MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repswccat Structured version   Visualization version   GIF version

Theorem repswccat 14351
Description: The concatenation of two "repeated symbol words" with the same symbol is again a "repeated symbol word". (Contributed by AV, 4-Nov-2018.)
Assertion
Ref Expression
repswccat ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝑆 repeatS 𝑁) ++ (𝑆 repeatS 𝑀)) = (𝑆 repeatS (𝑁 + 𝑀)))

Proof of Theorem repswccat
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 repswlen 14341 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝑁)) = 𝑁)
213adant3 1134 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝑁)) = 𝑁)
3 repswlen 14341 . . . . . 6 ((𝑆𝑉𝑀 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝑀)) = 𝑀)
433adant2 1133 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝑀)) = 𝑀)
52, 4oveq12d 7231 . . . 4 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))) = (𝑁 + 𝑀))
65oveq2d 7229 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) = (0..^(𝑁 + 𝑀)))
7 simp1 1138 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → 𝑆𝑉)
87adantr 484 . . . . . . 7 (((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → 𝑆𝑉)
9 simpl2 1194 . . . . . . 7 (((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → 𝑁 ∈ ℕ0)
102oveq2d 7229 . . . . . . . . 9 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (0..^(♯‘(𝑆 repeatS 𝑁))) = (0..^𝑁))
1110eleq2d 2823 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) ↔ 𝑥 ∈ (0..^𝑁)))
1211biimpa 480 . . . . . . 7 (((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → 𝑥 ∈ (0..^𝑁))
138, 9, 123jca 1130 . . . . . 6 (((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → (𝑆𝑉𝑁 ∈ ℕ0𝑥 ∈ (0..^𝑁)))
1413adantlr 715 . . . . 5 ((((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))))) ∧ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → (𝑆𝑉𝑁 ∈ ℕ0𝑥 ∈ (0..^𝑁)))
15 repswsymb 14339 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ0𝑥 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘𝑥) = 𝑆)
1614, 15syl 17 . . . 4 ((((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))))) ∧ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → ((𝑆 repeatS 𝑁)‘𝑥) = 𝑆)
177ad2antrr 726 . . . . 5 ((((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))))) ∧ ¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → 𝑆𝑉)
18 simpll3 1216 . . . . 5 ((((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))))) ∧ ¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → 𝑀 ∈ ℕ0)
192, 4jca 515 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀))
20 simpr 488 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^(𝑁 + 𝑀))) → 𝑥 ∈ (0..^(𝑁 + 𝑀)))
2120anim1i 618 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^(𝑁 + 𝑀))) ∧ ¬ 𝑥 ∈ (0..^𝑁)) → (𝑥 ∈ (0..^(𝑁 + 𝑀)) ∧ ¬ 𝑥 ∈ (0..^𝑁)))
22 nn0z 12200 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
23 nn0z 12200 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
2422, 23anim12i 616 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ))
2524ad2antrr 726 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^(𝑁 + 𝑀))) ∧ ¬ 𝑥 ∈ (0..^𝑁)) → (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ))
26 fzocatel 13306 . . . . . . . . . . 11 (((𝑥 ∈ (0..^(𝑁 + 𝑀)) ∧ ¬ 𝑥 ∈ (0..^𝑁)) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑥𝑁) ∈ (0..^𝑀))
2721, 25, 26syl2anc 587 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^(𝑁 + 𝑀))) ∧ ¬ 𝑥 ∈ (0..^𝑁)) → (𝑥𝑁) ∈ (0..^𝑀))
2827exp31 423 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑥 ∈ (0..^(𝑁 + 𝑀)) → (¬ 𝑥 ∈ (0..^𝑁) → (𝑥𝑁) ∈ (0..^𝑀))))
29283adant1 1132 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑥 ∈ (0..^(𝑁 + 𝑀)) → (¬ 𝑥 ∈ (0..^𝑁) → (𝑥𝑁) ∈ (0..^𝑀))))
30 oveq12 7222 . . . . . . . . . . 11 (((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀) → ((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))) = (𝑁 + 𝑀))
3130oveq2d 7229 . . . . . . . . . 10 (((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀) → (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) = (0..^(𝑁 + 𝑀)))
3231eleq2d 2823 . . . . . . . . 9 (((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀) → (𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) ↔ 𝑥 ∈ (0..^(𝑁 + 𝑀))))
33 oveq2 7221 . . . . . . . . . . . . 13 ((♯‘(𝑆 repeatS 𝑁)) = 𝑁 → (0..^(♯‘(𝑆 repeatS 𝑁))) = (0..^𝑁))
3433eleq2d 2823 . . . . . . . . . . . 12 ((♯‘(𝑆 repeatS 𝑁)) = 𝑁 → (𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) ↔ 𝑥 ∈ (0..^𝑁)))
3534notbid 321 . . . . . . . . . . 11 ((♯‘(𝑆 repeatS 𝑁)) = 𝑁 → (¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) ↔ ¬ 𝑥 ∈ (0..^𝑁)))
3635adantr 484 . . . . . . . . . 10 (((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀) → (¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) ↔ ¬ 𝑥 ∈ (0..^𝑁)))
37 oveq2 7221 . . . . . . . . . . . 12 ((♯‘(𝑆 repeatS 𝑁)) = 𝑁 → (𝑥 − (♯‘(𝑆 repeatS 𝑁))) = (𝑥𝑁))
3837eleq1d 2822 . . . . . . . . . . 11 ((♯‘(𝑆 repeatS 𝑁)) = 𝑁 → ((𝑥 − (♯‘(𝑆 repeatS 𝑁))) ∈ (0..^𝑀) ↔ (𝑥𝑁) ∈ (0..^𝑀)))
3938adantr 484 . . . . . . . . . 10 (((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀) → ((𝑥 − (♯‘(𝑆 repeatS 𝑁))) ∈ (0..^𝑀) ↔ (𝑥𝑁) ∈ (0..^𝑀)))
4036, 39imbi12d 348 . . . . . . . . 9 (((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀) → ((¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) → (𝑥 − (♯‘(𝑆 repeatS 𝑁))) ∈ (0..^𝑀)) ↔ (¬ 𝑥 ∈ (0..^𝑁) → (𝑥𝑁) ∈ (0..^𝑀))))
4132, 40imbi12d 348 . . . . . . . 8 (((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀) → ((𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) → (¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) → (𝑥 − (♯‘(𝑆 repeatS 𝑁))) ∈ (0..^𝑀))) ↔ (𝑥 ∈ (0..^(𝑁 + 𝑀)) → (¬ 𝑥 ∈ (0..^𝑁) → (𝑥𝑁) ∈ (0..^𝑀)))))
4229, 41syl5ibr 249 . . . . . . 7 (((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀) → ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) → (¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) → (𝑥 − (♯‘(𝑆 repeatS 𝑁))) ∈ (0..^𝑀)))))
4319, 42mpcom 38 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) → (¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) → (𝑥 − (♯‘(𝑆 repeatS 𝑁))) ∈ (0..^𝑀))))
4443imp31 421 . . . . 5 ((((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))))) ∧ ¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → (𝑥 − (♯‘(𝑆 repeatS 𝑁))) ∈ (0..^𝑀))
45 repswsymb 14339 . . . . 5 ((𝑆𝑉𝑀 ∈ ℕ0 ∧ (𝑥 − (♯‘(𝑆 repeatS 𝑁))) ∈ (0..^𝑀)) → ((𝑆 repeatS 𝑀)‘(𝑥 − (♯‘(𝑆 repeatS 𝑁)))) = 𝑆)
4617, 18, 44, 45syl3anc 1373 . . . 4 ((((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))))) ∧ ¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → ((𝑆 repeatS 𝑀)‘(𝑥 − (♯‘(𝑆 repeatS 𝑁)))) = 𝑆)
4716, 46ifeqda 4475 . . 3 (((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))))) → if(𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))), ((𝑆 repeatS 𝑁)‘𝑥), ((𝑆 repeatS 𝑀)‘(𝑥 − (♯‘(𝑆 repeatS 𝑁))))) = 𝑆)
486, 47mpteq12dva 5139 . 2 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) ↦ if(𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))), ((𝑆 repeatS 𝑁)‘𝑥), ((𝑆 repeatS 𝑀)‘(𝑥 − (♯‘(𝑆 repeatS 𝑁)))))) = (𝑥 ∈ (0..^(𝑁 + 𝑀)) ↦ 𝑆))
49 ovex 7246 . . . 4 (𝑆 repeatS 𝑁) ∈ V
50 ovex 7246 . . . 4 (𝑆 repeatS 𝑀) ∈ V
5149, 50pm3.2i 474 . . 3 ((𝑆 repeatS 𝑁) ∈ V ∧ (𝑆 repeatS 𝑀) ∈ V)
52 ccatfval 14128 . . 3 (((𝑆 repeatS 𝑁) ∈ V ∧ (𝑆 repeatS 𝑀) ∈ V) → ((𝑆 repeatS 𝑁) ++ (𝑆 repeatS 𝑀)) = (𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) ↦ if(𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))), ((𝑆 repeatS 𝑁)‘𝑥), ((𝑆 repeatS 𝑀)‘(𝑥 − (♯‘(𝑆 repeatS 𝑁)))))))
5351, 52mp1i 13 . 2 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝑆 repeatS 𝑁) ++ (𝑆 repeatS 𝑀)) = (𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) ↦ if(𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))), ((𝑆 repeatS 𝑁)‘𝑥), ((𝑆 repeatS 𝑀)‘(𝑥 − (♯‘(𝑆 repeatS 𝑁)))))))
54 nn0addcl 12125 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑁 + 𝑀) ∈ ℕ0)
55543adant1 1132 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑁 + 𝑀) ∈ ℕ0)
56 reps 14335 . . 3 ((𝑆𝑉 ∧ (𝑁 + 𝑀) ∈ ℕ0) → (𝑆 repeatS (𝑁 + 𝑀)) = (𝑥 ∈ (0..^(𝑁 + 𝑀)) ↦ 𝑆))
577, 55, 56syl2anc 587 . 2 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑆 repeatS (𝑁 + 𝑀)) = (𝑥 ∈ (0..^(𝑁 + 𝑀)) ↦ 𝑆))
5848, 53, 573eqtr4d 2787 1 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝑆 repeatS 𝑁) ++ (𝑆 repeatS 𝑀)) = (𝑆 repeatS (𝑁 + 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  Vcvv 3408  ifcif 4439  cmpt 5135  cfv 6380  (class class class)co 7213  0cc0 10729   + caddc 10732  cmin 11062  0cn0 12090  cz 12176  ..^cfzo 13238  chash 13896   ++ cconcat 14125   repeatS creps 14333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-n0 12091  df-z 12177  df-uz 12439  df-fz 13096  df-fzo 13239  df-hash 13897  df-concat 14126  df-reps 14334
This theorem is referenced by:  repswcshw  14377  repsw2  14515  repsw3  14516
  Copyright terms: Public domain W3C validator