![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mpstssv | Structured version Visualization version GIF version |
Description: A pre-statement is an ordered triple. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mpstssv.p | ⊢ 𝑃 = (mPreSt‘𝑇) |
Ref | Expression |
---|---|
mpstssv | ⊢ 𝑃 ⊆ ((V × V) × V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2825 | . . 3 ⊢ (mDV‘𝑇) = (mDV‘𝑇) | |
2 | eqid 2825 | . . 3 ⊢ (mEx‘𝑇) = (mEx‘𝑇) | |
3 | mpstssv.p | . . 3 ⊢ 𝑃 = (mPreSt‘𝑇) | |
4 | 1, 2, 3 | mpstval 31978 | . 2 ⊢ 𝑃 = (({𝑑 ∈ 𝒫 (mDV‘𝑇) ∣ ◡𝑑 = 𝑑} × (𝒫 (mEx‘𝑇) ∩ Fin)) × (mEx‘𝑇)) |
5 | xpss 5358 | . . 3 ⊢ ({𝑑 ∈ 𝒫 (mDV‘𝑇) ∣ ◡𝑑 = 𝑑} × (𝒫 (mEx‘𝑇) ∩ Fin)) ⊆ (V × V) | |
6 | ssv 3850 | . . 3 ⊢ (mEx‘𝑇) ⊆ V | |
7 | xpss12 5357 | . . 3 ⊢ ((({𝑑 ∈ 𝒫 (mDV‘𝑇) ∣ ◡𝑑 = 𝑑} × (𝒫 (mEx‘𝑇) ∩ Fin)) ⊆ (V × V) ∧ (mEx‘𝑇) ⊆ V) → (({𝑑 ∈ 𝒫 (mDV‘𝑇) ∣ ◡𝑑 = 𝑑} × (𝒫 (mEx‘𝑇) ∩ Fin)) × (mEx‘𝑇)) ⊆ ((V × V) × V)) | |
8 | 5, 6, 7 | mp2an 685 | . 2 ⊢ (({𝑑 ∈ 𝒫 (mDV‘𝑇) ∣ ◡𝑑 = 𝑑} × (𝒫 (mEx‘𝑇) ∩ Fin)) × (mEx‘𝑇)) ⊆ ((V × V) × V) |
9 | 4, 8 | eqsstri 3860 | 1 ⊢ 𝑃 ⊆ ((V × V) × V) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1658 {crab 3121 Vcvv 3414 ∩ cin 3797 ⊆ wss 3798 𝒫 cpw 4378 × cxp 5340 ◡ccnv 5341 ‘cfv 6123 Fincfn 8222 mExcmex 31910 mDVcmdv 31911 mPreStcmpst 31916 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-iota 6086 df-fun 6125 df-fv 6131 df-mpst 31936 |
This theorem is referenced by: mpst123 31983 mpstrcl 31984 msrrcl 31986 elmpps 32016 |
Copyright terms: Public domain | W3C validator |