Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpstssv Structured version   Visualization version   GIF version

Theorem mpstssv 35566
Description: A pre-statement is an ordered triple. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypothesis
Ref Expression
mpstssv.p 𝑃 = (mPreSt‘𝑇)
Assertion
Ref Expression
mpstssv 𝑃 ⊆ ((V × V) × V)

Proof of Theorem mpstssv
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (mDV‘𝑇) = (mDV‘𝑇)
2 eqid 2736 . . 3 (mEx‘𝑇) = (mEx‘𝑇)
3 mpstssv.p . . 3 𝑃 = (mPreSt‘𝑇)
41, 2, 3mpstval 35562 . 2 𝑃 = (({𝑑 ∈ 𝒫 (mDV‘𝑇) ∣ 𝑑 = 𝑑} × (𝒫 (mEx‘𝑇) ∩ Fin)) × (mEx‘𝑇))
5 xpss 5675 . . 3 ({𝑑 ∈ 𝒫 (mDV‘𝑇) ∣ 𝑑 = 𝑑} × (𝒫 (mEx‘𝑇) ∩ Fin)) ⊆ (V × V)
6 ssv 3988 . . 3 (mEx‘𝑇) ⊆ V
7 xpss12 5674 . . 3 ((({𝑑 ∈ 𝒫 (mDV‘𝑇) ∣ 𝑑 = 𝑑} × (𝒫 (mEx‘𝑇) ∩ Fin)) ⊆ (V × V) ∧ (mEx‘𝑇) ⊆ V) → (({𝑑 ∈ 𝒫 (mDV‘𝑇) ∣ 𝑑 = 𝑑} × (𝒫 (mEx‘𝑇) ∩ Fin)) × (mEx‘𝑇)) ⊆ ((V × V) × V))
85, 6, 7mp2an 692 . 2 (({𝑑 ∈ 𝒫 (mDV‘𝑇) ∣ 𝑑 = 𝑑} × (𝒫 (mEx‘𝑇) ∩ Fin)) × (mEx‘𝑇)) ⊆ ((V × V) × V)
94, 8eqsstri 4010 1 𝑃 ⊆ ((V × V) × V)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  {crab 3420  Vcvv 3464  cin 3930  wss 3931  𝒫 cpw 4580   × cxp 5657  ccnv 5658  cfv 6536  Fincfn 8964  mExcmex 35494  mDVcmdv 35495  mPreStcmpst 35500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-mpst 35520
This theorem is referenced by:  mpst123  35567  mpstrcl  35568  msrrcl  35570  elmpps  35600
  Copyright terms: Public domain W3C validator