Step | Hyp | Ref
| Expression |
1 | | mclspps.5 |
. . . 4
⊢ (𝜑 → 𝑆 ∈ ran 𝐿) |
2 | | mclspps.l |
. . . . 5
⊢ 𝐿 = (mSubst‘𝑇) |
3 | | mclspps.e |
. . . . 5
⊢ 𝐸 = (mEx‘𝑇) |
4 | 2, 3 | msubf 33494 |
. . . 4
⊢ (𝑆 ∈ ran 𝐿 → 𝑆:𝐸⟶𝐸) |
5 | 1, 4 | syl 17 |
. . 3
⊢ (𝜑 → 𝑆:𝐸⟶𝐸) |
6 | 5 | ffnd 6601 |
. 2
⊢ (𝜑 → 𝑆 Fn 𝐸) |
7 | | mclspps.d |
. . . 4
⊢ 𝐷 = (mDV‘𝑇) |
8 | | mclspps.c |
. . . 4
⊢ 𝐶 = (mCls‘𝑇) |
9 | | mclspps.1 |
. . . 4
⊢ (𝜑 → 𝑇 ∈ mFS) |
10 | | eqid 2738 |
. . . . . . . . 9
⊢
(mPreSt‘𝑇) =
(mPreSt‘𝑇) |
11 | | mclspps.j |
. . . . . . . . 9
⊢ 𝐽 = (mPPSt‘𝑇) |
12 | 10, 11 | mppspst 33536 |
. . . . . . . 8
⊢ 𝐽 ⊆ (mPreSt‘𝑇) |
13 | | mclspps.4 |
. . . . . . . 8
⊢ (𝜑 → 〈𝑀, 𝑂, 𝑃〉 ∈ 𝐽) |
14 | 12, 13 | sselid 3919 |
. . . . . . 7
⊢ (𝜑 → 〈𝑀, 𝑂, 𝑃〉 ∈ (mPreSt‘𝑇)) |
15 | 7, 3, 10 | elmpst 33498 |
. . . . . . 7
⊢
(〈𝑀, 𝑂, 𝑃〉 ∈ (mPreSt‘𝑇) ↔ ((𝑀 ⊆ 𝐷 ∧ ◡𝑀 = 𝑀) ∧ (𝑂 ⊆ 𝐸 ∧ 𝑂 ∈ Fin) ∧ 𝑃 ∈ 𝐸)) |
16 | 14, 15 | sylib 217 |
. . . . . 6
⊢ (𝜑 → ((𝑀 ⊆ 𝐷 ∧ ◡𝑀 = 𝑀) ∧ (𝑂 ⊆ 𝐸 ∧ 𝑂 ∈ Fin) ∧ 𝑃 ∈ 𝐸)) |
17 | 16 | simp1d 1141 |
. . . . 5
⊢ (𝜑 → (𝑀 ⊆ 𝐷 ∧ ◡𝑀 = 𝑀)) |
18 | 17 | simpld 495 |
. . . 4
⊢ (𝜑 → 𝑀 ⊆ 𝐷) |
19 | 16 | simp2d 1142 |
. . . . 5
⊢ (𝜑 → (𝑂 ⊆ 𝐸 ∧ 𝑂 ∈ Fin)) |
20 | 19 | simpld 495 |
. . . 4
⊢ (𝜑 → 𝑂 ⊆ 𝐸) |
21 | | eqid 2738 |
. . . 4
⊢
(mAx‘𝑇) =
(mAx‘𝑇) |
22 | | mclspps.v |
. . . 4
⊢ 𝑉 = (mVR‘𝑇) |
23 | | mclspps.h |
. . . 4
⊢ 𝐻 = (mVH‘𝑇) |
24 | | mclspps.w |
. . . 4
⊢ 𝑊 = (mVars‘𝑇) |
25 | | mclspps.6 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → (𝑆‘𝑥) ∈ (𝐾𝐶𝐵)) |
26 | 25 | ralrimiva 3103 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝑂 (𝑆‘𝑥) ∈ (𝐾𝐶𝐵)) |
27 | 5 | ffund 6604 |
. . . . . 6
⊢ (𝜑 → Fun 𝑆) |
28 | 5 | fdmd 6611 |
. . . . . . 7
⊢ (𝜑 → dom 𝑆 = 𝐸) |
29 | 20, 28 | sseqtrrd 3962 |
. . . . . 6
⊢ (𝜑 → 𝑂 ⊆ dom 𝑆) |
30 | | funimass5 6932 |
. . . . . 6
⊢ ((Fun
𝑆 ∧ 𝑂 ⊆ dom 𝑆) → (𝑂 ⊆ (◡𝑆 “ (𝐾𝐶𝐵)) ↔ ∀𝑥 ∈ 𝑂 (𝑆‘𝑥) ∈ (𝐾𝐶𝐵))) |
31 | 27, 29, 30 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → (𝑂 ⊆ (◡𝑆 “ (𝐾𝐶𝐵)) ↔ ∀𝑥 ∈ 𝑂 (𝑆‘𝑥) ∈ (𝐾𝐶𝐵))) |
32 | 26, 31 | mpbird 256 |
. . . 4
⊢ (𝜑 → 𝑂 ⊆ (◡𝑆 “ (𝐾𝐶𝐵))) |
33 | 22, 3, 23 | mvhf 33520 |
. . . . . . 7
⊢ (𝑇 ∈ mFS → 𝐻:𝑉⟶𝐸) |
34 | 9, 33 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐻:𝑉⟶𝐸) |
35 | 34 | ffvelrnda 6961 |
. . . . 5
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝐻‘𝑣) ∈ 𝐸) |
36 | | mclspps.7 |
. . . . 5
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝑆‘(𝐻‘𝑣)) ∈ (𝐾𝐶𝐵)) |
37 | | elpreima 6935 |
. . . . . . 7
⊢ (𝑆 Fn 𝐸 → ((𝐻‘𝑣) ∈ (◡𝑆 “ (𝐾𝐶𝐵)) ↔ ((𝐻‘𝑣) ∈ 𝐸 ∧ (𝑆‘(𝐻‘𝑣)) ∈ (𝐾𝐶𝐵)))) |
38 | 6, 37 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((𝐻‘𝑣) ∈ (◡𝑆 “ (𝐾𝐶𝐵)) ↔ ((𝐻‘𝑣) ∈ 𝐸 ∧ (𝑆‘(𝐻‘𝑣)) ∈ (𝐾𝐶𝐵)))) |
39 | 38 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → ((𝐻‘𝑣) ∈ (◡𝑆 “ (𝐾𝐶𝐵)) ↔ ((𝐻‘𝑣) ∈ 𝐸 ∧ (𝑆‘(𝐻‘𝑣)) ∈ (𝐾𝐶𝐵)))) |
40 | 35, 36, 39 | mpbir2and 710 |
. . . 4
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝐻‘𝑣) ∈ (◡𝑆 “ (𝐾𝐶𝐵))) |
41 | 9 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝜑 ∧ (〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (◡𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧∀𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻‘𝑧))) × (𝑊‘(𝑠‘(𝐻‘𝑤)))) ⊆ 𝑀)) → 𝑇 ∈ mFS) |
42 | | mclspps.2 |
. . . . . 6
⊢ (𝜑 → 𝐾 ⊆ 𝐷) |
43 | 42 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝜑 ∧ (〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (◡𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧∀𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻‘𝑧))) × (𝑊‘(𝑠‘(𝐻‘𝑤)))) ⊆ 𝑀)) → 𝐾 ⊆ 𝐷) |
44 | | mclspps.3 |
. . . . . 6
⊢ (𝜑 → 𝐵 ⊆ 𝐸) |
45 | 44 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝜑 ∧ (〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (◡𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧∀𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻‘𝑧))) × (𝑊‘(𝑠‘(𝐻‘𝑤)))) ⊆ 𝑀)) → 𝐵 ⊆ 𝐸) |
46 | 13 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝜑 ∧ (〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (◡𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧∀𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻‘𝑧))) × (𝑊‘(𝑠‘(𝐻‘𝑤)))) ⊆ 𝑀)) → 〈𝑀, 𝑂, 𝑃〉 ∈ 𝐽) |
47 | 1 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝜑 ∧ (〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (◡𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧∀𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻‘𝑧))) × (𝑊‘(𝑠‘(𝐻‘𝑤)))) ⊆ 𝑀)) → 𝑆 ∈ ran 𝐿) |
48 | 25 | 3ad2antl1 1184 |
. . . . 5
⊢ (((𝜑 ∧ (〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (◡𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧∀𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻‘𝑧))) × (𝑊‘(𝑠‘(𝐻‘𝑤)))) ⊆ 𝑀)) ∧ 𝑥 ∈ 𝑂) → (𝑆‘𝑥) ∈ (𝐾𝐶𝐵)) |
49 | 36 | 3ad2antl1 1184 |
. . . . 5
⊢ (((𝜑 ∧ (〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (◡𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧∀𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻‘𝑧))) × (𝑊‘(𝑠‘(𝐻‘𝑤)))) ⊆ 𝑀)) ∧ 𝑣 ∈ 𝑉) → (𝑆‘(𝐻‘𝑣)) ∈ (𝐾𝐶𝐵)) |
50 | | mclspps.8 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥𝑀𝑦 ∧ 𝑎 ∈ (𝑊‘(𝑆‘(𝐻‘𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻‘𝑦))))) → 𝑎𝐾𝑏) |
51 | 50 | 3ad2antl1 1184 |
. . . . 5
⊢ (((𝜑 ∧ (〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (◡𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧∀𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻‘𝑧))) × (𝑊‘(𝑠‘(𝐻‘𝑤)))) ⊆ 𝑀)) ∧ (𝑥𝑀𝑦 ∧ 𝑎 ∈ (𝑊‘(𝑆‘(𝐻‘𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻‘𝑦))))) → 𝑎𝐾𝑏) |
52 | | simp21 1205 |
. . . . 5
⊢ ((𝜑 ∧ (〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (◡𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧∀𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻‘𝑧))) × (𝑊‘(𝑠‘(𝐻‘𝑤)))) ⊆ 𝑀)) → 〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇)) |
53 | | simp22 1206 |
. . . . 5
⊢ ((𝜑 ∧ (〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (◡𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧∀𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻‘𝑧))) × (𝑊‘(𝑠‘(𝐻‘𝑤)))) ⊆ 𝑀)) → 𝑠 ∈ ran 𝐿) |
54 | | simp23 1207 |
. . . . 5
⊢ ((𝜑 ∧ (〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (◡𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧∀𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻‘𝑧))) × (𝑊‘(𝑠‘(𝐻‘𝑤)))) ⊆ 𝑀)) → (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (◡𝑆 “ (𝐾𝐶𝐵))) |
55 | | simp3 1137 |
. . . . 5
⊢ ((𝜑 ∧ (〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (◡𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧∀𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻‘𝑧))) × (𝑊‘(𝑠‘(𝐻‘𝑤)))) ⊆ 𝑀)) → ∀𝑧∀𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻‘𝑧))) × (𝑊‘(𝑠‘(𝐻‘𝑤)))) ⊆ 𝑀)) |
56 | 7, 3, 8, 41, 43, 45, 11, 2, 22, 23, 24, 46, 47, 48, 49, 51, 52, 53, 54, 55 | mclsppslem 33545 |
. . . 4
⊢ ((𝜑 ∧ (〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (◡𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧∀𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻‘𝑧))) × (𝑊‘(𝑠‘(𝐻‘𝑤)))) ⊆ 𝑀)) → (𝑠‘𝑝) ∈ (◡𝑆 “ (𝐾𝐶𝐵))) |
57 | 7, 3, 8, 9, 18, 20, 21, 2, 22, 23, 24, 32, 40, 56 | mclsind 33532 |
. . 3
⊢ (𝜑 → (𝑀𝐶𝑂) ⊆ (◡𝑆 “ (𝐾𝐶𝐵))) |
58 | 10, 11, 8 | elmpps 33535 |
. . . . 5
⊢
(〈𝑀, 𝑂, 𝑃〉 ∈ 𝐽 ↔ (〈𝑀, 𝑂, 𝑃〉 ∈ (mPreSt‘𝑇) ∧ 𝑃 ∈ (𝑀𝐶𝑂))) |
59 | 58 | simprbi 497 |
. . . 4
⊢
(〈𝑀, 𝑂, 𝑃〉 ∈ 𝐽 → 𝑃 ∈ (𝑀𝐶𝑂)) |
60 | 13, 59 | syl 17 |
. . 3
⊢ (𝜑 → 𝑃 ∈ (𝑀𝐶𝑂)) |
61 | 57, 60 | sseldd 3922 |
. 2
⊢ (𝜑 → 𝑃 ∈ (◡𝑆 “ (𝐾𝐶𝐵))) |
62 | | elpreima 6935 |
. . 3
⊢ (𝑆 Fn 𝐸 → (𝑃 ∈ (◡𝑆 “ (𝐾𝐶𝐵)) ↔ (𝑃 ∈ 𝐸 ∧ (𝑆‘𝑃) ∈ (𝐾𝐶𝐵)))) |
63 | 62 | simplbda 500 |
. 2
⊢ ((𝑆 Fn 𝐸 ∧ 𝑃 ∈ (◡𝑆 “ (𝐾𝐶𝐵))) → (𝑆‘𝑃) ∈ (𝐾𝐶𝐵)) |
64 | 6, 61, 63 | syl2anc 584 |
1
⊢ (𝜑 → (𝑆‘𝑃) ∈ (𝐾𝐶𝐵)) |