Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmthm Structured version   Visualization version   GIF version

Theorem elmthm 35641
Description: A theorem is a pre-statement, whose reduct is also the reduct of a provable pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mthmval.r 𝑅 = (mStRed‘𝑇)
mthmval.j 𝐽 = (mPPSt‘𝑇)
mthmval.u 𝑈 = (mThm‘𝑇)
Assertion
Ref Expression
elmthm (𝑋𝑈 ↔ ∃𝑥𝐽 (𝑅𝑥) = (𝑅𝑋))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑅   𝑥,𝑇   𝑥,𝑋
Allowed substitution hint:   𝑈(𝑥)

Proof of Theorem elmthm
StepHypRef Expression
1 mthmval.r . . . 4 𝑅 = (mStRed‘𝑇)
2 mthmval.j . . . 4 𝐽 = (mPPSt‘𝑇)
3 mthmval.u . . . 4 𝑈 = (mThm‘𝑇)
41, 2, 3mthmval 35640 . . 3 𝑈 = (𝑅 “ (𝑅𝐽))
54eleq2i 2825 . 2 (𝑋𝑈𝑋 ∈ (𝑅 “ (𝑅𝐽)))
6 eqid 2733 . . . . 5 (mPreSt‘𝑇) = (mPreSt‘𝑇)
76, 1msrf 35607 . . . 4 𝑅:(mPreSt‘𝑇)⟶(mPreSt‘𝑇)
8 ffn 6656 . . . 4 (𝑅:(mPreSt‘𝑇)⟶(mPreSt‘𝑇) → 𝑅 Fn (mPreSt‘𝑇))
97, 8ax-mp 5 . . 3 𝑅 Fn (mPreSt‘𝑇)
10 elpreima 6997 . . 3 (𝑅 Fn (mPreSt‘𝑇) → (𝑋 ∈ (𝑅 “ (𝑅𝐽)) ↔ (𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅𝑋) ∈ (𝑅𝐽))))
119, 10ax-mp 5 . 2 (𝑋 ∈ (𝑅 “ (𝑅𝐽)) ↔ (𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅𝑋) ∈ (𝑅𝐽)))
126, 2mppspst 35639 . . . . 5 𝐽 ⊆ (mPreSt‘𝑇)
13 fvelimab 6900 . . . . 5 ((𝑅 Fn (mPreSt‘𝑇) ∧ 𝐽 ⊆ (mPreSt‘𝑇)) → ((𝑅𝑋) ∈ (𝑅𝐽) ↔ ∃𝑥𝐽 (𝑅𝑥) = (𝑅𝑋)))
149, 12, 13mp2an 692 . . . 4 ((𝑅𝑋) ∈ (𝑅𝐽) ↔ ∃𝑥𝐽 (𝑅𝑥) = (𝑅𝑋))
1514anbi2i 623 . . 3 ((𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅𝑋) ∈ (𝑅𝐽)) ↔ (𝑋 ∈ (mPreSt‘𝑇) ∧ ∃𝑥𝐽 (𝑅𝑥) = (𝑅𝑋)))
1612sseli 3926 . . . . . 6 (𝑥𝐽𝑥 ∈ (mPreSt‘𝑇))
176, 1msrrcl 35608 . . . . . 6 ((𝑅𝑥) = (𝑅𝑋) → (𝑥 ∈ (mPreSt‘𝑇) ↔ 𝑋 ∈ (mPreSt‘𝑇)))
1816, 17syl5ibcom 245 . . . . 5 (𝑥𝐽 → ((𝑅𝑥) = (𝑅𝑋) → 𝑋 ∈ (mPreSt‘𝑇)))
1918rexlimiv 3127 . . . 4 (∃𝑥𝐽 (𝑅𝑥) = (𝑅𝑋) → 𝑋 ∈ (mPreSt‘𝑇))
2019pm4.71ri 560 . . 3 (∃𝑥𝐽 (𝑅𝑥) = (𝑅𝑋) ↔ (𝑋 ∈ (mPreSt‘𝑇) ∧ ∃𝑥𝐽 (𝑅𝑥) = (𝑅𝑋)))
2115, 20bitr4i 278 . 2 ((𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅𝑋) ∈ (𝑅𝐽)) ↔ ∃𝑥𝐽 (𝑅𝑥) = (𝑅𝑋))
225, 11, 213bitri 297 1 (𝑋𝑈 ↔ ∃𝑥𝐽 (𝑅𝑥) = (𝑅𝑋))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2113  wrex 3057  wss 3898  ccnv 5618  cima 5622   Fn wfn 6481  wf 6482  cfv 6486  mPreStcmpst 35538  mStRedcmsr 35539  mPPStcmpps 35543  mThmcmthm 35544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-ot 4584  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-1st 7927  df-2nd 7928  df-mpst 35558  df-msr 35559  df-mpps 35563  df-mthm 35564
This theorem is referenced by:  mthmi  35642  mthmpps  35647
  Copyright terms: Public domain W3C validator