MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repswccat Structured version   Visualization version   GIF version

Theorem repswccat 14693
Description: The concatenation of two "repeated symbol words" with the same symbol is again a "repeated symbol word". (Contributed by AV, 4-Nov-2018.)
Assertion
Ref Expression
repswccat ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝑆 repeatS 𝑁) ++ (𝑆 repeatS 𝑀)) = (𝑆 repeatS (𝑁 + 𝑀)))

Proof of Theorem repswccat
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 repswlen 14683 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝑁)) = 𝑁)
213adant3 1132 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝑁)) = 𝑁)
3 repswlen 14683 . . . . . 6 ((𝑆𝑉𝑀 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝑀)) = 𝑀)
433adant2 1131 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝑀)) = 𝑀)
52, 4oveq12d 7364 . . . 4 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))) = (𝑁 + 𝑀))
65oveq2d 7362 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) = (0..^(𝑁 + 𝑀)))
7 simp1 1136 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → 𝑆𝑉)
87adantr 480 . . . . . . 7 (((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → 𝑆𝑉)
9 simpl2 1193 . . . . . . 7 (((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → 𝑁 ∈ ℕ0)
102oveq2d 7362 . . . . . . . . 9 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (0..^(♯‘(𝑆 repeatS 𝑁))) = (0..^𝑁))
1110eleq2d 2817 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) ↔ 𝑥 ∈ (0..^𝑁)))
1211biimpa 476 . . . . . . 7 (((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → 𝑥 ∈ (0..^𝑁))
138, 9, 123jca 1128 . . . . . 6 (((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → (𝑆𝑉𝑁 ∈ ℕ0𝑥 ∈ (0..^𝑁)))
1413adantlr 715 . . . . 5 ((((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))))) ∧ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → (𝑆𝑉𝑁 ∈ ℕ0𝑥 ∈ (0..^𝑁)))
15 repswsymb 14681 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ0𝑥 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘𝑥) = 𝑆)
1614, 15syl 17 . . . 4 ((((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))))) ∧ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → ((𝑆 repeatS 𝑁)‘𝑥) = 𝑆)
177ad2antrr 726 . . . . 5 ((((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))))) ∧ ¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → 𝑆𝑉)
18 simpll3 1215 . . . . 5 ((((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))))) ∧ ¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → 𝑀 ∈ ℕ0)
192, 4jca 511 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀))
20 simpr 484 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^(𝑁 + 𝑀))) → 𝑥 ∈ (0..^(𝑁 + 𝑀)))
2120anim1i 615 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^(𝑁 + 𝑀))) ∧ ¬ 𝑥 ∈ (0..^𝑁)) → (𝑥 ∈ (0..^(𝑁 + 𝑀)) ∧ ¬ 𝑥 ∈ (0..^𝑁)))
22 nn0z 12493 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
23 nn0z 12493 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
2422, 23anim12i 613 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ))
2524ad2antrr 726 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^(𝑁 + 𝑀))) ∧ ¬ 𝑥 ∈ (0..^𝑁)) → (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ))
26 fzocatel 13629 . . . . . . . . . . 11 (((𝑥 ∈ (0..^(𝑁 + 𝑀)) ∧ ¬ 𝑥 ∈ (0..^𝑁)) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑥𝑁) ∈ (0..^𝑀))
2721, 25, 26syl2anc 584 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^(𝑁 + 𝑀))) ∧ ¬ 𝑥 ∈ (0..^𝑁)) → (𝑥𝑁) ∈ (0..^𝑀))
2827exp31 419 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑥 ∈ (0..^(𝑁 + 𝑀)) → (¬ 𝑥 ∈ (0..^𝑁) → (𝑥𝑁) ∈ (0..^𝑀))))
29283adant1 1130 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑥 ∈ (0..^(𝑁 + 𝑀)) → (¬ 𝑥 ∈ (0..^𝑁) → (𝑥𝑁) ∈ (0..^𝑀))))
30 oveq12 7355 . . . . . . . . . . 11 (((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀) → ((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))) = (𝑁 + 𝑀))
3130oveq2d 7362 . . . . . . . . . 10 (((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀) → (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) = (0..^(𝑁 + 𝑀)))
3231eleq2d 2817 . . . . . . . . 9 (((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀) → (𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) ↔ 𝑥 ∈ (0..^(𝑁 + 𝑀))))
33 oveq2 7354 . . . . . . . . . . . . 13 ((♯‘(𝑆 repeatS 𝑁)) = 𝑁 → (0..^(♯‘(𝑆 repeatS 𝑁))) = (0..^𝑁))
3433eleq2d 2817 . . . . . . . . . . . 12 ((♯‘(𝑆 repeatS 𝑁)) = 𝑁 → (𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) ↔ 𝑥 ∈ (0..^𝑁)))
3534notbid 318 . . . . . . . . . . 11 ((♯‘(𝑆 repeatS 𝑁)) = 𝑁 → (¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) ↔ ¬ 𝑥 ∈ (0..^𝑁)))
3635adantr 480 . . . . . . . . . 10 (((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀) → (¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) ↔ ¬ 𝑥 ∈ (0..^𝑁)))
37 oveq2 7354 . . . . . . . . . . . 12 ((♯‘(𝑆 repeatS 𝑁)) = 𝑁 → (𝑥 − (♯‘(𝑆 repeatS 𝑁))) = (𝑥𝑁))
3837eleq1d 2816 . . . . . . . . . . 11 ((♯‘(𝑆 repeatS 𝑁)) = 𝑁 → ((𝑥 − (♯‘(𝑆 repeatS 𝑁))) ∈ (0..^𝑀) ↔ (𝑥𝑁) ∈ (0..^𝑀)))
3938adantr 480 . . . . . . . . . 10 (((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀) → ((𝑥 − (♯‘(𝑆 repeatS 𝑁))) ∈ (0..^𝑀) ↔ (𝑥𝑁) ∈ (0..^𝑀)))
4036, 39imbi12d 344 . . . . . . . . 9 (((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀) → ((¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) → (𝑥 − (♯‘(𝑆 repeatS 𝑁))) ∈ (0..^𝑀)) ↔ (¬ 𝑥 ∈ (0..^𝑁) → (𝑥𝑁) ∈ (0..^𝑀))))
4132, 40imbi12d 344 . . . . . . . 8 (((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀) → ((𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) → (¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) → (𝑥 − (♯‘(𝑆 repeatS 𝑁))) ∈ (0..^𝑀))) ↔ (𝑥 ∈ (0..^(𝑁 + 𝑀)) → (¬ 𝑥 ∈ (0..^𝑁) → (𝑥𝑁) ∈ (0..^𝑀)))))
4229, 41imbitrrid 246 . . . . . . 7 (((♯‘(𝑆 repeatS 𝑁)) = 𝑁 ∧ (♯‘(𝑆 repeatS 𝑀)) = 𝑀) → ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) → (¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) → (𝑥 − (♯‘(𝑆 repeatS 𝑁))) ∈ (0..^𝑀)))))
4319, 42mpcom 38 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) → (¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) → (𝑥 − (♯‘(𝑆 repeatS 𝑁))) ∈ (0..^𝑀))))
4443imp31 417 . . . . 5 ((((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))))) ∧ ¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → (𝑥 − (♯‘(𝑆 repeatS 𝑁))) ∈ (0..^𝑀))
45 repswsymb 14681 . . . . 5 ((𝑆𝑉𝑀 ∈ ℕ0 ∧ (𝑥 − (♯‘(𝑆 repeatS 𝑁))) ∈ (0..^𝑀)) → ((𝑆 repeatS 𝑀)‘(𝑥 − (♯‘(𝑆 repeatS 𝑁)))) = 𝑆)
4617, 18, 44, 45syl3anc 1373 . . . 4 ((((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))))) ∧ ¬ 𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁)))) → ((𝑆 repeatS 𝑀)‘(𝑥 − (♯‘(𝑆 repeatS 𝑁)))) = 𝑆)
4716, 46ifeqda 4509 . . 3 (((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀))))) → if(𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))), ((𝑆 repeatS 𝑁)‘𝑥), ((𝑆 repeatS 𝑀)‘(𝑥 − (♯‘(𝑆 repeatS 𝑁))))) = 𝑆)
486, 47mpteq12dva 5175 . 2 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) ↦ if(𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))), ((𝑆 repeatS 𝑁)‘𝑥), ((𝑆 repeatS 𝑀)‘(𝑥 − (♯‘(𝑆 repeatS 𝑁)))))) = (𝑥 ∈ (0..^(𝑁 + 𝑀)) ↦ 𝑆))
49 ovex 7379 . . . 4 (𝑆 repeatS 𝑁) ∈ V
50 ovex 7379 . . . 4 (𝑆 repeatS 𝑀) ∈ V
5149, 50pm3.2i 470 . . 3 ((𝑆 repeatS 𝑁) ∈ V ∧ (𝑆 repeatS 𝑀) ∈ V)
52 ccatfval 14480 . . 3 (((𝑆 repeatS 𝑁) ∈ V ∧ (𝑆 repeatS 𝑀) ∈ V) → ((𝑆 repeatS 𝑁) ++ (𝑆 repeatS 𝑀)) = (𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) ↦ if(𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))), ((𝑆 repeatS 𝑁)‘𝑥), ((𝑆 repeatS 𝑀)‘(𝑥 − (♯‘(𝑆 repeatS 𝑁)))))))
5351, 52mp1i 13 . 2 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝑆 repeatS 𝑁) ++ (𝑆 repeatS 𝑀)) = (𝑥 ∈ (0..^((♯‘(𝑆 repeatS 𝑁)) + (♯‘(𝑆 repeatS 𝑀)))) ↦ if(𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))), ((𝑆 repeatS 𝑁)‘𝑥), ((𝑆 repeatS 𝑀)‘(𝑥 − (♯‘(𝑆 repeatS 𝑁)))))))
54 nn0addcl 12416 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑁 + 𝑀) ∈ ℕ0)
55543adant1 1130 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑁 + 𝑀) ∈ ℕ0)
56 reps 14677 . . 3 ((𝑆𝑉 ∧ (𝑁 + 𝑀) ∈ ℕ0) → (𝑆 repeatS (𝑁 + 𝑀)) = (𝑥 ∈ (0..^(𝑁 + 𝑀)) ↦ 𝑆))
577, 55, 56syl2anc 584 . 2 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑆 repeatS (𝑁 + 𝑀)) = (𝑥 ∈ (0..^(𝑁 + 𝑀)) ↦ 𝑆))
5848, 53, 573eqtr4d 2776 1 ((𝑆𝑉𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝑆 repeatS 𝑁) ++ (𝑆 repeatS 𝑀)) = (𝑆 repeatS (𝑁 + 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  ifcif 4472  cmpt 5170  cfv 6481  (class class class)co 7346  0cc0 11006   + caddc 11009  cmin 11344  0cn0 12381  cz 12468  ..^cfzo 13554  chash 14237   ++ cconcat 14477   repeatS creps 14675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-hash 14238  df-concat 14478  df-reps 14676
This theorem is referenced by:  repswcshw  14719  repsw2  14857  repsw3  14858
  Copyright terms: Public domain W3C validator