Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpstssv Structured version   Visualization version   GIF version

Theorem mpstssv 35581
Description: A pre-statement is an ordered triple. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypothesis
Ref Expression
mpstssv.p 𝑃 = (mPreSt‘𝑇)
Assertion
Ref Expression
mpstssv 𝑃 ⊆ ((V × V) × V)

Proof of Theorem mpstssv
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (mDV‘𝑇) = (mDV‘𝑇)
2 eqid 2731 . . 3 (mEx‘𝑇) = (mEx‘𝑇)
3 mpstssv.p . . 3 𝑃 = (mPreSt‘𝑇)
41, 2, 3mpstval 35577 . 2 𝑃 = (({𝑑 ∈ 𝒫 (mDV‘𝑇) ∣ 𝑑 = 𝑑} × (𝒫 (mEx‘𝑇) ∩ Fin)) × (mEx‘𝑇))
5 xpss 5632 . . 3 ({𝑑 ∈ 𝒫 (mDV‘𝑇) ∣ 𝑑 = 𝑑} × (𝒫 (mEx‘𝑇) ∩ Fin)) ⊆ (V × V)
6 ssv 3959 . . 3 (mEx‘𝑇) ⊆ V
7 xpss12 5631 . . 3 ((({𝑑 ∈ 𝒫 (mDV‘𝑇) ∣ 𝑑 = 𝑑} × (𝒫 (mEx‘𝑇) ∩ Fin)) ⊆ (V × V) ∧ (mEx‘𝑇) ⊆ V) → (({𝑑 ∈ 𝒫 (mDV‘𝑇) ∣ 𝑑 = 𝑑} × (𝒫 (mEx‘𝑇) ∩ Fin)) × (mEx‘𝑇)) ⊆ ((V × V) × V))
85, 6, 7mp2an 692 . 2 (({𝑑 ∈ 𝒫 (mDV‘𝑇) ∣ 𝑑 = 𝑑} × (𝒫 (mEx‘𝑇) ∩ Fin)) × (mEx‘𝑇)) ⊆ ((V × V) × V)
94, 8eqsstri 3981 1 𝑃 ⊆ ((V × V) × V)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  {crab 3395  Vcvv 3436  cin 3901  wss 3902  𝒫 cpw 4550   × cxp 5614  ccnv 5615  cfv 6481  Fincfn 8869  mExcmex 35509  mDVcmdv 35510  mPreStcmpst 35515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-mpst 35535
This theorem is referenced by:  mpst123  35582  mpstrcl  35583  msrrcl  35585  elmpps  35615
  Copyright terms: Public domain W3C validator