MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repswccat Structured version   Visualization version   GIF version

Theorem repswccat 14008
Description: The concatenation of two "repeated symbol words" with the same symbol is again a "repeated symbol word". (Contributed by AV, 4-Nov-2018.)
Assertion
Ref Expression
repswccat ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝑆 repeatS 𝑁) ++ (𝑆 repeatS 𝑀)) = (𝑆 repeatS (𝑁 + 𝑀)))

Proof of Theorem repswccat
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 repswlen 13998 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝑁)) = 𝑁)
213adant3 1112 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝑁)) = 𝑁)
3 repswlen 13998 . . . . . 6 ((𝑆𝑉𝑀 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝑀)) = 𝑀)
433adant2 1111 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝑀)) = 𝑀)
52, 4oveq12d 6996 . . . 4 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))) = (𝑁 + 𝑀))
65oveq2d 6994 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) = (0..^(𝑁 + 𝑀)))
7 simp1 1116 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → 𝑆𝑉)
87adantr 473 . . . . . . 7 (((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → 𝑆𝑉)
9 simpl2 1172 . . . . . . 7 (((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → 𝑁 ∈ ℕ0)
102oveq2d 6994 . . . . . . . . 9 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (0..^(♯‘(𝑆 repeatS 𝑁))) = (0..^𝑁))
1110eleq2d 2851 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) ↔ 𝑥 ∈ (0..^𝑁)))
1211biimpa 469 . . . . . . 7 (((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → 𝑥 ∈ (0..^𝑁))
138, 9, 123jca 1108 . . . . . 6 (((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → (𝑆𝑉𝑁 ∈ ℕ0𝑥 ∈ (0..^𝑁)))
1413adantlr 702 . . . . 5 ((((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))))) ∧ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → (𝑆𝑉𝑁 ∈ ℕ0𝑥 ∈ (0..^𝑁)))
15 repswsymb 13996 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ0𝑥 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘𝑥) = 𝑆)
1614, 15syl 17 . . . 4 ((((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))))) ∧ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → ((𝑆 repeatS 𝑁)‘𝑥) = 𝑆)
177ad2antrr 713 . . . . 5 ((((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))))) ∧ ¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → 𝑆𝑉)
18 simpll3 1194 . . . . 5 ((((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))))) ∧ ¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → 𝑀 ∈ ℕ0)
192, 4jca 504 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀))
20 simpr 477 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^(𝑁 + 𝑀))) → 𝑥 ∈ (0..^(𝑁 + 𝑀)))
2120anim1i 605 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^(𝑁 + 𝑀))) ∧ ¬ 𝑥 ∈ (0..^𝑁)) → (𝑥 ∈ (0..^(𝑁 + 𝑀)) ∧ ¬ 𝑥 ∈ (0..^𝑁)))
22 nn0z 11821 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
23 nn0z 11821 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
2422, 23anim12i 603 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ))
2524ad2antrr 713 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^(𝑁 + 𝑀))) ∧ ¬ 𝑥 ∈ (0..^𝑁)) → (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ))
26 fzocatel 12919 . . . . . . . . . . 11 (((𝑥 ∈ (0..^(𝑁 + 𝑀)) ∧ ¬ 𝑥 ∈ (0..^𝑁)) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑥𝑁) ∈ (0..^𝑀))
2721, 25, 26syl2anc 576 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^(𝑁 + 𝑀))) ∧ ¬ 𝑥 ∈ (0..^𝑁)) → (𝑥𝑁) ∈ (0..^𝑀))
2827exp31 412 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑥 ∈ (0..^(𝑁 + 𝑀)) → (¬ 𝑥 ∈ (0..^𝑁) → (𝑥𝑁) ∈ (0..^𝑀))))
29283adant1 1110 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑥 ∈ (0..^(𝑁 + 𝑀)) → (¬ 𝑥 ∈ (0..^𝑁) → (𝑥𝑁) ∈ (0..^𝑀))))
30 oveq12 6987 . . . . . . . . . . 11 (((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀) → ((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))) = (𝑁 + 𝑀))
3130oveq2d 6994 . . . . . . . . . 10 (((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀) → (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) = (0..^(𝑁 + 𝑀)))
3231eleq2d 2851 . . . . . . . . 9 (((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀) → (𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) ↔ 𝑥 ∈ (0..^(𝑁 + 𝑀))))
33 oveq2 6986 . . . . . . . . . . . . 13 ((♯‘(𝑆 repeatS 𝑁)) = 𝑁 → (0..^(♯‘(𝑆 repeatS 𝑁))) = (0..^𝑁))
3433eleq2d 2851 . . . . . . . . . . . 12 ((♯‘(𝑆 repeatS 𝑁)) = 𝑁 → (𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) ↔ 𝑥 ∈ (0..^𝑁)))
3534notbid 310 . . . . . . . . . . 11 ((♯‘(𝑆 repeatS 𝑁)) = 𝑁 → (¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) ↔ ¬ 𝑥 ∈ (0..^𝑁)))
3635adantr 473 . . . . . . . . . 10 (((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀) → (¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) ↔ ¬ 𝑥 ∈ (0..^𝑁)))
37 oveq2 6986 . . . . . . . . . . . 12 ((♯‘(𝑆 repeatS 𝑁)) = 𝑁 → (𝑥 − (♯‘(𝑆 repeatS 𝑁))) = (𝑥𝑁))
3837eleq1d 2850 . . . . . . . . . . 11 ((♯‘(𝑆 repeatS 𝑁)) = 𝑁 → ((𝑥 − (♯‘(𝑆 repeatS 𝑁))) ∈ (0..^𝑀) ↔ (𝑥𝑁) ∈ (0..^𝑀)))
3938adantr 473 . . . . . . . . . 10 (((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀) → ((𝑥 − (♯‘(𝑆 repeatS 𝑁))) ∈ (0..^𝑀) ↔ (𝑥𝑁) ∈ (0..^𝑀)))
4036, 39imbi12d 337 . . . . . . . . 9 (((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀) → ((¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) → (𝑥 − (♯‘(𝑆 repeatS 𝑁))) ∈ (0..^𝑀)) ↔ (¬ 𝑥 ∈ (0..^𝑁) → (𝑥𝑁) ∈ (0..^𝑀))))
4132, 40imbi12d 337 . . . . . . . 8 (((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀) → ((𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) → (¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) → (𝑥 − (♯‘(𝑆 repeatS 𝑁))) ∈ (0..^𝑀))) ↔ (𝑥 ∈ (0..^(𝑁 + 𝑀)) → (¬ 𝑥 ∈ (0..^𝑁) → (𝑥𝑁) ∈ (0..^𝑀)))))
4229, 41syl5ibr 238 . . . . . . 7 (((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀) → ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) → (¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) → (𝑥 − (♯‘(𝑆 repeatS 𝑁))) ∈ (0..^𝑀)))))
4319, 42mpcom 38 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) → (¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) → (𝑥 − (♯‘(𝑆 repeatS 𝑁))) ∈ (0..^𝑀))))
4443imp31 410 . . . . 5 ((((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))))) ∧ ¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → (𝑥 − (♯‘(𝑆 repeatS 𝑁))) ∈ (0..^𝑀))
45 repswsymb 13996 . . . . 5 ((𝑆𝑉𝑀 ∈ ℕ0 ∧ (𝑥 − (♯‘(𝑆 repeatS 𝑁))) ∈ (0..^𝑀)) → ((𝑆 repeatS 𝑀)‘(𝑥 − (♯‘(𝑆 repeatS 𝑁)))) = 𝑆)
4617, 18, 44, 45syl3anc 1351 . . . 4 ((((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))))) ∧ ¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → ((𝑆 repeatS 𝑀)‘(𝑥 − (♯‘(𝑆 repeatS 𝑁)))) = 𝑆)
4716, 46ifeqda 4386 . . 3 (((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))))) → if(𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))), ((𝑆 repeatS 𝑁)‘𝑥), ((𝑆 repeatS 𝑀)‘(𝑥 − (♯‘(𝑆 repeatS 𝑁))))) = 𝑆)
486, 47mpteq12dva 5012 . 2 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) ↦ if(𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))), ((𝑆 repeatS 𝑁)‘𝑥), ((𝑆 repeatS 𝑀)‘(𝑥 − (♯‘(𝑆 repeatS 𝑁)))))) = (𝑥 ∈ (0..^(𝑁 + 𝑀)) ↦ 𝑆))
49 ovex 7010 . . . 4 (𝑆 repeatS 𝑁) ∈ V
50 ovex 7010 . . . 4 (𝑆 repeatS 𝑀) ∈ V
5149, 50pm3.2i 463 . . 3 ((𝑆 repeatS 𝑁) ∈ V ∧ (𝑆 repeatS 𝑀) ∈ V)
52 ccatfval 13739 . . 3 (((𝑆 repeatS 𝑁) ∈ V ∧ (𝑆 repeatS 𝑀) ∈ V) → ((𝑆 repeatS 𝑁) ++ (𝑆 repeatS 𝑀)) = (𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) ↦ if(𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))), ((𝑆 repeatS 𝑁)‘𝑥), ((𝑆 repeatS 𝑀)‘(𝑥 − (♯‘(𝑆 repeatS 𝑁)))))))
5351, 52mp1i 13 . 2 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝑆 repeatS 𝑁) ++ (𝑆 repeatS 𝑀)) = (𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) ↦ if(𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))), ((𝑆 repeatS 𝑁)‘𝑥), ((𝑆 repeatS 𝑀)‘(𝑥 − (♯‘(𝑆 repeatS 𝑁)))))))
54 nn0addcl 11747 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑁 + 𝑀) ∈ ℕ0)
55543adant1 1110 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑁 + 𝑀) ∈ ℕ0)
56 reps 13992 . . 3 ((𝑆𝑉 ∧ (𝑁 + 𝑀) ∈ ℕ0) → (𝑆 repeatS (𝑁 + 𝑀)) = (𝑥 ∈ (0..^(𝑁 + 𝑀)) ↦ 𝑆))
577, 55, 56syl2anc 576 . 2 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑆 repeatS (𝑁 + 𝑀)) = (𝑥 ∈ (0..^(𝑁 + 𝑀)) ↦ 𝑆))
5848, 53, 573eqtr4d 2824 1 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝑆 repeatS 𝑁) ++ (𝑆 repeatS 𝑀)) = (𝑆 repeatS (𝑁 + 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  Vcvv 3415  ifcif 4351  cmpt 5009  cfv 6190  (class class class)co 6978  0cc0 10337   + caddc 10340  cmin 10672  0cn0 11710  cz 11796  ..^cfzo 12852  chash 13508   ++ cconcat 13736   repeatS creps 13990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-int 4751  df-iun 4795  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-om 7399  df-1st 7503  df-2nd 7504  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-1o 7907  df-er 8091  df-en 8309  df-dom 8310  df-sdom 8311  df-fin 8312  df-card 9164  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-nn 11442  df-n0 11711  df-z 11797  df-uz 12062  df-fz 12712  df-fzo 12853  df-hash 13509  df-concat 13737  df-reps 13991
This theorem is referenced by:  repswcshw  14039  repsw2  14177  repsw3  14178
  Copyright terms: Public domain W3C validator