| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | mclspps.5 | . . . 4
⊢ (𝜑 → 𝑆 ∈ ran 𝐿) | 
| 2 |  | mclspps.l | . . . . 5
⊢ 𝐿 = (mSubst‘𝑇) | 
| 3 |  | mclspps.e | . . . . 5
⊢ 𝐸 = (mEx‘𝑇) | 
| 4 | 2, 3 | msubf 35538 | . . . 4
⊢ (𝑆 ∈ ran 𝐿 → 𝑆:𝐸⟶𝐸) | 
| 5 | 1, 4 | syl 17 | . . 3
⊢ (𝜑 → 𝑆:𝐸⟶𝐸) | 
| 6 | 5 | ffnd 6736 | . 2
⊢ (𝜑 → 𝑆 Fn 𝐸) | 
| 7 |  | mclspps.d | . . . 4
⊢ 𝐷 = (mDV‘𝑇) | 
| 8 |  | mclspps.c | . . . 4
⊢ 𝐶 = (mCls‘𝑇) | 
| 9 |  | mclspps.1 | . . . 4
⊢ (𝜑 → 𝑇 ∈ mFS) | 
| 10 |  | eqid 2736 | . . . . . . . . 9
⊢
(mPreSt‘𝑇) =
(mPreSt‘𝑇) | 
| 11 |  | mclspps.j | . . . . . . . . 9
⊢ 𝐽 = (mPPSt‘𝑇) | 
| 12 | 10, 11 | mppspst 35580 | . . . . . . . 8
⊢ 𝐽 ⊆ (mPreSt‘𝑇) | 
| 13 |  | mclspps.4 | . . . . . . . 8
⊢ (𝜑 → 〈𝑀, 𝑂, 𝑃〉 ∈ 𝐽) | 
| 14 | 12, 13 | sselid 3980 | . . . . . . 7
⊢ (𝜑 → 〈𝑀, 𝑂, 𝑃〉 ∈ (mPreSt‘𝑇)) | 
| 15 | 7, 3, 10 | elmpst 35542 | . . . . . . 7
⊢
(〈𝑀, 𝑂, 𝑃〉 ∈ (mPreSt‘𝑇) ↔ ((𝑀 ⊆ 𝐷 ∧ ◡𝑀 = 𝑀) ∧ (𝑂 ⊆ 𝐸 ∧ 𝑂 ∈ Fin) ∧ 𝑃 ∈ 𝐸)) | 
| 16 | 14, 15 | sylib 218 | . . . . . 6
⊢ (𝜑 → ((𝑀 ⊆ 𝐷 ∧ ◡𝑀 = 𝑀) ∧ (𝑂 ⊆ 𝐸 ∧ 𝑂 ∈ Fin) ∧ 𝑃 ∈ 𝐸)) | 
| 17 | 16 | simp1d 1142 | . . . . 5
⊢ (𝜑 → (𝑀 ⊆ 𝐷 ∧ ◡𝑀 = 𝑀)) | 
| 18 | 17 | simpld 494 | . . . 4
⊢ (𝜑 → 𝑀 ⊆ 𝐷) | 
| 19 | 16 | simp2d 1143 | . . . . 5
⊢ (𝜑 → (𝑂 ⊆ 𝐸 ∧ 𝑂 ∈ Fin)) | 
| 20 | 19 | simpld 494 | . . . 4
⊢ (𝜑 → 𝑂 ⊆ 𝐸) | 
| 21 |  | eqid 2736 | . . . 4
⊢
(mAx‘𝑇) =
(mAx‘𝑇) | 
| 22 |  | mclspps.v | . . . 4
⊢ 𝑉 = (mVR‘𝑇) | 
| 23 |  | mclspps.h | . . . 4
⊢ 𝐻 = (mVH‘𝑇) | 
| 24 |  | mclspps.w | . . . 4
⊢ 𝑊 = (mVars‘𝑇) | 
| 25 |  | mclspps.6 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → (𝑆‘𝑥) ∈ (𝐾𝐶𝐵)) | 
| 26 | 25 | ralrimiva 3145 | . . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝑂 (𝑆‘𝑥) ∈ (𝐾𝐶𝐵)) | 
| 27 | 5 | ffund 6739 | . . . . . 6
⊢ (𝜑 → Fun 𝑆) | 
| 28 | 5 | fdmd 6745 | . . . . . . 7
⊢ (𝜑 → dom 𝑆 = 𝐸) | 
| 29 | 20, 28 | sseqtrrd 4020 | . . . . . 6
⊢ (𝜑 → 𝑂 ⊆ dom 𝑆) | 
| 30 |  | funimass5 7074 | . . . . . 6
⊢ ((Fun
𝑆 ∧ 𝑂 ⊆ dom 𝑆) → (𝑂 ⊆ (◡𝑆 “ (𝐾𝐶𝐵)) ↔ ∀𝑥 ∈ 𝑂 (𝑆‘𝑥) ∈ (𝐾𝐶𝐵))) | 
| 31 | 27, 29, 30 | syl2anc 584 | . . . . 5
⊢ (𝜑 → (𝑂 ⊆ (◡𝑆 “ (𝐾𝐶𝐵)) ↔ ∀𝑥 ∈ 𝑂 (𝑆‘𝑥) ∈ (𝐾𝐶𝐵))) | 
| 32 | 26, 31 | mpbird 257 | . . . 4
⊢ (𝜑 → 𝑂 ⊆ (◡𝑆 “ (𝐾𝐶𝐵))) | 
| 33 | 22, 3, 23 | mvhf 35564 | . . . . . . 7
⊢ (𝑇 ∈ mFS → 𝐻:𝑉⟶𝐸) | 
| 34 | 9, 33 | syl 17 | . . . . . 6
⊢ (𝜑 → 𝐻:𝑉⟶𝐸) | 
| 35 | 34 | ffvelcdmda 7103 | . . . . 5
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝐻‘𝑣) ∈ 𝐸) | 
| 36 |  | mclspps.7 | . . . . 5
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝑆‘(𝐻‘𝑣)) ∈ (𝐾𝐶𝐵)) | 
| 37 |  | elpreima 7077 | . . . . . . 7
⊢ (𝑆 Fn 𝐸 → ((𝐻‘𝑣) ∈ (◡𝑆 “ (𝐾𝐶𝐵)) ↔ ((𝐻‘𝑣) ∈ 𝐸 ∧ (𝑆‘(𝐻‘𝑣)) ∈ (𝐾𝐶𝐵)))) | 
| 38 | 6, 37 | syl 17 | . . . . . 6
⊢ (𝜑 → ((𝐻‘𝑣) ∈ (◡𝑆 “ (𝐾𝐶𝐵)) ↔ ((𝐻‘𝑣) ∈ 𝐸 ∧ (𝑆‘(𝐻‘𝑣)) ∈ (𝐾𝐶𝐵)))) | 
| 39 | 38 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → ((𝐻‘𝑣) ∈ (◡𝑆 “ (𝐾𝐶𝐵)) ↔ ((𝐻‘𝑣) ∈ 𝐸 ∧ (𝑆‘(𝐻‘𝑣)) ∈ (𝐾𝐶𝐵)))) | 
| 40 | 35, 36, 39 | mpbir2and 713 | . . . 4
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝐻‘𝑣) ∈ (◡𝑆 “ (𝐾𝐶𝐵))) | 
| 41 | 9 | 3ad2ant1 1133 | . . . . 5
⊢ ((𝜑 ∧ (〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (◡𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧∀𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻‘𝑧))) × (𝑊‘(𝑠‘(𝐻‘𝑤)))) ⊆ 𝑀)) → 𝑇 ∈ mFS) | 
| 42 |  | mclspps.2 | . . . . . 6
⊢ (𝜑 → 𝐾 ⊆ 𝐷) | 
| 43 | 42 | 3ad2ant1 1133 | . . . . 5
⊢ ((𝜑 ∧ (〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (◡𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧∀𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻‘𝑧))) × (𝑊‘(𝑠‘(𝐻‘𝑤)))) ⊆ 𝑀)) → 𝐾 ⊆ 𝐷) | 
| 44 |  | mclspps.3 | . . . . . 6
⊢ (𝜑 → 𝐵 ⊆ 𝐸) | 
| 45 | 44 | 3ad2ant1 1133 | . . . . 5
⊢ ((𝜑 ∧ (〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (◡𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧∀𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻‘𝑧))) × (𝑊‘(𝑠‘(𝐻‘𝑤)))) ⊆ 𝑀)) → 𝐵 ⊆ 𝐸) | 
| 46 | 13 | 3ad2ant1 1133 | . . . . 5
⊢ ((𝜑 ∧ (〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (◡𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧∀𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻‘𝑧))) × (𝑊‘(𝑠‘(𝐻‘𝑤)))) ⊆ 𝑀)) → 〈𝑀, 𝑂, 𝑃〉 ∈ 𝐽) | 
| 47 | 1 | 3ad2ant1 1133 | . . . . 5
⊢ ((𝜑 ∧ (〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (◡𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧∀𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻‘𝑧))) × (𝑊‘(𝑠‘(𝐻‘𝑤)))) ⊆ 𝑀)) → 𝑆 ∈ ran 𝐿) | 
| 48 | 25 | 3ad2antl1 1185 | . . . . 5
⊢ (((𝜑 ∧ (〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (◡𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧∀𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻‘𝑧))) × (𝑊‘(𝑠‘(𝐻‘𝑤)))) ⊆ 𝑀)) ∧ 𝑥 ∈ 𝑂) → (𝑆‘𝑥) ∈ (𝐾𝐶𝐵)) | 
| 49 | 36 | 3ad2antl1 1185 | . . . . 5
⊢ (((𝜑 ∧ (〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (◡𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧∀𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻‘𝑧))) × (𝑊‘(𝑠‘(𝐻‘𝑤)))) ⊆ 𝑀)) ∧ 𝑣 ∈ 𝑉) → (𝑆‘(𝐻‘𝑣)) ∈ (𝐾𝐶𝐵)) | 
| 50 |  | mclspps.8 | . . . . . 6
⊢ ((𝜑 ∧ (𝑥𝑀𝑦 ∧ 𝑎 ∈ (𝑊‘(𝑆‘(𝐻‘𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻‘𝑦))))) → 𝑎𝐾𝑏) | 
| 51 | 50 | 3ad2antl1 1185 | . . . . 5
⊢ (((𝜑 ∧ (〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (◡𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧∀𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻‘𝑧))) × (𝑊‘(𝑠‘(𝐻‘𝑤)))) ⊆ 𝑀)) ∧ (𝑥𝑀𝑦 ∧ 𝑎 ∈ (𝑊‘(𝑆‘(𝐻‘𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻‘𝑦))))) → 𝑎𝐾𝑏) | 
| 52 |  | simp21 1206 | . . . . 5
⊢ ((𝜑 ∧ (〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (◡𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧∀𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻‘𝑧))) × (𝑊‘(𝑠‘(𝐻‘𝑤)))) ⊆ 𝑀)) → 〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇)) | 
| 53 |  | simp22 1207 | . . . . 5
⊢ ((𝜑 ∧ (〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (◡𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧∀𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻‘𝑧))) × (𝑊‘(𝑠‘(𝐻‘𝑤)))) ⊆ 𝑀)) → 𝑠 ∈ ran 𝐿) | 
| 54 |  | simp23 1208 | . . . . 5
⊢ ((𝜑 ∧ (〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (◡𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧∀𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻‘𝑧))) × (𝑊‘(𝑠‘(𝐻‘𝑤)))) ⊆ 𝑀)) → (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (◡𝑆 “ (𝐾𝐶𝐵))) | 
| 55 |  | simp3 1138 | . . . . 5
⊢ ((𝜑 ∧ (〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (◡𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧∀𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻‘𝑧))) × (𝑊‘(𝑠‘(𝐻‘𝑤)))) ⊆ 𝑀)) → ∀𝑧∀𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻‘𝑧))) × (𝑊‘(𝑠‘(𝐻‘𝑤)))) ⊆ 𝑀)) | 
| 56 | 7, 3, 8, 41, 43, 45, 11, 2, 22, 23, 24, 46, 47, 48, 49, 51, 52, 53, 54, 55 | mclsppslem 35589 | . . . 4
⊢ ((𝜑 ∧ (〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (◡𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧∀𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻‘𝑧))) × (𝑊‘(𝑠‘(𝐻‘𝑤)))) ⊆ 𝑀)) → (𝑠‘𝑝) ∈ (◡𝑆 “ (𝐾𝐶𝐵))) | 
| 57 | 7, 3, 8, 9, 18, 20, 21, 2, 22, 23, 24, 32, 40, 56 | mclsind 35576 | . . 3
⊢ (𝜑 → (𝑀𝐶𝑂) ⊆ (◡𝑆 “ (𝐾𝐶𝐵))) | 
| 58 | 10, 11, 8 | elmpps 35579 | . . . . 5
⊢
(〈𝑀, 𝑂, 𝑃〉 ∈ 𝐽 ↔ (〈𝑀, 𝑂, 𝑃〉 ∈ (mPreSt‘𝑇) ∧ 𝑃 ∈ (𝑀𝐶𝑂))) | 
| 59 | 58 | simprbi 496 | . . . 4
⊢
(〈𝑀, 𝑂, 𝑃〉 ∈ 𝐽 → 𝑃 ∈ (𝑀𝐶𝑂)) | 
| 60 | 13, 59 | syl 17 | . . 3
⊢ (𝜑 → 𝑃 ∈ (𝑀𝐶𝑂)) | 
| 61 | 57, 60 | sseldd 3983 | . 2
⊢ (𝜑 → 𝑃 ∈ (◡𝑆 “ (𝐾𝐶𝐵))) | 
| 62 |  | elpreima 7077 | . . 3
⊢ (𝑆 Fn 𝐸 → (𝑃 ∈ (◡𝑆 “ (𝐾𝐶𝐵)) ↔ (𝑃 ∈ 𝐸 ∧ (𝑆‘𝑃) ∈ (𝐾𝐶𝐵)))) | 
| 63 | 62 | simplbda 499 | . 2
⊢ ((𝑆 Fn 𝐸 ∧ 𝑃 ∈ (◡𝑆 “ (𝐾𝐶𝐵))) → (𝑆‘𝑃) ∈ (𝐾𝐶𝐵)) | 
| 64 | 6, 61, 63 | syl2anc 584 | 1
⊢ (𝜑 → (𝑆‘𝑃) ∈ (𝐾𝐶𝐵)) |