| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mpstssv | Structured version Visualization version GIF version | ||
| Description: A pre-statement is an ordered triple. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mpstssv.p | ⊢ 𝑃 = (mPreSt‘𝑇) |
| Ref | Expression |
|---|---|
| mpstssv | ⊢ 𝑃 ⊆ ((V × V) × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (mDV‘𝑇) = (mDV‘𝑇) | |
| 2 | eqid 2731 | . . 3 ⊢ (mEx‘𝑇) = (mEx‘𝑇) | |
| 3 | mpstssv.p | . . 3 ⊢ 𝑃 = (mPreSt‘𝑇) | |
| 4 | 1, 2, 3 | mpstval 35577 | . 2 ⊢ 𝑃 = (({𝑑 ∈ 𝒫 (mDV‘𝑇) ∣ ◡𝑑 = 𝑑} × (𝒫 (mEx‘𝑇) ∩ Fin)) × (mEx‘𝑇)) |
| 5 | xpss 5632 | . . 3 ⊢ ({𝑑 ∈ 𝒫 (mDV‘𝑇) ∣ ◡𝑑 = 𝑑} × (𝒫 (mEx‘𝑇) ∩ Fin)) ⊆ (V × V) | |
| 6 | ssv 3959 | . . 3 ⊢ (mEx‘𝑇) ⊆ V | |
| 7 | xpss12 5631 | . . 3 ⊢ ((({𝑑 ∈ 𝒫 (mDV‘𝑇) ∣ ◡𝑑 = 𝑑} × (𝒫 (mEx‘𝑇) ∩ Fin)) ⊆ (V × V) ∧ (mEx‘𝑇) ⊆ V) → (({𝑑 ∈ 𝒫 (mDV‘𝑇) ∣ ◡𝑑 = 𝑑} × (𝒫 (mEx‘𝑇) ∩ Fin)) × (mEx‘𝑇)) ⊆ ((V × V) × V)) | |
| 8 | 5, 6, 7 | mp2an 692 | . 2 ⊢ (({𝑑 ∈ 𝒫 (mDV‘𝑇) ∣ ◡𝑑 = 𝑑} × (𝒫 (mEx‘𝑇) ∩ Fin)) × (mEx‘𝑇)) ⊆ ((V × V) × V) |
| 9 | 4, 8 | eqsstri 3981 | 1 ⊢ 𝑃 ⊆ ((V × V) × V) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 {crab 3395 Vcvv 3436 ∩ cin 3901 ⊆ wss 3902 𝒫 cpw 4550 × cxp 5614 ◡ccnv 5615 ‘cfv 6481 Fincfn 8869 mExcmex 35509 mDVcmdv 35510 mPreStcmpst 35515 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-mpst 35535 |
| This theorem is referenced by: mpst123 35582 mpstrcl 35583 msrrcl 35585 elmpps 35615 |
| Copyright terms: Public domain | W3C validator |