Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mpstssv | Structured version Visualization version GIF version |
Description: A pre-statement is an ordered triple. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mpstssv.p | ⊢ 𝑃 = (mPreSt‘𝑇) |
Ref | Expression |
---|---|
mpstssv | ⊢ 𝑃 ⊆ ((V × V) × V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . 3 ⊢ (mDV‘𝑇) = (mDV‘𝑇) | |
2 | eqid 2736 | . . 3 ⊢ (mEx‘𝑇) = (mEx‘𝑇) | |
3 | mpstssv.p | . . 3 ⊢ 𝑃 = (mPreSt‘𝑇) | |
4 | 1, 2, 3 | mpstval 33796 | . 2 ⊢ 𝑃 = (({𝑑 ∈ 𝒫 (mDV‘𝑇) ∣ ◡𝑑 = 𝑑} × (𝒫 (mEx‘𝑇) ∩ Fin)) × (mEx‘𝑇)) |
5 | xpss 5636 | . . 3 ⊢ ({𝑑 ∈ 𝒫 (mDV‘𝑇) ∣ ◡𝑑 = 𝑑} × (𝒫 (mEx‘𝑇) ∩ Fin)) ⊆ (V × V) | |
6 | ssv 3956 | . . 3 ⊢ (mEx‘𝑇) ⊆ V | |
7 | xpss12 5635 | . . 3 ⊢ ((({𝑑 ∈ 𝒫 (mDV‘𝑇) ∣ ◡𝑑 = 𝑑} × (𝒫 (mEx‘𝑇) ∩ Fin)) ⊆ (V × V) ∧ (mEx‘𝑇) ⊆ V) → (({𝑑 ∈ 𝒫 (mDV‘𝑇) ∣ ◡𝑑 = 𝑑} × (𝒫 (mEx‘𝑇) ∩ Fin)) × (mEx‘𝑇)) ⊆ ((V × V) × V)) | |
8 | 5, 6, 7 | mp2an 689 | . 2 ⊢ (({𝑑 ∈ 𝒫 (mDV‘𝑇) ∣ ◡𝑑 = 𝑑} × (𝒫 (mEx‘𝑇) ∩ Fin)) × (mEx‘𝑇)) ⊆ ((V × V) × V) |
9 | 4, 8 | eqsstri 3966 | 1 ⊢ 𝑃 ⊆ ((V × V) × V) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 {crab 3403 Vcvv 3441 ∩ cin 3897 ⊆ wss 3898 𝒫 cpw 4547 × cxp 5618 ◡ccnv 5619 ‘cfv 6479 Fincfn 8804 mExcmex 33728 mDVcmdv 33729 mPreStcmpst 33734 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-iota 6431 df-fun 6481 df-fv 6487 df-mpst 33754 |
This theorem is referenced by: mpst123 33801 mpstrcl 33802 msrrcl 33804 elmpps 33834 |
Copyright terms: Public domain | W3C validator |