Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mclspps Structured version   Visualization version   GIF version

Theorem mclspps 35571
Description: The closure is closed under application of provable pre-statements. (Compare mclsax 35556.) This theorem is what justifies the treatment of theorems as "equivalent" to axioms once they have been proven: the composition of one theorem in the proof of another yields a theorem. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mclspps.d 𝐷 = (mDV‘𝑇)
mclspps.e 𝐸 = (mEx‘𝑇)
mclspps.c 𝐶 = (mCls‘𝑇)
mclspps.1 (𝜑𝑇 ∈ mFS)
mclspps.2 (𝜑𝐾𝐷)
mclspps.3 (𝜑𝐵𝐸)
mclspps.j 𝐽 = (mPPSt‘𝑇)
mclspps.l 𝐿 = (mSubst‘𝑇)
mclspps.v 𝑉 = (mVR‘𝑇)
mclspps.h 𝐻 = (mVH‘𝑇)
mclspps.w 𝑊 = (mVars‘𝑇)
mclspps.4 (𝜑 → ⟨𝑀, 𝑂, 𝑃⟩ ∈ 𝐽)
mclspps.5 (𝜑𝑆 ∈ ran 𝐿)
mclspps.6 ((𝜑𝑥𝑂) → (𝑆𝑥) ∈ (𝐾𝐶𝐵))
mclspps.7 ((𝜑𝑣𝑉) → (𝑆‘(𝐻𝑣)) ∈ (𝐾𝐶𝐵))
mclspps.8 ((𝜑 ∧ (𝑥𝑀𝑦𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦))))) → 𝑎𝐾𝑏)
Assertion
Ref Expression
mclspps (𝜑 → (𝑆𝑃) ∈ (𝐾𝐶𝐵))
Distinct variable groups:   𝑣,𝐸   𝑎,𝑏,𝑣,𝑥,𝑦,𝐻   𝑣,𝑉   𝐾,𝑎,𝑏,𝑣,𝑥,𝑦   𝑇,𝑎,𝑏,𝑣,𝑥,𝑦   𝐿,𝑎,𝑏,𝑣,𝑥,𝑦   𝑆,𝑎,𝑏,𝑣,𝑥,𝑦   𝐵,𝑎,𝑏,𝑣,𝑥,𝑦   𝑊,𝑎,𝑏,𝑣,𝑥,𝑦   𝐶,𝑎,𝑏,𝑣,𝑥,𝑦   𝑀,𝑎,𝑏,𝑣,𝑥,𝑦   𝑣,𝑂,𝑥   𝜑,𝑎,𝑏,𝑣,𝑥,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑣,𝑎,𝑏)   𝑃(𝑥,𝑦,𝑣,𝑎,𝑏)   𝐸(𝑥,𝑦,𝑎,𝑏)   𝐽(𝑥,𝑦,𝑣,𝑎,𝑏)   𝑂(𝑦,𝑎,𝑏)   𝑉(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem mclspps
Dummy variables 𝑚 𝑜 𝑝 𝑠 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mclspps.5 . . . 4 (𝜑𝑆 ∈ ran 𝐿)
2 mclspps.l . . . . 5 𝐿 = (mSubst‘𝑇)
3 mclspps.e . . . . 5 𝐸 = (mEx‘𝑇)
42, 3msubf 35519 . . . 4 (𝑆 ∈ ran 𝐿𝑆:𝐸𝐸)
51, 4syl 17 . . 3 (𝜑𝑆:𝐸𝐸)
65ffnd 6689 . 2 (𝜑𝑆 Fn 𝐸)
7 mclspps.d . . . 4 𝐷 = (mDV‘𝑇)
8 mclspps.c . . . 4 𝐶 = (mCls‘𝑇)
9 mclspps.1 . . . 4 (𝜑𝑇 ∈ mFS)
10 eqid 2729 . . . . . . . . 9 (mPreSt‘𝑇) = (mPreSt‘𝑇)
11 mclspps.j . . . . . . . . 9 𝐽 = (mPPSt‘𝑇)
1210, 11mppspst 35561 . . . . . . . 8 𝐽 ⊆ (mPreSt‘𝑇)
13 mclspps.4 . . . . . . . 8 (𝜑 → ⟨𝑀, 𝑂, 𝑃⟩ ∈ 𝐽)
1412, 13sselid 3944 . . . . . . 7 (𝜑 → ⟨𝑀, 𝑂, 𝑃⟩ ∈ (mPreSt‘𝑇))
157, 3, 10elmpst 35523 . . . . . . 7 (⟨𝑀, 𝑂, 𝑃⟩ ∈ (mPreSt‘𝑇) ↔ ((𝑀𝐷𝑀 = 𝑀) ∧ (𝑂𝐸𝑂 ∈ Fin) ∧ 𝑃𝐸))
1614, 15sylib 218 . . . . . 6 (𝜑 → ((𝑀𝐷𝑀 = 𝑀) ∧ (𝑂𝐸𝑂 ∈ Fin) ∧ 𝑃𝐸))
1716simp1d 1142 . . . . 5 (𝜑 → (𝑀𝐷𝑀 = 𝑀))
1817simpld 494 . . . 4 (𝜑𝑀𝐷)
1916simp2d 1143 . . . . 5 (𝜑 → (𝑂𝐸𝑂 ∈ Fin))
2019simpld 494 . . . 4 (𝜑𝑂𝐸)
21 eqid 2729 . . . 4 (mAx‘𝑇) = (mAx‘𝑇)
22 mclspps.v . . . 4 𝑉 = (mVR‘𝑇)
23 mclspps.h . . . 4 𝐻 = (mVH‘𝑇)
24 mclspps.w . . . 4 𝑊 = (mVars‘𝑇)
25 mclspps.6 . . . . . 6 ((𝜑𝑥𝑂) → (𝑆𝑥) ∈ (𝐾𝐶𝐵))
2625ralrimiva 3125 . . . . 5 (𝜑 → ∀𝑥𝑂 (𝑆𝑥) ∈ (𝐾𝐶𝐵))
275ffund 6692 . . . . . 6 (𝜑 → Fun 𝑆)
285fdmd 6698 . . . . . . 7 (𝜑 → dom 𝑆 = 𝐸)
2920, 28sseqtrrd 3984 . . . . . 6 (𝜑𝑂 ⊆ dom 𝑆)
30 funimass5 7027 . . . . . 6 ((Fun 𝑆𝑂 ⊆ dom 𝑆) → (𝑂 ⊆ (𝑆 “ (𝐾𝐶𝐵)) ↔ ∀𝑥𝑂 (𝑆𝑥) ∈ (𝐾𝐶𝐵)))
3127, 29, 30syl2anc 584 . . . . 5 (𝜑 → (𝑂 ⊆ (𝑆 “ (𝐾𝐶𝐵)) ↔ ∀𝑥𝑂 (𝑆𝑥) ∈ (𝐾𝐶𝐵)))
3226, 31mpbird 257 . . . 4 (𝜑𝑂 ⊆ (𝑆 “ (𝐾𝐶𝐵)))
3322, 3, 23mvhf 35545 . . . . . . 7 (𝑇 ∈ mFS → 𝐻:𝑉𝐸)
349, 33syl 17 . . . . . 6 (𝜑𝐻:𝑉𝐸)
3534ffvelcdmda 7056 . . . . 5 ((𝜑𝑣𝑉) → (𝐻𝑣) ∈ 𝐸)
36 mclspps.7 . . . . 5 ((𝜑𝑣𝑉) → (𝑆‘(𝐻𝑣)) ∈ (𝐾𝐶𝐵))
37 elpreima 7030 . . . . . . 7 (𝑆 Fn 𝐸 → ((𝐻𝑣) ∈ (𝑆 “ (𝐾𝐶𝐵)) ↔ ((𝐻𝑣) ∈ 𝐸 ∧ (𝑆‘(𝐻𝑣)) ∈ (𝐾𝐶𝐵))))
386, 37syl 17 . . . . . 6 (𝜑 → ((𝐻𝑣) ∈ (𝑆 “ (𝐾𝐶𝐵)) ↔ ((𝐻𝑣) ∈ 𝐸 ∧ (𝑆‘(𝐻𝑣)) ∈ (𝐾𝐶𝐵))))
3938adantr 480 . . . . 5 ((𝜑𝑣𝑉) → ((𝐻𝑣) ∈ (𝑆 “ (𝐾𝐶𝐵)) ↔ ((𝐻𝑣) ∈ 𝐸 ∧ (𝑆‘(𝐻𝑣)) ∈ (𝐾𝐶𝐵))))
4035, 36, 39mpbir2and 713 . . . 4 ((𝜑𝑣𝑉) → (𝐻𝑣) ∈ (𝑆 “ (𝐾𝐶𝐵)))
4193ad2ant1 1133 . . . . 5 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀)) → 𝑇 ∈ mFS)
42 mclspps.2 . . . . . 6 (𝜑𝐾𝐷)
43423ad2ant1 1133 . . . . 5 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀)) → 𝐾𝐷)
44 mclspps.3 . . . . . 6 (𝜑𝐵𝐸)
45443ad2ant1 1133 . . . . 5 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀)) → 𝐵𝐸)
46133ad2ant1 1133 . . . . 5 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀)) → ⟨𝑀, 𝑂, 𝑃⟩ ∈ 𝐽)
4713ad2ant1 1133 . . . . 5 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀)) → 𝑆 ∈ ran 𝐿)
48253ad2antl1 1186 . . . . 5 (((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀)) ∧ 𝑥𝑂) → (𝑆𝑥) ∈ (𝐾𝐶𝐵))
49363ad2antl1 1186 . . . . 5 (((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀)) ∧ 𝑣𝑉) → (𝑆‘(𝐻𝑣)) ∈ (𝐾𝐶𝐵))
50 mclspps.8 . . . . . 6 ((𝜑 ∧ (𝑥𝑀𝑦𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦))))) → 𝑎𝐾𝑏)
51503ad2antl1 1186 . . . . 5 (((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀)) ∧ (𝑥𝑀𝑦𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦))))) → 𝑎𝐾𝑏)
52 simp21 1207 . . . . 5 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀)) → ⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇))
53 simp22 1208 . . . . 5 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀)) → 𝑠 ∈ ran 𝐿)
54 simp23 1209 . . . . 5 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀)) → (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵)))
55 simp3 1138 . . . . 5 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀)) → ∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀))
567, 3, 8, 41, 43, 45, 11, 2, 22, 23, 24, 46, 47, 48, 49, 51, 52, 53, 54, 55mclsppslem 35570 . . . 4 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀)) → (𝑠𝑝) ∈ (𝑆 “ (𝐾𝐶𝐵)))
577, 3, 8, 9, 18, 20, 21, 2, 22, 23, 24, 32, 40, 56mclsind 35557 . . 3 (𝜑 → (𝑀𝐶𝑂) ⊆ (𝑆 “ (𝐾𝐶𝐵)))
5810, 11, 8elmpps 35560 . . . . 5 (⟨𝑀, 𝑂, 𝑃⟩ ∈ 𝐽 ↔ (⟨𝑀, 𝑂, 𝑃⟩ ∈ (mPreSt‘𝑇) ∧ 𝑃 ∈ (𝑀𝐶𝑂)))
5958simprbi 496 . . . 4 (⟨𝑀, 𝑂, 𝑃⟩ ∈ 𝐽𝑃 ∈ (𝑀𝐶𝑂))
6013, 59syl 17 . . 3 (𝜑𝑃 ∈ (𝑀𝐶𝑂))
6157, 60sseldd 3947 . 2 (𝜑𝑃 ∈ (𝑆 “ (𝐾𝐶𝐵)))
62 elpreima 7030 . . 3 (𝑆 Fn 𝐸 → (𝑃 ∈ (𝑆 “ (𝐾𝐶𝐵)) ↔ (𝑃𝐸 ∧ (𝑆𝑃) ∈ (𝐾𝐶𝐵))))
6362simplbda 499 . 2 ((𝑆 Fn 𝐸𝑃 ∈ (𝑆 “ (𝐾𝐶𝐵))) → (𝑆𝑃) ∈ (𝐾𝐶𝐵))
646, 61, 63syl2anc 584 1 (𝜑 → (𝑆𝑃) ∈ (𝐾𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  wral 3044  cun 3912  wss 3914  cotp 4597   class class class wbr 5107   × cxp 5636  ccnv 5637  dom cdm 5638  ran crn 5639  cima 5641  Fun wfun 6505   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  Fincfn 8918  mVRcmvar 35448  mAxcmax 35452  mExcmex 35454  mDVcmdv 35455  mVarscmvrs 35456  mSubstcmsub 35458  mVHcmvh 35459  mPreStcmpst 35460  mFScmfs 35463  mClscmcls 35464  mPPStcmpps 35465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-word 14479  df-lsw 14528  df-concat 14536  df-s1 14561  df-substr 14606  df-pfx 14636  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-0g 17404  df-gsum 17405  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-frmd 18776  df-vrmd 18777  df-mrex 35473  df-mex 35474  df-mdv 35475  df-mvrs 35476  df-mrsub 35477  df-msub 35478  df-mvh 35479  df-mpst 35480  df-msr 35481  df-msta 35482  df-mfs 35483  df-mcls 35484  df-mpps 35485
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator