Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpstssv Structured version   Visualization version   GIF version

Theorem mpstssv 35536
Description: A pre-statement is an ordered triple. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypothesis
Ref Expression
mpstssv.p 𝑃 = (mPreSt‘𝑇)
Assertion
Ref Expression
mpstssv 𝑃 ⊆ ((V × V) × V)

Proof of Theorem mpstssv
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (mDV‘𝑇) = (mDV‘𝑇)
2 eqid 2736 . . 3 (mEx‘𝑇) = (mEx‘𝑇)
3 mpstssv.p . . 3 𝑃 = (mPreSt‘𝑇)
41, 2, 3mpstval 35532 . 2 𝑃 = (({𝑑 ∈ 𝒫 (mDV‘𝑇) ∣ 𝑑 = 𝑑} × (𝒫 (mEx‘𝑇) ∩ Fin)) × (mEx‘𝑇))
5 xpss 5706 . . 3 ({𝑑 ∈ 𝒫 (mDV‘𝑇) ∣ 𝑑 = 𝑑} × (𝒫 (mEx‘𝑇) ∩ Fin)) ⊆ (V × V)
6 ssv 4021 . . 3 (mEx‘𝑇) ⊆ V
7 xpss12 5705 . . 3 ((({𝑑 ∈ 𝒫 (mDV‘𝑇) ∣ 𝑑 = 𝑑} × (𝒫 (mEx‘𝑇) ∩ Fin)) ⊆ (V × V) ∧ (mEx‘𝑇) ⊆ V) → (({𝑑 ∈ 𝒫 (mDV‘𝑇) ∣ 𝑑 = 𝑑} × (𝒫 (mEx‘𝑇) ∩ Fin)) × (mEx‘𝑇)) ⊆ ((V × V) × V))
85, 6, 7mp2an 692 . 2 (({𝑑 ∈ 𝒫 (mDV‘𝑇) ∣ 𝑑 = 𝑑} × (𝒫 (mEx‘𝑇) ∩ Fin)) × (mEx‘𝑇)) ⊆ ((V × V) × V)
94, 8eqsstri 4031 1 𝑃 ⊆ ((V × V) × V)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  {crab 3434  Vcvv 3479  cin 3963  wss 3964  𝒫 cpw 4606   × cxp 5688  ccnv 5689  cfv 6566  Fincfn 8990  mExcmex 35464  mDVcmdv 35465  mPreStcmpst 35470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5303  ax-nul 5313  ax-pow 5372  ax-pr 5439  ax-un 7758
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3435  df-v 3481  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5584  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-iota 6519  df-fun 6568  df-fv 6574  df-mpst 35490
This theorem is referenced by:  mpst123  35537  mpstrcl  35538  msrrcl  35540  elmpps  35570
  Copyright terms: Public domain W3C validator