| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elmthm | Structured version Visualization version GIF version | ||
| Description: A theorem is a pre-statement, whose reduct is also the reduct of a provable pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mthmval.r | ⊢ 𝑅 = (mStRed‘𝑇) |
| mthmval.j | ⊢ 𝐽 = (mPPSt‘𝑇) |
| mthmval.u | ⊢ 𝑈 = (mThm‘𝑇) |
| Ref | Expression |
|---|---|
| elmthm | ⊢ (𝑋 ∈ 𝑈 ↔ ∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mthmval.r | . . . 4 ⊢ 𝑅 = (mStRed‘𝑇) | |
| 2 | mthmval.j | . . . 4 ⊢ 𝐽 = (mPPSt‘𝑇) | |
| 3 | mthmval.u | . . . 4 ⊢ 𝑈 = (mThm‘𝑇) | |
| 4 | 1, 2, 3 | mthmval 35597 | . . 3 ⊢ 𝑈 = (◡𝑅 “ (𝑅 “ 𝐽)) |
| 5 | 4 | eleq2i 2826 | . 2 ⊢ (𝑋 ∈ 𝑈 ↔ 𝑋 ∈ (◡𝑅 “ (𝑅 “ 𝐽))) |
| 6 | eqid 2735 | . . . . 5 ⊢ (mPreSt‘𝑇) = (mPreSt‘𝑇) | |
| 7 | 6, 1 | msrf 35564 | . . . 4 ⊢ 𝑅:(mPreSt‘𝑇)⟶(mPreSt‘𝑇) |
| 8 | ffn 6706 | . . . 4 ⊢ (𝑅:(mPreSt‘𝑇)⟶(mPreSt‘𝑇) → 𝑅 Fn (mPreSt‘𝑇)) | |
| 9 | 7, 8 | ax-mp 5 | . . 3 ⊢ 𝑅 Fn (mPreSt‘𝑇) |
| 10 | elpreima 7048 | . . 3 ⊢ (𝑅 Fn (mPreSt‘𝑇) → (𝑋 ∈ (◡𝑅 “ (𝑅 “ 𝐽)) ↔ (𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅‘𝑋) ∈ (𝑅 “ 𝐽)))) | |
| 11 | 9, 10 | ax-mp 5 | . 2 ⊢ (𝑋 ∈ (◡𝑅 “ (𝑅 “ 𝐽)) ↔ (𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅‘𝑋) ∈ (𝑅 “ 𝐽))) |
| 12 | 6, 2 | mppspst 35596 | . . . . 5 ⊢ 𝐽 ⊆ (mPreSt‘𝑇) |
| 13 | fvelimab 6951 | . . . . 5 ⊢ ((𝑅 Fn (mPreSt‘𝑇) ∧ 𝐽 ⊆ (mPreSt‘𝑇)) → ((𝑅‘𝑋) ∈ (𝑅 “ 𝐽) ↔ ∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑋))) | |
| 14 | 9, 12, 13 | mp2an 692 | . . . 4 ⊢ ((𝑅‘𝑋) ∈ (𝑅 “ 𝐽) ↔ ∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑋)) |
| 15 | 14 | anbi2i 623 | . . 3 ⊢ ((𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅‘𝑋) ∈ (𝑅 “ 𝐽)) ↔ (𝑋 ∈ (mPreSt‘𝑇) ∧ ∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑋))) |
| 16 | 12 | sseli 3954 | . . . . . 6 ⊢ (𝑥 ∈ 𝐽 → 𝑥 ∈ (mPreSt‘𝑇)) |
| 17 | 6, 1 | msrrcl 35565 | . . . . . 6 ⊢ ((𝑅‘𝑥) = (𝑅‘𝑋) → (𝑥 ∈ (mPreSt‘𝑇) ↔ 𝑋 ∈ (mPreSt‘𝑇))) |
| 18 | 16, 17 | syl5ibcom 245 | . . . . 5 ⊢ (𝑥 ∈ 𝐽 → ((𝑅‘𝑥) = (𝑅‘𝑋) → 𝑋 ∈ (mPreSt‘𝑇))) |
| 19 | 18 | rexlimiv 3134 | . . . 4 ⊢ (∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑋) → 𝑋 ∈ (mPreSt‘𝑇)) |
| 20 | 19 | pm4.71ri 560 | . . 3 ⊢ (∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑋) ↔ (𝑋 ∈ (mPreSt‘𝑇) ∧ ∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑋))) |
| 21 | 15, 20 | bitr4i 278 | . 2 ⊢ ((𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅‘𝑋) ∈ (𝑅 “ 𝐽)) ↔ ∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑋)) |
| 22 | 5, 11, 21 | 3bitri 297 | 1 ⊢ (𝑋 ∈ 𝑈 ↔ ∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 ⊆ wss 3926 ◡ccnv 5653 “ cima 5657 Fn wfn 6526 ⟶wf 6527 ‘cfv 6531 mPreStcmpst 35495 mStRedcmsr 35496 mPPStcmpps 35500 mThmcmthm 35501 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-ot 4610 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-1st 7988 df-2nd 7989 df-mpst 35515 df-msr 35516 df-mpps 35520 df-mthm 35521 |
| This theorem is referenced by: mthmi 35599 mthmpps 35604 |
| Copyright terms: Public domain | W3C validator |