MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repswccat Structured version   Visualization version   GIF version

Theorem repswccat 14147
Description: The concatenation of two "repeated symbol words" with the same symbol is again a "repeated symbol word". (Contributed by AV, 4-Nov-2018.)
Assertion
Ref Expression
repswccat ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝑆 repeatS 𝑁) ++ (𝑆 repeatS 𝑀)) = (𝑆 repeatS (𝑁 + 𝑀)))

Proof of Theorem repswccat
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 repswlen 14137 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝑁)) = 𝑁)
213adant3 1128 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝑁)) = 𝑁)
3 repswlen 14137 . . . . . 6 ((𝑆𝑉𝑀 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝑀)) = 𝑀)
433adant2 1127 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝑀)) = 𝑀)
52, 4oveq12d 7173 . . . 4 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))) = (𝑁 + 𝑀))
65oveq2d 7171 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) = (0..^(𝑁 + 𝑀)))
7 simp1 1132 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → 𝑆𝑉)
87adantr 483 . . . . . . 7 (((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → 𝑆𝑉)
9 simpl2 1188 . . . . . . 7 (((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → 𝑁 ∈ ℕ0)
102oveq2d 7171 . . . . . . . . 9 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (0..^(♯‘(𝑆 repeatS 𝑁))) = (0..^𝑁))
1110eleq2d 2898 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) ↔ 𝑥 ∈ (0..^𝑁)))
1211biimpa 479 . . . . . . 7 (((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → 𝑥 ∈ (0..^𝑁))
138, 9, 123jca 1124 . . . . . 6 (((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → (𝑆𝑉𝑁 ∈ ℕ0𝑥 ∈ (0..^𝑁)))
1413adantlr 713 . . . . 5 ((((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))))) ∧ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → (𝑆𝑉𝑁 ∈ ℕ0𝑥 ∈ (0..^𝑁)))
15 repswsymb 14135 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ0𝑥 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘𝑥) = 𝑆)
1614, 15syl 17 . . . 4 ((((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))))) ∧ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → ((𝑆 repeatS 𝑁)‘𝑥) = 𝑆)
177ad2antrr 724 . . . . 5 ((((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))))) ∧ ¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → 𝑆𝑉)
18 simpll3 1210 . . . . 5 ((((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))))) ∧ ¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → 𝑀 ∈ ℕ0)
192, 4jca 514 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀))
20 simpr 487 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^(𝑁 + 𝑀))) → 𝑥 ∈ (0..^(𝑁 + 𝑀)))
2120anim1i 616 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^(𝑁 + 𝑀))) ∧ ¬ 𝑥 ∈ (0..^𝑁)) → (𝑥 ∈ (0..^(𝑁 + 𝑀)) ∧ ¬ 𝑥 ∈ (0..^𝑁)))
22 nn0z 12004 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
23 nn0z 12004 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
2422, 23anim12i 614 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ))
2524ad2antrr 724 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^(𝑁 + 𝑀))) ∧ ¬ 𝑥 ∈ (0..^𝑁)) → (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ))
26 fzocatel 13100 . . . . . . . . . . 11 (((𝑥 ∈ (0..^(𝑁 + 𝑀)) ∧ ¬ 𝑥 ∈ (0..^𝑁)) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑥𝑁) ∈ (0..^𝑀))
2721, 25, 26syl2anc 586 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^(𝑁 + 𝑀))) ∧ ¬ 𝑥 ∈ (0..^𝑁)) → (𝑥𝑁) ∈ (0..^𝑀))
2827exp31 422 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑥 ∈ (0..^(𝑁 + 𝑀)) → (¬ 𝑥 ∈ (0..^𝑁) → (𝑥𝑁) ∈ (0..^𝑀))))
29283adant1 1126 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑥 ∈ (0..^(𝑁 + 𝑀)) → (¬ 𝑥 ∈ (0..^𝑁) → (𝑥𝑁) ∈ (0..^𝑀))))
30 oveq12 7164 . . . . . . . . . . 11 (((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀) → ((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))) = (𝑁 + 𝑀))
3130oveq2d 7171 . . . . . . . . . 10 (((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀) → (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) = (0..^(𝑁 + 𝑀)))
3231eleq2d 2898 . . . . . . . . 9 (((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀) → (𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) ↔ 𝑥 ∈ (0..^(𝑁 + 𝑀))))
33 oveq2 7163 . . . . . . . . . . . . 13 ((♯‘(𝑆 repeatS 𝑁)) = 𝑁 → (0..^(♯‘(𝑆 repeatS 𝑁))) = (0..^𝑁))
3433eleq2d 2898 . . . . . . . . . . . 12 ((♯‘(𝑆 repeatS 𝑁)) = 𝑁 → (𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) ↔ 𝑥 ∈ (0..^𝑁)))
3534notbid 320 . . . . . . . . . . 11 ((♯‘(𝑆 repeatS 𝑁)) = 𝑁 → (¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) ↔ ¬ 𝑥 ∈ (0..^𝑁)))
3635adantr 483 . . . . . . . . . 10 (((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀) → (¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) ↔ ¬ 𝑥 ∈ (0..^𝑁)))
37 oveq2 7163 . . . . . . . . . . . 12 ((♯‘(𝑆 repeatS 𝑁)) = 𝑁 → (𝑥 − (♯‘(𝑆 repeatS 𝑁))) = (𝑥𝑁))
3837eleq1d 2897 . . . . . . . . . . 11 ((♯‘(𝑆 repeatS 𝑁)) = 𝑁 → ((𝑥 − (♯‘(𝑆 repeatS 𝑁))) ∈ (0..^𝑀) ↔ (𝑥𝑁) ∈ (0..^𝑀)))
3938adantr 483 . . . . . . . . . 10 (((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀) → ((𝑥 − (♯‘(𝑆 repeatS 𝑁))) ∈ (0..^𝑀) ↔ (𝑥𝑁) ∈ (0..^𝑀)))
4036, 39imbi12d 347 . . . . . . . . 9 (((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀) → ((¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) → (𝑥 − (♯‘(𝑆 repeatS 𝑁))) ∈ (0..^𝑀)) ↔ (¬ 𝑥 ∈ (0..^𝑁) → (𝑥𝑁) ∈ (0..^𝑀))))
4132, 40imbi12d 347 . . . . . . . 8 (((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀) → ((𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) → (¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) → (𝑥 − (♯‘(𝑆 repeatS 𝑁))) ∈ (0..^𝑀))) ↔ (𝑥 ∈ (0..^(𝑁 + 𝑀)) → (¬ 𝑥 ∈ (0..^𝑁) → (𝑥𝑁) ∈ (0..^𝑀)))))
4229, 41syl5ibr 248 . . . . . . 7 (((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀) → ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) → (¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) → (𝑥 − (♯‘(𝑆 repeatS 𝑁))) ∈ (0..^𝑀)))))
4319, 42mpcom 38 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) → (¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) → (𝑥 − (♯‘(𝑆 repeatS 𝑁))) ∈ (0..^𝑀))))
4443imp31 420 . . . . 5 ((((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))))) ∧ ¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → (𝑥 − (♯‘(𝑆 repeatS 𝑁))) ∈ (0..^𝑀))
45 repswsymb 14135 . . . . 5 ((𝑆𝑉𝑀 ∈ ℕ0 ∧ (𝑥 − (♯‘(𝑆 repeatS 𝑁))) ∈ (0..^𝑀)) → ((𝑆 repeatS 𝑀)‘(𝑥 − (♯‘(𝑆 repeatS 𝑁)))) = 𝑆)
4617, 18, 44, 45syl3anc 1367 . . . 4 ((((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))))) ∧ ¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → ((𝑆 repeatS 𝑀)‘(𝑥 − (♯‘(𝑆 repeatS 𝑁)))) = 𝑆)
4716, 46ifeqda 4501 . . 3 (((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))))) → if(𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))), ((𝑆 repeatS 𝑁)‘𝑥), ((𝑆 repeatS 𝑀)‘(𝑥 − (♯‘(𝑆 repeatS 𝑁))))) = 𝑆)
486, 47mpteq12dva 5149 . 2 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) ↦ if(𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))), ((𝑆 repeatS 𝑁)‘𝑥), ((𝑆 repeatS 𝑀)‘(𝑥 − (♯‘(𝑆 repeatS 𝑁)))))) = (𝑥 ∈ (0..^(𝑁 + 𝑀)) ↦ 𝑆))
49 ovex 7188 . . . 4 (𝑆 repeatS 𝑁) ∈ V
50 ovex 7188 . . . 4 (𝑆 repeatS 𝑀) ∈ V
5149, 50pm3.2i 473 . . 3 ((𝑆 repeatS 𝑁) ∈ V ∧ (𝑆 repeatS 𝑀) ∈ V)
52 ccatfval 13924 . . 3 (((𝑆 repeatS 𝑁) ∈ V ∧ (𝑆 repeatS 𝑀) ∈ V) → ((𝑆 repeatS 𝑁) ++ (𝑆 repeatS 𝑀)) = (𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) ↦ if(𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))), ((𝑆 repeatS 𝑁)‘𝑥), ((𝑆 repeatS 𝑀)‘(𝑥 − (♯‘(𝑆 repeatS 𝑁)))))))
5351, 52mp1i 13 . 2 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝑆 repeatS 𝑁) ++ (𝑆 repeatS 𝑀)) = (𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) ↦ if(𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))), ((𝑆 repeatS 𝑁)‘𝑥), ((𝑆 repeatS 𝑀)‘(𝑥 − (♯‘(𝑆 repeatS 𝑁)))))))
54 nn0addcl 11931 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑁 + 𝑀) ∈ ℕ0)
55543adant1 1126 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑁 + 𝑀) ∈ ℕ0)
56 reps 14131 . . 3 ((𝑆𝑉 ∧ (𝑁 + 𝑀) ∈ ℕ0) → (𝑆 repeatS (𝑁 + 𝑀)) = (𝑥 ∈ (0..^(𝑁 + 𝑀)) ↦ 𝑆))
577, 55, 56syl2anc 586 . 2 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑆 repeatS (𝑁 + 𝑀)) = (𝑥 ∈ (0..^(𝑁 + 𝑀)) ↦ 𝑆))
5848, 53, 573eqtr4d 2866 1 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝑆 repeatS 𝑁) ++ (𝑆 repeatS 𝑀)) = (𝑆 repeatS (𝑁 + 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  Vcvv 3494  ifcif 4466  cmpt 5145  cfv 6354  (class class class)co 7155  0cc0 10536   + caddc 10539  cmin 10869  0cn0 11896  cz 11980  ..^cfzo 13032  chash 13689   ++ cconcat 13921   repeatS creps 14129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-n0 11897  df-z 11981  df-uz 12243  df-fz 12892  df-fzo 13033  df-hash 13690  df-concat 13922  df-reps 14130
This theorem is referenced by:  repswcshw  14173  repsw2  14311  repsw3  14312
  Copyright terms: Public domain W3C validator