![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mpstssv | Structured version Visualization version GIF version |
Description: A pre-statement is an ordered triple. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mpstssv.p | β’ π = (mPreStβπ) |
Ref | Expression |
---|---|
mpstssv | β’ π β ((V Γ V) Γ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . 3 β’ (mDVβπ) = (mDVβπ) | |
2 | eqid 2733 | . . 3 β’ (mExβπ) = (mExβπ) | |
3 | mpstssv.p | . . 3 β’ π = (mPreStβπ) | |
4 | 1, 2, 3 | mpstval 34557 | . 2 β’ π = (({π β π« (mDVβπ) β£ β‘π = π} Γ (π« (mExβπ) β© Fin)) Γ (mExβπ)) |
5 | xpss 5693 | . . 3 β’ ({π β π« (mDVβπ) β£ β‘π = π} Γ (π« (mExβπ) β© Fin)) β (V Γ V) | |
6 | ssv 4007 | . . 3 β’ (mExβπ) β V | |
7 | xpss12 5692 | . . 3 β’ ((({π β π« (mDVβπ) β£ β‘π = π} Γ (π« (mExβπ) β© Fin)) β (V Γ V) β§ (mExβπ) β V) β (({π β π« (mDVβπ) β£ β‘π = π} Γ (π« (mExβπ) β© Fin)) Γ (mExβπ)) β ((V Γ V) Γ V)) | |
8 | 5, 6, 7 | mp2an 691 | . 2 β’ (({π β π« (mDVβπ) β£ β‘π = π} Γ (π« (mExβπ) β© Fin)) Γ (mExβπ)) β ((V Γ V) Γ V) |
9 | 4, 8 | eqsstri 4017 | 1 β’ π β ((V Γ V) Γ V) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 {crab 3433 Vcvv 3475 β© cin 3948 β wss 3949 π« cpw 4603 Γ cxp 5675 β‘ccnv 5676 βcfv 6544 Fincfn 8939 mExcmex 34489 mDVcmdv 34490 mPreStcmpst 34495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-mpst 34515 |
This theorem is referenced by: mpst123 34562 mpstrcl 34563 msrrcl 34565 elmpps 34595 |
Copyright terms: Public domain | W3C validator |