Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mpstssv | Structured version Visualization version GIF version |
Description: A pre-statement is an ordered triple. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mpstssv.p | ⊢ 𝑃 = (mPreSt‘𝑇) |
Ref | Expression |
---|---|
mpstssv | ⊢ 𝑃 ⊆ ((V × V) × V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (mDV‘𝑇) = (mDV‘𝑇) | |
2 | eqid 2738 | . . 3 ⊢ (mEx‘𝑇) = (mEx‘𝑇) | |
3 | mpstssv.p | . . 3 ⊢ 𝑃 = (mPreSt‘𝑇) | |
4 | 1, 2, 3 | mpstval 33397 | . 2 ⊢ 𝑃 = (({𝑑 ∈ 𝒫 (mDV‘𝑇) ∣ ◡𝑑 = 𝑑} × (𝒫 (mEx‘𝑇) ∩ Fin)) × (mEx‘𝑇)) |
5 | xpss 5596 | . . 3 ⊢ ({𝑑 ∈ 𝒫 (mDV‘𝑇) ∣ ◡𝑑 = 𝑑} × (𝒫 (mEx‘𝑇) ∩ Fin)) ⊆ (V × V) | |
6 | ssv 3941 | . . 3 ⊢ (mEx‘𝑇) ⊆ V | |
7 | xpss12 5595 | . . 3 ⊢ ((({𝑑 ∈ 𝒫 (mDV‘𝑇) ∣ ◡𝑑 = 𝑑} × (𝒫 (mEx‘𝑇) ∩ Fin)) ⊆ (V × V) ∧ (mEx‘𝑇) ⊆ V) → (({𝑑 ∈ 𝒫 (mDV‘𝑇) ∣ ◡𝑑 = 𝑑} × (𝒫 (mEx‘𝑇) ∩ Fin)) × (mEx‘𝑇)) ⊆ ((V × V) × V)) | |
8 | 5, 6, 7 | mp2an 688 | . 2 ⊢ (({𝑑 ∈ 𝒫 (mDV‘𝑇) ∣ ◡𝑑 = 𝑑} × (𝒫 (mEx‘𝑇) ∩ Fin)) × (mEx‘𝑇)) ⊆ ((V × V) × V) |
9 | 4, 8 | eqsstri 3951 | 1 ⊢ 𝑃 ⊆ ((V × V) × V) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 {crab 3067 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 𝒫 cpw 4530 × cxp 5578 ◡ccnv 5579 ‘cfv 6418 Fincfn 8691 mExcmex 33329 mDVcmdv 33330 mPreStcmpst 33335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-mpst 33355 |
This theorem is referenced by: mpst123 33402 mpstrcl 33403 msrrcl 33405 elmpps 33435 |
Copyright terms: Public domain | W3C validator |