![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elmthm | Structured version Visualization version GIF version |
Description: A theorem is a pre-statement, whose reduct is also the reduct of a provable pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mthmval.r | ⊢ 𝑅 = (mStRed‘𝑇) |
mthmval.j | ⊢ 𝐽 = (mPPSt‘𝑇) |
mthmval.u | ⊢ 𝑈 = (mThm‘𝑇) |
Ref | Expression |
---|---|
elmthm | ⊢ (𝑋 ∈ 𝑈 ↔ ∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mthmval.r | . . . 4 ⊢ 𝑅 = (mStRed‘𝑇) | |
2 | mthmval.j | . . . 4 ⊢ 𝐽 = (mPPSt‘𝑇) | |
3 | mthmval.u | . . . 4 ⊢ 𝑈 = (mThm‘𝑇) | |
4 | 1, 2, 3 | mthmval 35543 | . . 3 ⊢ 𝑈 = (◡𝑅 “ (𝑅 “ 𝐽)) |
5 | 4 | eleq2i 2836 | . 2 ⊢ (𝑋 ∈ 𝑈 ↔ 𝑋 ∈ (◡𝑅 “ (𝑅 “ 𝐽))) |
6 | eqid 2740 | . . . . 5 ⊢ (mPreSt‘𝑇) = (mPreSt‘𝑇) | |
7 | 6, 1 | msrf 35510 | . . . 4 ⊢ 𝑅:(mPreSt‘𝑇)⟶(mPreSt‘𝑇) |
8 | ffn 6747 | . . . 4 ⊢ (𝑅:(mPreSt‘𝑇)⟶(mPreSt‘𝑇) → 𝑅 Fn (mPreSt‘𝑇)) | |
9 | 7, 8 | ax-mp 5 | . . 3 ⊢ 𝑅 Fn (mPreSt‘𝑇) |
10 | elpreima 7091 | . . 3 ⊢ (𝑅 Fn (mPreSt‘𝑇) → (𝑋 ∈ (◡𝑅 “ (𝑅 “ 𝐽)) ↔ (𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅‘𝑋) ∈ (𝑅 “ 𝐽)))) | |
11 | 9, 10 | ax-mp 5 | . 2 ⊢ (𝑋 ∈ (◡𝑅 “ (𝑅 “ 𝐽)) ↔ (𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅‘𝑋) ∈ (𝑅 “ 𝐽))) |
12 | 6, 2 | mppspst 35542 | . . . . 5 ⊢ 𝐽 ⊆ (mPreSt‘𝑇) |
13 | fvelimab 6994 | . . . . 5 ⊢ ((𝑅 Fn (mPreSt‘𝑇) ∧ 𝐽 ⊆ (mPreSt‘𝑇)) → ((𝑅‘𝑋) ∈ (𝑅 “ 𝐽) ↔ ∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑋))) | |
14 | 9, 12, 13 | mp2an 691 | . . . 4 ⊢ ((𝑅‘𝑋) ∈ (𝑅 “ 𝐽) ↔ ∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑋)) |
15 | 14 | anbi2i 622 | . . 3 ⊢ ((𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅‘𝑋) ∈ (𝑅 “ 𝐽)) ↔ (𝑋 ∈ (mPreSt‘𝑇) ∧ ∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑋))) |
16 | 12 | sseli 4004 | . . . . . 6 ⊢ (𝑥 ∈ 𝐽 → 𝑥 ∈ (mPreSt‘𝑇)) |
17 | 6, 1 | msrrcl 35511 | . . . . . 6 ⊢ ((𝑅‘𝑥) = (𝑅‘𝑋) → (𝑥 ∈ (mPreSt‘𝑇) ↔ 𝑋 ∈ (mPreSt‘𝑇))) |
18 | 16, 17 | syl5ibcom 245 | . . . . 5 ⊢ (𝑥 ∈ 𝐽 → ((𝑅‘𝑥) = (𝑅‘𝑋) → 𝑋 ∈ (mPreSt‘𝑇))) |
19 | 18 | rexlimiv 3154 | . . . 4 ⊢ (∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑋) → 𝑋 ∈ (mPreSt‘𝑇)) |
20 | 19 | pm4.71ri 560 | . . 3 ⊢ (∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑋) ↔ (𝑋 ∈ (mPreSt‘𝑇) ∧ ∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑋))) |
21 | 15, 20 | bitr4i 278 | . 2 ⊢ ((𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅‘𝑋) ∈ (𝑅 “ 𝐽)) ↔ ∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑋)) |
22 | 5, 11, 21 | 3bitri 297 | 1 ⊢ (𝑋 ∈ 𝑈 ↔ ∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 ⊆ wss 3976 ◡ccnv 5699 “ cima 5703 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 mPreStcmpst 35441 mStRedcmsr 35442 mPPStcmpps 35446 mThmcmthm 35447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-ot 4657 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-1st 8030 df-2nd 8031 df-mpst 35461 df-msr 35462 df-mpps 35466 df-mthm 35467 |
This theorem is referenced by: mthmi 35545 mthmpps 35550 |
Copyright terms: Public domain | W3C validator |