| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elmthm | Structured version Visualization version GIF version | ||
| Description: A theorem is a pre-statement, whose reduct is also the reduct of a provable pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mthmval.r | ⊢ 𝑅 = (mStRed‘𝑇) |
| mthmval.j | ⊢ 𝐽 = (mPPSt‘𝑇) |
| mthmval.u | ⊢ 𝑈 = (mThm‘𝑇) |
| Ref | Expression |
|---|---|
| elmthm | ⊢ (𝑋 ∈ 𝑈 ↔ ∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mthmval.r | . . . 4 ⊢ 𝑅 = (mStRed‘𝑇) | |
| 2 | mthmval.j | . . . 4 ⊢ 𝐽 = (mPPSt‘𝑇) | |
| 3 | mthmval.u | . . . 4 ⊢ 𝑈 = (mThm‘𝑇) | |
| 4 | 1, 2, 3 | mthmval 35607 | . . 3 ⊢ 𝑈 = (◡𝑅 “ (𝑅 “ 𝐽)) |
| 5 | 4 | eleq2i 2823 | . 2 ⊢ (𝑋 ∈ 𝑈 ↔ 𝑋 ∈ (◡𝑅 “ (𝑅 “ 𝐽))) |
| 6 | eqid 2731 | . . . . 5 ⊢ (mPreSt‘𝑇) = (mPreSt‘𝑇) | |
| 7 | 6, 1 | msrf 35574 | . . . 4 ⊢ 𝑅:(mPreSt‘𝑇)⟶(mPreSt‘𝑇) |
| 8 | ffn 6651 | . . . 4 ⊢ (𝑅:(mPreSt‘𝑇)⟶(mPreSt‘𝑇) → 𝑅 Fn (mPreSt‘𝑇)) | |
| 9 | 7, 8 | ax-mp 5 | . . 3 ⊢ 𝑅 Fn (mPreSt‘𝑇) |
| 10 | elpreima 6991 | . . 3 ⊢ (𝑅 Fn (mPreSt‘𝑇) → (𝑋 ∈ (◡𝑅 “ (𝑅 “ 𝐽)) ↔ (𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅‘𝑋) ∈ (𝑅 “ 𝐽)))) | |
| 11 | 9, 10 | ax-mp 5 | . 2 ⊢ (𝑋 ∈ (◡𝑅 “ (𝑅 “ 𝐽)) ↔ (𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅‘𝑋) ∈ (𝑅 “ 𝐽))) |
| 12 | 6, 2 | mppspst 35606 | . . . . 5 ⊢ 𝐽 ⊆ (mPreSt‘𝑇) |
| 13 | fvelimab 6894 | . . . . 5 ⊢ ((𝑅 Fn (mPreSt‘𝑇) ∧ 𝐽 ⊆ (mPreSt‘𝑇)) → ((𝑅‘𝑋) ∈ (𝑅 “ 𝐽) ↔ ∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑋))) | |
| 14 | 9, 12, 13 | mp2an 692 | . . . 4 ⊢ ((𝑅‘𝑋) ∈ (𝑅 “ 𝐽) ↔ ∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑋)) |
| 15 | 14 | anbi2i 623 | . . 3 ⊢ ((𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅‘𝑋) ∈ (𝑅 “ 𝐽)) ↔ (𝑋 ∈ (mPreSt‘𝑇) ∧ ∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑋))) |
| 16 | 12 | sseli 3930 | . . . . . 6 ⊢ (𝑥 ∈ 𝐽 → 𝑥 ∈ (mPreSt‘𝑇)) |
| 17 | 6, 1 | msrrcl 35575 | . . . . . 6 ⊢ ((𝑅‘𝑥) = (𝑅‘𝑋) → (𝑥 ∈ (mPreSt‘𝑇) ↔ 𝑋 ∈ (mPreSt‘𝑇))) |
| 18 | 16, 17 | syl5ibcom 245 | . . . . 5 ⊢ (𝑥 ∈ 𝐽 → ((𝑅‘𝑥) = (𝑅‘𝑋) → 𝑋 ∈ (mPreSt‘𝑇))) |
| 19 | 18 | rexlimiv 3126 | . . . 4 ⊢ (∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑋) → 𝑋 ∈ (mPreSt‘𝑇)) |
| 20 | 19 | pm4.71ri 560 | . . 3 ⊢ (∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑋) ↔ (𝑋 ∈ (mPreSt‘𝑇) ∧ ∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑋))) |
| 21 | 15, 20 | bitr4i 278 | . 2 ⊢ ((𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅‘𝑋) ∈ (𝑅 “ 𝐽)) ↔ ∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑋)) |
| 22 | 5, 11, 21 | 3bitri 297 | 1 ⊢ (𝑋 ∈ 𝑈 ↔ ∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ⊆ wss 3902 ◡ccnv 5615 “ cima 5619 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 mPreStcmpst 35505 mStRedcmsr 35506 mPPStcmpps 35510 mThmcmthm 35511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-ot 4585 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-1st 7921 df-2nd 7922 df-mpst 35525 df-msr 35526 df-mpps 35530 df-mthm 35531 |
| This theorem is referenced by: mthmi 35609 mthmpps 35614 |
| Copyright terms: Public domain | W3C validator |