Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmthm Structured version   Visualization version   GIF version

Theorem elmthm 33438
Description: A theorem is a pre-statement, whose reduct is also the reduct of a provable pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mthmval.r 𝑅 = (mStRed‘𝑇)
mthmval.j 𝐽 = (mPPSt‘𝑇)
mthmval.u 𝑈 = (mThm‘𝑇)
Assertion
Ref Expression
elmthm (𝑋𝑈 ↔ ∃𝑥𝐽 (𝑅𝑥) = (𝑅𝑋))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑅   𝑥,𝑇   𝑥,𝑋
Allowed substitution hint:   𝑈(𝑥)

Proof of Theorem elmthm
StepHypRef Expression
1 mthmval.r . . . 4 𝑅 = (mStRed‘𝑇)
2 mthmval.j . . . 4 𝐽 = (mPPSt‘𝑇)
3 mthmval.u . . . 4 𝑈 = (mThm‘𝑇)
41, 2, 3mthmval 33437 . . 3 𝑈 = (𝑅 “ (𝑅𝐽))
54eleq2i 2830 . 2 (𝑋𝑈𝑋 ∈ (𝑅 “ (𝑅𝐽)))
6 eqid 2738 . . . . 5 (mPreSt‘𝑇) = (mPreSt‘𝑇)
76, 1msrf 33404 . . . 4 𝑅:(mPreSt‘𝑇)⟶(mPreSt‘𝑇)
8 ffn 6584 . . . 4 (𝑅:(mPreSt‘𝑇)⟶(mPreSt‘𝑇) → 𝑅 Fn (mPreSt‘𝑇))
97, 8ax-mp 5 . . 3 𝑅 Fn (mPreSt‘𝑇)
10 elpreima 6917 . . 3 (𝑅 Fn (mPreSt‘𝑇) → (𝑋 ∈ (𝑅 “ (𝑅𝐽)) ↔ (𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅𝑋) ∈ (𝑅𝐽))))
119, 10ax-mp 5 . 2 (𝑋 ∈ (𝑅 “ (𝑅𝐽)) ↔ (𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅𝑋) ∈ (𝑅𝐽)))
126, 2mppspst 33436 . . . . 5 𝐽 ⊆ (mPreSt‘𝑇)
13 fvelimab 6823 . . . . 5 ((𝑅 Fn (mPreSt‘𝑇) ∧ 𝐽 ⊆ (mPreSt‘𝑇)) → ((𝑅𝑋) ∈ (𝑅𝐽) ↔ ∃𝑥𝐽 (𝑅𝑥) = (𝑅𝑋)))
149, 12, 13mp2an 688 . . . 4 ((𝑅𝑋) ∈ (𝑅𝐽) ↔ ∃𝑥𝐽 (𝑅𝑥) = (𝑅𝑋))
1514anbi2i 622 . . 3 ((𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅𝑋) ∈ (𝑅𝐽)) ↔ (𝑋 ∈ (mPreSt‘𝑇) ∧ ∃𝑥𝐽 (𝑅𝑥) = (𝑅𝑋)))
1612sseli 3913 . . . . . 6 (𝑥𝐽𝑥 ∈ (mPreSt‘𝑇))
176, 1msrrcl 33405 . . . . . 6 ((𝑅𝑥) = (𝑅𝑋) → (𝑥 ∈ (mPreSt‘𝑇) ↔ 𝑋 ∈ (mPreSt‘𝑇)))
1816, 17syl5ibcom 244 . . . . 5 (𝑥𝐽 → ((𝑅𝑥) = (𝑅𝑋) → 𝑋 ∈ (mPreSt‘𝑇)))
1918rexlimiv 3208 . . . 4 (∃𝑥𝐽 (𝑅𝑥) = (𝑅𝑋) → 𝑋 ∈ (mPreSt‘𝑇))
2019pm4.71ri 560 . . 3 (∃𝑥𝐽 (𝑅𝑥) = (𝑅𝑋) ↔ (𝑋 ∈ (mPreSt‘𝑇) ∧ ∃𝑥𝐽 (𝑅𝑥) = (𝑅𝑋)))
2115, 20bitr4i 277 . 2 ((𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅𝑋) ∈ (𝑅𝐽)) ↔ ∃𝑥𝐽 (𝑅𝑥) = (𝑅𝑋))
225, 11, 213bitri 296 1 (𝑋𝑈 ↔ ∃𝑥𝐽 (𝑅𝑥) = (𝑅𝑋))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  wrex 3064  wss 3883  ccnv 5579  cima 5583   Fn wfn 6413  wf 6414  cfv 6418  mPreStcmpst 33335  mStRedcmsr 33336  mPPStcmpps 33340  mThmcmthm 33341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-ot 4567  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-1st 7804  df-2nd 7805  df-mpst 33355  df-msr 33356  df-mpps 33360  df-mthm 33361
This theorem is referenced by:  mthmi  33439  mthmpps  33444
  Copyright terms: Public domain W3C validator