| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mpstssv | Structured version Visualization version GIF version | ||
| Description: A pre-statement is an ordered triple. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mpstssv.p | ⊢ 𝑃 = (mPreSt‘𝑇) |
| Ref | Expression |
|---|---|
| mpstssv | ⊢ 𝑃 ⊆ ((V × V) × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . 3 ⊢ (mDV‘𝑇) = (mDV‘𝑇) | |
| 2 | eqid 2736 | . . 3 ⊢ (mEx‘𝑇) = (mEx‘𝑇) | |
| 3 | mpstssv.p | . . 3 ⊢ 𝑃 = (mPreSt‘𝑇) | |
| 4 | 1, 2, 3 | mpstval 35562 | . 2 ⊢ 𝑃 = (({𝑑 ∈ 𝒫 (mDV‘𝑇) ∣ ◡𝑑 = 𝑑} × (𝒫 (mEx‘𝑇) ∩ Fin)) × (mEx‘𝑇)) |
| 5 | xpss 5675 | . . 3 ⊢ ({𝑑 ∈ 𝒫 (mDV‘𝑇) ∣ ◡𝑑 = 𝑑} × (𝒫 (mEx‘𝑇) ∩ Fin)) ⊆ (V × V) | |
| 6 | ssv 3988 | . . 3 ⊢ (mEx‘𝑇) ⊆ V | |
| 7 | xpss12 5674 | . . 3 ⊢ ((({𝑑 ∈ 𝒫 (mDV‘𝑇) ∣ ◡𝑑 = 𝑑} × (𝒫 (mEx‘𝑇) ∩ Fin)) ⊆ (V × V) ∧ (mEx‘𝑇) ⊆ V) → (({𝑑 ∈ 𝒫 (mDV‘𝑇) ∣ ◡𝑑 = 𝑑} × (𝒫 (mEx‘𝑇) ∩ Fin)) × (mEx‘𝑇)) ⊆ ((V × V) × V)) | |
| 8 | 5, 6, 7 | mp2an 692 | . 2 ⊢ (({𝑑 ∈ 𝒫 (mDV‘𝑇) ∣ ◡𝑑 = 𝑑} × (𝒫 (mEx‘𝑇) ∩ Fin)) × (mEx‘𝑇)) ⊆ ((V × V) × V) |
| 9 | 4, 8 | eqsstri 4010 | 1 ⊢ 𝑃 ⊆ ((V × V) × V) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {crab 3420 Vcvv 3464 ∩ cin 3930 ⊆ wss 3931 𝒫 cpw 4580 × cxp 5657 ◡ccnv 5658 ‘cfv 6536 Fincfn 8964 mExcmex 35494 mDVcmdv 35495 mPreStcmpst 35500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-mpst 35520 |
| This theorem is referenced by: mpst123 35567 mpstrcl 35568 msrrcl 35570 elmpps 35600 |
| Copyright terms: Public domain | W3C validator |