Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mclspps Structured version   Visualization version   GIF version

Theorem mclspps 31929
Description: The closure is closed under application of provable pre-statements. (Compare mclsax 31914.) This theorem is what justifies the treatment of theorems as "equivalent" to axioms once they have been proven: the composition of one theorem in the proof of another yields a theorem. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mclspps.d 𝐷 = (mDV‘𝑇)
mclspps.e 𝐸 = (mEx‘𝑇)
mclspps.c 𝐶 = (mCls‘𝑇)
mclspps.1 (𝜑𝑇 ∈ mFS)
mclspps.2 (𝜑𝐾𝐷)
mclspps.3 (𝜑𝐵𝐸)
mclspps.j 𝐽 = (mPPSt‘𝑇)
mclspps.l 𝐿 = (mSubst‘𝑇)
mclspps.v 𝑉 = (mVR‘𝑇)
mclspps.h 𝐻 = (mVH‘𝑇)
mclspps.w 𝑊 = (mVars‘𝑇)
mclspps.4 (𝜑 → ⟨𝑀, 𝑂, 𝑃⟩ ∈ 𝐽)
mclspps.5 (𝜑𝑆 ∈ ran 𝐿)
mclspps.6 ((𝜑𝑥𝑂) → (𝑆𝑥) ∈ (𝐾𝐶𝐵))
mclspps.7 ((𝜑𝑣𝑉) → (𝑆‘(𝐻𝑣)) ∈ (𝐾𝐶𝐵))
mclspps.8 ((𝜑 ∧ (𝑥𝑀𝑦𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦))))) → 𝑎𝐾𝑏)
Assertion
Ref Expression
mclspps (𝜑 → (𝑆𝑃) ∈ (𝐾𝐶𝐵))
Distinct variable groups:   𝑣,𝐸   𝑎,𝑏,𝑣,𝑥,𝑦,𝐻   𝑣,𝑉   𝐾,𝑎,𝑏,𝑣,𝑥,𝑦   𝑇,𝑎,𝑏,𝑣,𝑥,𝑦   𝐿,𝑎,𝑏,𝑣,𝑥,𝑦   𝑆,𝑎,𝑏,𝑣,𝑥,𝑦   𝐵,𝑎,𝑏,𝑣,𝑥,𝑦   𝑊,𝑎,𝑏,𝑣,𝑥,𝑦   𝐶,𝑎,𝑏,𝑣,𝑥,𝑦   𝑀,𝑎,𝑏,𝑣,𝑥,𝑦   𝑣,𝑂,𝑥   𝜑,𝑎,𝑏,𝑣,𝑥,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑣,𝑎,𝑏)   𝑃(𝑥,𝑦,𝑣,𝑎,𝑏)   𝐸(𝑥,𝑦,𝑎,𝑏)   𝐽(𝑥,𝑦,𝑣,𝑎,𝑏)   𝑂(𝑦,𝑎,𝑏)   𝑉(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem mclspps
Dummy variables 𝑚 𝑜 𝑝 𝑠 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mclspps.5 . . . 4 (𝜑𝑆 ∈ ran 𝐿)
2 mclspps.l . . . . 5 𝐿 = (mSubst‘𝑇)
3 mclspps.e . . . . 5 𝐸 = (mEx‘𝑇)
42, 3msubf 31877 . . . 4 (𝑆 ∈ ran 𝐿𝑆:𝐸𝐸)
51, 4syl 17 . . 3 (𝜑𝑆:𝐸𝐸)
65ffnd 6224 . 2 (𝜑𝑆 Fn 𝐸)
7 mclspps.d . . . 4 𝐷 = (mDV‘𝑇)
8 mclspps.c . . . 4 𝐶 = (mCls‘𝑇)
9 mclspps.1 . . . 4 (𝜑𝑇 ∈ mFS)
10 eqid 2765 . . . . . . . . 9 (mPreSt‘𝑇) = (mPreSt‘𝑇)
11 mclspps.j . . . . . . . . 9 𝐽 = (mPPSt‘𝑇)
1210, 11mppspst 31919 . . . . . . . 8 𝐽 ⊆ (mPreSt‘𝑇)
13 mclspps.4 . . . . . . . 8 (𝜑 → ⟨𝑀, 𝑂, 𝑃⟩ ∈ 𝐽)
1412, 13sseldi 3759 . . . . . . 7 (𝜑 → ⟨𝑀, 𝑂, 𝑃⟩ ∈ (mPreSt‘𝑇))
157, 3, 10elmpst 31881 . . . . . . 7 (⟨𝑀, 𝑂, 𝑃⟩ ∈ (mPreSt‘𝑇) ↔ ((𝑀𝐷𝑀 = 𝑀) ∧ (𝑂𝐸𝑂 ∈ Fin) ∧ 𝑃𝐸))
1614, 15sylib 209 . . . . . 6 (𝜑 → ((𝑀𝐷𝑀 = 𝑀) ∧ (𝑂𝐸𝑂 ∈ Fin) ∧ 𝑃𝐸))
1716simp1d 1172 . . . . 5 (𝜑 → (𝑀𝐷𝑀 = 𝑀))
1817simpld 488 . . . 4 (𝜑𝑀𝐷)
1916simp2d 1173 . . . . 5 (𝜑 → (𝑂𝐸𝑂 ∈ Fin))
2019simpld 488 . . . 4 (𝜑𝑂𝐸)
21 eqid 2765 . . . 4 (mAx‘𝑇) = (mAx‘𝑇)
22 mclspps.v . . . 4 𝑉 = (mVR‘𝑇)
23 mclspps.h . . . 4 𝐻 = (mVH‘𝑇)
24 mclspps.w . . . 4 𝑊 = (mVars‘𝑇)
25 mclspps.6 . . . . . 6 ((𝜑𝑥𝑂) → (𝑆𝑥) ∈ (𝐾𝐶𝐵))
2625ralrimiva 3113 . . . . 5 (𝜑 → ∀𝑥𝑂 (𝑆𝑥) ∈ (𝐾𝐶𝐵))
275ffund 6227 . . . . . 6 (𝜑 → Fun 𝑆)
285fdmd 6232 . . . . . . 7 (𝜑 → dom 𝑆 = 𝐸)
2920, 28sseqtr4d 3802 . . . . . 6 (𝜑𝑂 ⊆ dom 𝑆)
30 funimass5 6524 . . . . . 6 ((Fun 𝑆𝑂 ⊆ dom 𝑆) → (𝑂 ⊆ (𝑆 “ (𝐾𝐶𝐵)) ↔ ∀𝑥𝑂 (𝑆𝑥) ∈ (𝐾𝐶𝐵)))
3127, 29, 30syl2anc 579 . . . . 5 (𝜑 → (𝑂 ⊆ (𝑆 “ (𝐾𝐶𝐵)) ↔ ∀𝑥𝑂 (𝑆𝑥) ∈ (𝐾𝐶𝐵)))
3226, 31mpbird 248 . . . 4 (𝜑𝑂 ⊆ (𝑆 “ (𝐾𝐶𝐵)))
3322, 3, 23mvhf 31903 . . . . . . 7 (𝑇 ∈ mFS → 𝐻:𝑉𝐸)
349, 33syl 17 . . . . . 6 (𝜑𝐻:𝑉𝐸)
3534ffvelrnda 6549 . . . . 5 ((𝜑𝑣𝑉) → (𝐻𝑣) ∈ 𝐸)
36 mclspps.7 . . . . 5 ((𝜑𝑣𝑉) → (𝑆‘(𝐻𝑣)) ∈ (𝐾𝐶𝐵))
37 elpreima 6527 . . . . . . 7 (𝑆 Fn 𝐸 → ((𝐻𝑣) ∈ (𝑆 “ (𝐾𝐶𝐵)) ↔ ((𝐻𝑣) ∈ 𝐸 ∧ (𝑆‘(𝐻𝑣)) ∈ (𝐾𝐶𝐵))))
386, 37syl 17 . . . . . 6 (𝜑 → ((𝐻𝑣) ∈ (𝑆 “ (𝐾𝐶𝐵)) ↔ ((𝐻𝑣) ∈ 𝐸 ∧ (𝑆‘(𝐻𝑣)) ∈ (𝐾𝐶𝐵))))
3938adantr 472 . . . . 5 ((𝜑𝑣𝑉) → ((𝐻𝑣) ∈ (𝑆 “ (𝐾𝐶𝐵)) ↔ ((𝐻𝑣) ∈ 𝐸 ∧ (𝑆‘(𝐻𝑣)) ∈ (𝐾𝐶𝐵))))
4035, 36, 39mpbir2and 704 . . . 4 ((𝜑𝑣𝑉) → (𝐻𝑣) ∈ (𝑆 “ (𝐾𝐶𝐵)))
4193ad2ant1 1163 . . . . 5 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀)) → 𝑇 ∈ mFS)
42 mclspps.2 . . . . . 6 (𝜑𝐾𝐷)
43423ad2ant1 1163 . . . . 5 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀)) → 𝐾𝐷)
44 mclspps.3 . . . . . 6 (𝜑𝐵𝐸)
45443ad2ant1 1163 . . . . 5 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀)) → 𝐵𝐸)
46133ad2ant1 1163 . . . . 5 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀)) → ⟨𝑀, 𝑂, 𝑃⟩ ∈ 𝐽)
4713ad2ant1 1163 . . . . 5 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀)) → 𝑆 ∈ ran 𝐿)
48253ad2antl1 1236 . . . . 5 (((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀)) ∧ 𝑥𝑂) → (𝑆𝑥) ∈ (𝐾𝐶𝐵))
49363ad2antl1 1236 . . . . 5 (((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀)) ∧ 𝑣𝑉) → (𝑆‘(𝐻𝑣)) ∈ (𝐾𝐶𝐵))
50 mclspps.8 . . . . . 6 ((𝜑 ∧ (𝑥𝑀𝑦𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦))))) → 𝑎𝐾𝑏)
51503ad2antl1 1236 . . . . 5 (((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀)) ∧ (𝑥𝑀𝑦𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦))))) → 𝑎𝐾𝑏)
52 simp21 1263 . . . . 5 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀)) → ⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇))
53 simp22 1264 . . . . 5 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀)) → 𝑠 ∈ ran 𝐿)
54 simp23 1265 . . . . 5 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀)) → (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵)))
55 simp3 1168 . . . . 5 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀)) → ∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀))
567, 3, 8, 41, 43, 45, 11, 2, 22, 23, 24, 46, 47, 48, 49, 51, 52, 53, 54, 55mclsppslem 31928 . . . 4 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝑆 “ (𝐾𝐶𝐵))) ∧ ∀𝑧𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻𝑧))) × (𝑊‘(𝑠‘(𝐻𝑤)))) ⊆ 𝑀)) → (𝑠𝑝) ∈ (𝑆 “ (𝐾𝐶𝐵)))
577, 3, 8, 9, 18, 20, 21, 2, 22, 23, 24, 32, 40, 56mclsind 31915 . . 3 (𝜑 → (𝑀𝐶𝑂) ⊆ (𝑆 “ (𝐾𝐶𝐵)))
5810, 11, 8elmpps 31918 . . . . 5 (⟨𝑀, 𝑂, 𝑃⟩ ∈ 𝐽 ↔ (⟨𝑀, 𝑂, 𝑃⟩ ∈ (mPreSt‘𝑇) ∧ 𝑃 ∈ (𝑀𝐶𝑂)))
5958simprbi 490 . . . 4 (⟨𝑀, 𝑂, 𝑃⟩ ∈ 𝐽𝑃 ∈ (𝑀𝐶𝑂))
6013, 59syl 17 . . 3 (𝜑𝑃 ∈ (𝑀𝐶𝑂))
6157, 60sseldd 3762 . 2 (𝜑𝑃 ∈ (𝑆 “ (𝐾𝐶𝐵)))
62 elpreima 6527 . . 3 (𝑆 Fn 𝐸 → (𝑃 ∈ (𝑆 “ (𝐾𝐶𝐵)) ↔ (𝑃𝐸 ∧ (𝑆𝑃) ∈ (𝐾𝐶𝐵))))
6362simplbda 493 . 2 ((𝑆 Fn 𝐸𝑃 ∈ (𝑆 “ (𝐾𝐶𝐵))) → (𝑆𝑃) ∈ (𝐾𝐶𝐵))
646, 61, 63syl2anc 579 1 (𝜑 → (𝑆𝑃) ∈ (𝐾𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107  wal 1650   = wceq 1652  wcel 2155  wral 3055  cun 3730  wss 3732  cotp 4342   class class class wbr 4809   × cxp 5275  ccnv 5276  dom cdm 5277  ran crn 5278  cima 5280  Fun wfun 6062   Fn wfn 6063  wf 6064  cfv 6068  (class class class)co 6842  Fincfn 8160  mVRcmvar 31806  mAxcmax 31810  mExcmex 31812  mDVcmdv 31813  mVarscmvrs 31814  mSubstcmsub 31816  mVHcmvh 31817  mPreStcmpst 31818  mFScmfs 31821  mClscmcls 31822  mPPStcmpps 31823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-ot 4343  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-n0 11539  df-xnn0 11611  df-z 11625  df-uz 11887  df-fz 12534  df-fzo 12674  df-seq 13009  df-hash 13322  df-word 13487  df-lsw 13534  df-concat 13542  df-s1 13567  df-substr 13617  df-pfx 13662  df-struct 16132  df-ndx 16133  df-slot 16134  df-base 16136  df-sets 16137  df-ress 16138  df-plusg 16227  df-0g 16368  df-gsum 16369  df-mgm 17508  df-sgrp 17550  df-mnd 17561  df-mhm 17601  df-submnd 17602  df-frmd 17653  df-vrmd 17654  df-mrex 31831  df-mex 31832  df-mdv 31833  df-mvrs 31834  df-mrsub 31835  df-msub 31836  df-mvh 31837  df-mpst 31838  df-msr 31839  df-msta 31840  df-mfs 31841  df-mcls 31842  df-mpps 31843
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator