MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repswccat Structured version   Visualization version   GIF version

Theorem repswccat 14692
Description: The concatenation of two "repeated symbol words" with the same symbol is again a "repeated symbol word". (Contributed by AV, 4-Nov-2018.)
Assertion
Ref Expression
repswccat ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝑆 repeatS 𝑁) ++ (𝑆 repeatS 𝑀)) = (𝑆 repeatS (𝑁 + 𝑀)))

Proof of Theorem repswccat
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 repswlen 14682 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝑁)) = 𝑁)
213adant3 1132 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝑁)) = 𝑁)
3 repswlen 14682 . . . . . 6 ((𝑆𝑉𝑀 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝑀)) = 𝑀)
433adant2 1131 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝑀)) = 𝑀)
52, 4oveq12d 7367 . . . 4 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))) = (𝑁 + 𝑀))
65oveq2d 7365 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) = (0..^(𝑁 + 𝑀)))
7 simp1 1136 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → 𝑆𝑉)
87adantr 480 . . . . . . 7 (((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → 𝑆𝑉)
9 simpl2 1193 . . . . . . 7 (((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → 𝑁 ∈ ℕ0)
102oveq2d 7365 . . . . . . . . 9 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (0..^(♯‘(𝑆 repeatS 𝑁))) = (0..^𝑁))
1110eleq2d 2814 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) ↔ 𝑥 ∈ (0..^𝑁)))
1211biimpa 476 . . . . . . 7 (((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → 𝑥 ∈ (0..^𝑁))
138, 9, 123jca 1128 . . . . . 6 (((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → (𝑆𝑉𝑁 ∈ ℕ0𝑥 ∈ (0..^𝑁)))
1413adantlr 715 . . . . 5 ((((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))))) ∧ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → (𝑆𝑉𝑁 ∈ ℕ0𝑥 ∈ (0..^𝑁)))
15 repswsymb 14680 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ0𝑥 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘𝑥) = 𝑆)
1614, 15syl 17 . . . 4 ((((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))))) ∧ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → ((𝑆 repeatS 𝑁)‘𝑥) = 𝑆)
177ad2antrr 726 . . . . 5 ((((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))))) ∧ ¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → 𝑆𝑉)
18 simpll3 1215 . . . . 5 ((((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))))) ∧ ¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → 𝑀 ∈ ℕ0)
192, 4jca 511 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀))
20 simpr 484 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^(𝑁 + 𝑀))) → 𝑥 ∈ (0..^(𝑁 + 𝑀)))
2120anim1i 615 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^(𝑁 + 𝑀))) ∧ ¬ 𝑥 ∈ (0..^𝑁)) → (𝑥 ∈ (0..^(𝑁 + 𝑀)) ∧ ¬ 𝑥 ∈ (0..^𝑁)))
22 nn0z 12496 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
23 nn0z 12496 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
2422, 23anim12i 613 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ))
2524ad2antrr 726 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^(𝑁 + 𝑀))) ∧ ¬ 𝑥 ∈ (0..^𝑁)) → (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ))
26 fzocatel 13632 . . . . . . . . . . 11 (((𝑥 ∈ (0..^(𝑁 + 𝑀)) ∧ ¬ 𝑥 ∈ (0..^𝑁)) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑥𝑁) ∈ (0..^𝑀))
2721, 25, 26syl2anc 584 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^(𝑁 + 𝑀))) ∧ ¬ 𝑥 ∈ (0..^𝑁)) → (𝑥𝑁) ∈ (0..^𝑀))
2827exp31 419 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑥 ∈ (0..^(𝑁 + 𝑀)) → (¬ 𝑥 ∈ (0..^𝑁) → (𝑥𝑁) ∈ (0..^𝑀))))
29283adant1 1130 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑥 ∈ (0..^(𝑁 + 𝑀)) → (¬ 𝑥 ∈ (0..^𝑁) → (𝑥𝑁) ∈ (0..^𝑀))))
30 oveq12 7358 . . . . . . . . . . 11 (((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀) → ((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))) = (𝑁 + 𝑀))
3130oveq2d 7365 . . . . . . . . . 10 (((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀) → (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) = (0..^(𝑁 + 𝑀)))
3231eleq2d 2814 . . . . . . . . 9 (((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀) → (𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) ↔ 𝑥 ∈ (0..^(𝑁 + 𝑀))))
33 oveq2 7357 . . . . . . . . . . . . 13 ((♯‘(𝑆 repeatS 𝑁)) = 𝑁 → (0..^(♯‘(𝑆 repeatS 𝑁))) = (0..^𝑁))
3433eleq2d 2814 . . . . . . . . . . . 12 ((♯‘(𝑆 repeatS 𝑁)) = 𝑁 → (𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) ↔ 𝑥 ∈ (0..^𝑁)))
3534notbid 318 . . . . . . . . . . 11 ((♯‘(𝑆 repeatS 𝑁)) = 𝑁 → (¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) ↔ ¬ 𝑥 ∈ (0..^𝑁)))
3635adantr 480 . . . . . . . . . 10 (((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀) → (¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) ↔ ¬ 𝑥 ∈ (0..^𝑁)))
37 oveq2 7357 . . . . . . . . . . . 12 ((♯‘(𝑆 repeatS 𝑁)) = 𝑁 → (𝑥 − (♯‘(𝑆 repeatS 𝑁))) = (𝑥𝑁))
3837eleq1d 2813 . . . . . . . . . . 11 ((♯‘(𝑆 repeatS 𝑁)) = 𝑁 → ((𝑥 − (♯‘(𝑆 repeatS 𝑁))) ∈ (0..^𝑀) ↔ (𝑥𝑁) ∈ (0..^𝑀)))
3938adantr 480 . . . . . . . . . 10 (((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀) → ((𝑥 − (♯‘(𝑆 repeatS 𝑁))) ∈ (0..^𝑀) ↔ (𝑥𝑁) ∈ (0..^𝑀)))
4036, 39imbi12d 344 . . . . . . . . 9 (((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀) → ((¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) → (𝑥 − (♯‘(𝑆 repeatS 𝑁))) ∈ (0..^𝑀)) ↔ (¬ 𝑥 ∈ (0..^𝑁) → (𝑥𝑁) ∈ (0..^𝑀))))
4132, 40imbi12d 344 . . . . . . . 8 (((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀) → ((𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) → (¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) → (𝑥 − (♯‘(𝑆 repeatS 𝑁))) ∈ (0..^𝑀))) ↔ (𝑥 ∈ (0..^(𝑁 + 𝑀)) → (¬ 𝑥 ∈ (0..^𝑁) → (𝑥𝑁) ∈ (0..^𝑀)))))
4229, 41imbitrrid 246 . . . . . . 7 (((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀) → ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) → (¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) → (𝑥 − (♯‘(𝑆 repeatS 𝑁))) ∈ (0..^𝑀)))))
4319, 42mpcom 38 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) → (¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) → (𝑥 − (♯‘(𝑆 repeatS 𝑁))) ∈ (0..^𝑀))))
4443imp31 417 . . . . 5 ((((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))))) ∧ ¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → (𝑥 − (♯‘(𝑆 repeatS 𝑁))) ∈ (0..^𝑀))
45 repswsymb 14680 . . . . 5 ((𝑆𝑉𝑀 ∈ ℕ0 ∧ (𝑥 − (♯‘(𝑆 repeatS 𝑁))) ∈ (0..^𝑀)) → ((𝑆 repeatS 𝑀)‘(𝑥 − (♯‘(𝑆 repeatS 𝑁)))) = 𝑆)
4617, 18, 44, 45syl3anc 1373 . . . 4 ((((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))))) ∧ ¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → ((𝑆 repeatS 𝑀)‘(𝑥 − (♯‘(𝑆 repeatS 𝑁)))) = 𝑆)
4716, 46ifeqda 4513 . . 3 (((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))))) → if(𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))), ((𝑆 repeatS 𝑁)‘𝑥), ((𝑆 repeatS 𝑀)‘(𝑥 − (♯‘(𝑆 repeatS 𝑁))))) = 𝑆)
486, 47mpteq12dva 5178 . 2 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) ↦ if(𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))), ((𝑆 repeatS 𝑁)‘𝑥), ((𝑆 repeatS 𝑀)‘(𝑥 − (♯‘(𝑆 repeatS 𝑁)))))) = (𝑥 ∈ (0..^(𝑁 + 𝑀)) ↦ 𝑆))
49 ovex 7382 . . . 4 (𝑆 repeatS 𝑁) ∈ V
50 ovex 7382 . . . 4 (𝑆 repeatS 𝑀) ∈ V
5149, 50pm3.2i 470 . . 3 ((𝑆 repeatS 𝑁) ∈ V ∧ (𝑆 repeatS 𝑀) ∈ V)
52 ccatfval 14480 . . 3 (((𝑆 repeatS 𝑁) ∈ V ∧ (𝑆 repeatS 𝑀) ∈ V) → ((𝑆 repeatS 𝑁) ++ (𝑆 repeatS 𝑀)) = (𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) ↦ if(𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))), ((𝑆 repeatS 𝑁)‘𝑥), ((𝑆 repeatS 𝑀)‘(𝑥 − (♯‘(𝑆 repeatS 𝑁)))))))
5351, 52mp1i 13 . 2 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝑆 repeatS 𝑁) ++ (𝑆 repeatS 𝑀)) = (𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) ↦ if(𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))), ((𝑆 repeatS 𝑁)‘𝑥), ((𝑆 repeatS 𝑀)‘(𝑥 − (♯‘(𝑆 repeatS 𝑁)))))))
54 nn0addcl 12419 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑁 + 𝑀) ∈ ℕ0)
55543adant1 1130 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑁 + 𝑀) ∈ ℕ0)
56 reps 14676 . . 3 ((𝑆𝑉 ∧ (𝑁 + 𝑀) ∈ ℕ0) → (𝑆 repeatS (𝑁 + 𝑀)) = (𝑥 ∈ (0..^(𝑁 + 𝑀)) ↦ 𝑆))
577, 55, 56syl2anc 584 . 2 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑆 repeatS (𝑁 + 𝑀)) = (𝑥 ∈ (0..^(𝑁 + 𝑀)) ↦ 𝑆))
5848, 53, 573eqtr4d 2774 1 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝑆 repeatS 𝑁) ++ (𝑆 repeatS 𝑀)) = (𝑆 repeatS (𝑁 + 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3436  ifcif 4476  cmpt 5173  cfv 6482  (class class class)co 7349  0cc0 11009   + caddc 11012  cmin 11347  0cn0 12384  cz 12471  ..^cfzo 13557  chash 14237   ++ cconcat 14477   repeatS creps 14674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-hash 14238  df-concat 14478  df-reps 14675
This theorem is referenced by:  repswcshw  14718  repsw2  14857  repsw3  14858
  Copyright terms: Public domain W3C validator