mPreStβπ)) |
9 | 7, 8 | ax-mp 5 |
. . 3
β’ π
Fn (mPreStβπ) |
10 | | elpreima 7060 |
. . 3
β’ (π
Fn (mPreStβπ) β (π β (β‘π
β (π
β π½)) β (π β (mPreStβπ) β§ (π
βπ) β (π
β π½)))) |
11 | 9, 10 | ax-mp 5 |
. 2
β’ (π β (β‘π
β (π
β π½)) β (π β (mPreStβπ) β§ (π
βπ) β (π
β π½))) |
12 | 6, 2 | mppspst 34861 |
. . . . 5
β’ π½ β (mPreStβπ) |
13 | | fvelimab 6965 |
. . . . 5
β’ ((π
Fn (mPreStβπ) β§ π½ β (mPreStβπ)) β ((π
βπ) β (π
β π½) β βπ₯ β π½ (π
βπ₯) = (π
βπ))) |
14 | 9, 12, 13 | mp2an 688 |
. . . 4
β’ ((π
βπ) β (π
β π½) β βπ₯ β π½ (π
βπ₯) = (π
βπ)) |
15 | 14 | anbi2i 621 |
. . 3
β’ ((π β (mPreStβπ) β§ (π
βπ) β (π
β π½)) β (π β (mPreStβπ) β§ βπ₯ β π½ (π
βπ₯) = (π
βπ))) |
16 | 12 | sseli 3979 |
. . . . . 6
β’ (π₯ β π½ β π₯ β (mPreStβπ)) |
17 | 6, 1 | msrrcl 34830 |
. . . . . 6
β’ ((π
βπ₯) = (π
βπ) β (π₯ β (mPreStβπ) β π β (mPreStβπ))) |
18 | 16, 17 | syl5ibcom 244 |
. . . . 5
β’ (π₯ β π½ β ((π
βπ₯) = (π
βπ) β π β (mPreStβπ))) |
19 | 18 | rexlimiv 3146 |
. . . 4
β’
(βπ₯ β
π½ (π
βπ₯) = (π
βπ) β π β (mPreStβπ)) |
20 | 19 | pm4.71ri 559 |
. . 3
β’
(βπ₯ β
π½ (π
βπ₯) = (π
βπ) β (π β (mPreStβπ) β§ βπ₯ β π½ (π
βπ₯) = (π
βπ))) |
21 | 15, 20 | bitr4i 277 |
. 2
β’ ((π β (mPreStβπ) β§ (π
βπ) β (π
β π½)) β βπ₯ β π½ (π
βπ₯) = (π
βπ)) |
22 | 5, 11, 21 | 3bitri 296 |
1
β’ (π β π β βπ₯ β π½ (π
βπ₯) = (π
βπ)) |