MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmatcollpw3fi1lem1 Structured version   Visualization version   GIF version

Theorem pmatcollpw3fi1lem1 21396
Description: Lemma 1 for pmatcollpw3fi1 21398. (Contributed by AV, 6-Nov-2019.) (Revised by AV, 4-Dec-2019.)
Hypotheses
Ref Expression
pmatcollpw.p 𝑃 = (Poly1𝑅)
pmatcollpw.c 𝐶 = (𝑁 Mat 𝑃)
pmatcollpw.b 𝐵 = (Base‘𝐶)
pmatcollpw.m = ( ·𝑠𝐶)
pmatcollpw.e = (.g‘(mulGrp‘𝑃))
pmatcollpw.x 𝑋 = (var1𝑅)
pmatcollpw.t 𝑇 = (𝑁 matToPolyMat 𝑅)
pmatcollpw3.a 𝐴 = (𝑁 Mat 𝑅)
pmatcollpw3.d 𝐷 = (Base‘𝐴)
pmatcollpw3fi1lem1.0 0 = (0g𝐴)
pmatcollpw3fi1lem1.h 𝐻 = (𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝐺‘0), 0 ))
Assertion
Ref Expression
pmatcollpw3fi1lem1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0}) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))) → 𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))))
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑃,𝑛   𝑅,𝑛   𝑛,𝑋   ,𝑛   𝐶,𝑛   𝐵,𝑙   𝑀,𝑙   𝑁,𝑙   𝑅,𝑙   𝐷,𝑙,𝑛   𝐴,𝑙   𝐺,𝑙,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐶(𝑙)   𝑃(𝑙)   𝑇(𝑛,𝑙)   (𝑙)   𝐻(𝑛,𝑙)   (𝑛,𝑙)   𝑋(𝑙)   0 (𝑛,𝑙)

Proof of Theorem pmatcollpw3fi1lem1
StepHypRef Expression
1 simpr 487 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))) → 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛))))))
2 pmatcollpw.p . . . . . . . . . . 11 𝑃 = (Poly1𝑅)
3 pmatcollpw.c . . . . . . . . . . 11 𝐶 = (𝑁 Mat 𝑃)
42, 3pmatring 21303 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
5 ringmnd 19308 . . . . . . . . . 10 (𝐶 ∈ Ring → 𝐶 ∈ Mnd)
64, 5syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Mnd)
76adantr 483 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → 𝐶 ∈ Mnd)
8 pmatcollpw.b . . . . . . . . 9 𝐵 = (Base‘𝐶)
9 ringcmn 19333 . . . . . . . . . . 11 (𝐶 ∈ Ring → 𝐶 ∈ CMnd)
104, 9syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ CMnd)
1110adantr 483 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → 𝐶 ∈ CMnd)
12 snfi 8596 . . . . . . . . . 10 {0} ∈ Fin
1312a1i 11 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → {0} ∈ Fin)
14 simplll 773 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) → 𝑁 ∈ Fin)
15 simpllr 774 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) → 𝑅 ∈ Ring)
16 elmapi 8430 . . . . . . . . . . . . 13 (𝐺 ∈ (𝐷m {0}) → 𝐺:{0}⟶𝐷)
1716adantl 484 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → 𝐺:{0}⟶𝐷)
1817ffvelrnda 6853 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) → (𝐺𝑛) ∈ 𝐷)
19 elsni 4586 . . . . . . . . . . . . 13 (𝑛 ∈ {0} → 𝑛 = 0)
20 0nn0 11915 . . . . . . . . . . . . 13 0 ∈ ℕ0
2119, 20eqeltrdi 2923 . . . . . . . . . . . 12 (𝑛 ∈ {0} → 𝑛 ∈ ℕ0)
2221adantl 484 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) → 𝑛 ∈ ℕ0)
23 pmatcollpw3.a . . . . . . . . . . . 12 𝐴 = (𝑁 Mat 𝑅)
24 pmatcollpw3.d . . . . . . . . . . . 12 𝐷 = (Base‘𝐴)
25 pmatcollpw.t . . . . . . . . . . . 12 𝑇 = (𝑁 matToPolyMat 𝑅)
26 pmatcollpw.m . . . . . . . . . . . 12 = ( ·𝑠𝐶)
27 pmatcollpw.e . . . . . . . . . . . 12 = (.g‘(mulGrp‘𝑃))
28 pmatcollpw.x . . . . . . . . . . . 12 𝑋 = (var1𝑅)
2923, 24, 25, 2, 3, 8, 26, 27, 28mat2pmatscmxcl 21350 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝐺𝑛) ∈ 𝐷𝑛 ∈ ℕ0)) → ((𝑛 𝑋) (𝑇‘(𝐺𝑛))) ∈ 𝐵)
3014, 15, 18, 22, 29syl22anc 836 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) → ((𝑛 𝑋) (𝑇‘(𝐺𝑛))) ∈ 𝐵)
3130ralrimiva 3184 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → ∀𝑛 ∈ {0} ((𝑛 𝑋) (𝑇‘(𝐺𝑛))) ∈ 𝐵)
328, 11, 13, 31gsummptcl 19089 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛))))) ∈ 𝐵)
33 eqid 2823 . . . . . . . . 9 (+g𝐶) = (+g𝐶)
34 eqid 2823 . . . . . . . . 9 (0g𝐶) = (0g𝐶)
358, 33, 34mndrid 17934 . . . . . . . 8 ((𝐶 ∈ Mnd ∧ (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛))))) ∈ 𝐵) → ((𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))(+g𝐶)(0g𝐶)) = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛))))))
367, 32, 35syl2anc 586 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → ((𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))(+g𝐶)(0g𝐶)) = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛))))))
37 fz0sn 13010 . . . . . . . . . . . 12 (0...0) = {0}
3837eqcomi 2832 . . . . . . . . . . 11 {0} = (0...0)
3938a1i 11 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → {0} = (0...0))
40 pmatcollpw3fi1lem1.h . . . . . . . . . . . . . 14 𝐻 = (𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝐺‘0), 0 ))
41 simpr 487 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) ∧ 𝑙 = 𝑛) → 𝑙 = 𝑛)
4219ad2antlr 725 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) ∧ 𝑙 = 𝑛) → 𝑛 = 0)
4341, 42eqtrd 2858 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) ∧ 𝑙 = 𝑛) → 𝑙 = 0)
4443iftrued 4477 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) ∧ 𝑙 = 𝑛) → if(𝑙 = 0, (𝐺‘0), 0 ) = (𝐺‘0))
45 fveq2 6672 . . . . . . . . . . . . . . . . . 18 (𝑛 = 0 → (𝐺𝑛) = (𝐺‘0))
4645eqcomd 2829 . . . . . . . . . . . . . . . . 17 (𝑛 = 0 → (𝐺‘0) = (𝐺𝑛))
4719, 46syl 17 . . . . . . . . . . . . . . . 16 (𝑛 ∈ {0} → (𝐺‘0) = (𝐺𝑛))
4847ad2antlr 725 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) ∧ 𝑙 = 𝑛) → (𝐺‘0) = (𝐺𝑛))
4944, 48eqtrd 2858 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) ∧ 𝑙 = 𝑛) → if(𝑙 = 0, (𝐺‘0), 0 ) = (𝐺𝑛))
50 1nn0 11916 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℕ0
5150a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 0 → 1 ∈ ℕ0)
52 nn0uz 12283 . . . . . . . . . . . . . . . . . . 19 0 = (ℤ‘0)
5351, 52eleqtrdi 2925 . . . . . . . . . . . . . . . . . 18 (𝑛 = 0 → 1 ∈ (ℤ‘0))
54 eluzfz1 12917 . . . . . . . . . . . . . . . . . 18 (1 ∈ (ℤ‘0) → 0 ∈ (0...1))
5553, 54syl 17 . . . . . . . . . . . . . . . . 17 (𝑛 = 0 → 0 ∈ (0...1))
56 eleq1 2902 . . . . . . . . . . . . . . . . 17 (𝑛 = 0 → (𝑛 ∈ (0...1) ↔ 0 ∈ (0...1)))
5755, 56mpbird 259 . . . . . . . . . . . . . . . 16 (𝑛 = 0 → 𝑛 ∈ (0...1))
5819, 57syl 17 . . . . . . . . . . . . . . 15 (𝑛 ∈ {0} → 𝑛 ∈ (0...1))
5958adantl 484 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) → 𝑛 ∈ (0...1))
60 ffvelrn 6851 . . . . . . . . . . . . . . . . . 18 ((𝐺:{0}⟶𝐷𝑛 ∈ {0}) → (𝐺𝑛) ∈ 𝐷)
6160ex 415 . . . . . . . . . . . . . . . . 17 (𝐺:{0}⟶𝐷 → (𝑛 ∈ {0} → (𝐺𝑛) ∈ 𝐷))
6216, 61syl 17 . . . . . . . . . . . . . . . 16 (𝐺 ∈ (𝐷m {0}) → (𝑛 ∈ {0} → (𝐺𝑛) ∈ 𝐷))
6362adantl 484 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → (𝑛 ∈ {0} → (𝐺𝑛) ∈ 𝐷))
6463imp 409 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) → (𝐺𝑛) ∈ 𝐷)
6540, 49, 59, 64fvmptd2 6778 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) → (𝐻𝑛) = (𝐺𝑛))
6665eqcomd 2829 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) → (𝐺𝑛) = (𝐻𝑛))
6766fveq2d 6676 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) → (𝑇‘(𝐺𝑛)) = (𝑇‘(𝐻𝑛)))
6867oveq2d 7174 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) → ((𝑛 𝑋) (𝑇‘(𝐺𝑛))) = ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))
6939, 68mpteq12dva 5152 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))) = (𝑛 ∈ (0...0) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))
7069oveq2d 7174 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛))))) = (𝐶 Σg (𝑛 ∈ (0...0) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))))
71 ovexd 7193 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → (0 + 1) ∈ V)
728, 34mndidcl 17928 . . . . . . . . . . . 12 (𝐶 ∈ Mnd → (0g𝐶) ∈ 𝐵)
736, 72syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐶) ∈ 𝐵)
7473adantr 483 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → (0g𝐶) ∈ 𝐵)
75 0p1e1 11762 . . . . . . . . . . . . . . . . . . . . 21 (0 + 1) = 1
7675eqeq2i 2836 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = (0 + 1) ↔ 𝑛 = 1)
77 ax-1ne0 10608 . . . . . . . . . . . . . . . . . . . . . 22 1 ≠ 0
7877neii 3020 . . . . . . . . . . . . . . . . . . . . 21 ¬ 1 = 0
79 eqeq1 2827 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 1 → (𝑛 = 0 ↔ 1 = 0))
8078, 79mtbiri 329 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 1 → ¬ 𝑛 = 0)
8176, 80sylbi 219 . . . . . . . . . . . . . . . . . . 19 (𝑛 = (0 + 1) → ¬ 𝑛 = 0)
8281ad2antlr 725 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) ∧ 𝑙 = 𝑛) → ¬ 𝑛 = 0)
83 eqeq1 2827 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = 𝑛 → (𝑙 = 0 ↔ 𝑛 = 0))
8483notbid 320 . . . . . . . . . . . . . . . . . . 19 (𝑙 = 𝑛 → (¬ 𝑙 = 0 ↔ ¬ 𝑛 = 0))
8584adantl 484 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) ∧ 𝑙 = 𝑛) → (¬ 𝑙 = 0 ↔ ¬ 𝑛 = 0))
8682, 85mpbird 259 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) ∧ 𝑙 = 𝑛) → ¬ 𝑙 = 0)
8786iffalsed 4480 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) ∧ 𝑙 = 𝑛) → if(𝑙 = 0, (𝐺‘0), 0 ) = 0 )
88 pmatcollpw3fi1lem1.0 . . . . . . . . . . . . . . . 16 0 = (0g𝐴)
8987, 88syl6eq 2874 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) ∧ 𝑙 = 𝑛) → if(𝑙 = 0, (𝐺‘0), 0 ) = (0g𝐴))
9050a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 1 → 1 ∈ ℕ0)
9190, 52eleqtrdi 2925 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 1 → 1 ∈ (ℤ‘0))
92 eluzfz2 12918 . . . . . . . . . . . . . . . . . . 19 (1 ∈ (ℤ‘0) → 1 ∈ (0...1))
9391, 92syl 17 . . . . . . . . . . . . . . . . . 18 (𝑛 = 1 → 1 ∈ (0...1))
94 eleq1 2902 . . . . . . . . . . . . . . . . . 18 (𝑛 = 1 → (𝑛 ∈ (0...1) ↔ 1 ∈ (0...1)))
9593, 94mpbird 259 . . . . . . . . . . . . . . . . 17 (𝑛 = 1 → 𝑛 ∈ (0...1))
9676, 95sylbi 219 . . . . . . . . . . . . . . . 16 (𝑛 = (0 + 1) → 𝑛 ∈ (0...1))
9796adantl 484 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → 𝑛 ∈ (0...1))
98 fvexd 6687 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → (0g𝐴) ∈ V)
9940, 89, 97, 98fvmptd2 6778 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → (𝐻𝑛) = (0g𝐴))
10099fveq2d 6676 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → (𝑇‘(𝐻𝑛)) = (𝑇‘(0g𝐴)))
10123fveq2i 6675 . . . . . . . . . . . . . . . 16 (0g𝐴) = (0g‘(𝑁 Mat 𝑅))
1023fveq2i 6675 . . . . . . . . . . . . . . . 16 (0g𝐶) = (0g‘(𝑁 Mat 𝑃))
10325, 2, 101, 1020mat2pmat 21346 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → (𝑇‘(0g𝐴)) = (0g𝐶))
104103ancoms 461 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑇‘(0g𝐴)) = (0g𝐶))
105104ad2antrr 724 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → (𝑇‘(0g𝐴)) = (0g𝐶))
106100, 105eqtrd 2858 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → (𝑇‘(𝐻𝑛)) = (0g𝐶))
107106oveq2d 7174 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → ((𝑛 𝑋) (𝑇‘(𝐻𝑛))) = ((𝑛 𝑋) (0g𝐶)))
1082, 3pmatlmod 21304 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ LMod)
109108ad2antrr 724 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → 𝐶 ∈ LMod)
110 simpllr 774 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → 𝑅 ∈ Ring)
111 eleq1 2902 . . . . . . . . . . . . . . . . 17 (𝑛 = 1 → (𝑛 ∈ ℕ0 ↔ 1 ∈ ℕ0))
11290, 111mpbird 259 . . . . . . . . . . . . . . . 16 (𝑛 = 1 → 𝑛 ∈ ℕ0)
11376, 112sylbi 219 . . . . . . . . . . . . . . 15 (𝑛 = (0 + 1) → 𝑛 ∈ ℕ0)
114113adantl 484 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → 𝑛 ∈ ℕ0)
115 eqid 2823 . . . . . . . . . . . . . . 15 (mulGrp‘𝑃) = (mulGrp‘𝑃)
116 eqid 2823 . . . . . . . . . . . . . . 15 (Base‘𝑃) = (Base‘𝑃)
1172, 28, 115, 27, 116ply1moncl 20441 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑛 ∈ ℕ0) → (𝑛 𝑋) ∈ (Base‘𝑃))
118110, 114, 117syl2anc 586 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → (𝑛 𝑋) ∈ (Base‘𝑃))
1192ply1ring 20418 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
1203matsca2 21031 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝑃 = (Scalar‘𝐶))
121119, 120sylan2 594 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑃 = (Scalar‘𝐶))
122121eqcomd 2829 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Scalar‘𝐶) = 𝑃)
123122fveq2d 6676 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘(Scalar‘𝐶)) = (Base‘𝑃))
124123eleq2d 2900 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑛 𝑋) ∈ (Base‘(Scalar‘𝐶)) ↔ (𝑛 𝑋) ∈ (Base‘𝑃)))
125124ad2antrr 724 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → ((𝑛 𝑋) ∈ (Base‘(Scalar‘𝐶)) ↔ (𝑛 𝑋) ∈ (Base‘𝑃)))
126118, 125mpbird 259 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → (𝑛 𝑋) ∈ (Base‘(Scalar‘𝐶)))
127 eqid 2823 . . . . . . . . . . . . 13 (Scalar‘𝐶) = (Scalar‘𝐶)
128 eqid 2823 . . . . . . . . . . . . 13 (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶))
129127, 26, 128, 34lmodvs0 19670 . . . . . . . . . . . 12 ((𝐶 ∈ LMod ∧ (𝑛 𝑋) ∈ (Base‘(Scalar‘𝐶))) → ((𝑛 𝑋) (0g𝐶)) = (0g𝐶))
130109, 126, 129syl2anc 586 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → ((𝑛 𝑋) (0g𝐶)) = (0g𝐶))
131107, 130eqtrd 2858 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → ((𝑛 𝑋) (𝑇‘(𝐻𝑛))) = (0g𝐶))
1328, 7, 71, 74, 131gsumsnd 19074 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → (𝐶 Σg (𝑛 ∈ {(0 + 1)} ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))) = (0g𝐶))
133132eqcomd 2829 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → (0g𝐶) = (𝐶 Σg (𝑛 ∈ {(0 + 1)} ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))))
13470, 133oveq12d 7176 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → ((𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))(+g𝐶)(0g𝐶)) = ((𝐶 Σg (𝑛 ∈ (0...0) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))(+g𝐶)(𝐶 Σg (𝑛 ∈ {(0 + 1)} ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))))
13536, 134eqtr3d 2860 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛))))) = ((𝐶 Σg (𝑛 ∈ (0...0) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))(+g𝐶)(𝐶 Σg (𝑛 ∈ {(0 + 1)} ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))))
136135adantr 483 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))) → (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛))))) = ((𝐶 Σg (𝑛 ∈ (0...0) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))(+g𝐶)(𝐶 Σg (𝑛 ∈ {(0 + 1)} ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))))
1371, 136eqtrd 2858 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))) → 𝑀 = ((𝐶 Σg (𝑛 ∈ (0...0) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))(+g𝐶)(𝐶 Σg (𝑛 ∈ {(0 + 1)} ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))))
1381373impa 1106 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0}) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))) → 𝑀 = ((𝐶 Σg (𝑛 ∈ (0...0) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))(+g𝐶)(𝐶 Σg (𝑛 ∈ {(0 + 1)} ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))))
13920a1i 11 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → 0 ∈ ℕ0)
140 simplll 773 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ (0...(0 + 1))) → 𝑁 ∈ Fin)
141 simpllr 774 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ (0...(0 + 1))) → 𝑅 ∈ Ring)
142 id 22 . . . . . . . . . . . . 13 (𝐺:{0}⟶𝐷𝐺:{0}⟶𝐷)
143 c0ex 10637 . . . . . . . . . . . . . . 15 0 ∈ V
144143snid 4603 . . . . . . . . . . . . . 14 0 ∈ {0}
145144a1i 11 . . . . . . . . . . . . 13 (𝐺:{0}⟶𝐷 → 0 ∈ {0})
146142, 145ffvelrnd 6854 . . . . . . . . . . . 12 (𝐺:{0}⟶𝐷 → (𝐺‘0) ∈ 𝐷)
14716, 146syl 17 . . . . . . . . . . 11 (𝐺 ∈ (𝐷m {0}) → (𝐺‘0) ∈ 𝐷)
148147ad2antlr 725 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑙 ∈ (0...1)) → (𝐺‘0) ∈ 𝐷)
14923matring 21054 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
15024, 88ring0cl 19321 . . . . . . . . . . . 12 (𝐴 ∈ Ring → 0𝐷)
151149, 150syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 0𝐷)
152151ad2antrr 724 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑙 ∈ (0...1)) → 0𝐷)
153148, 152ifcld 4514 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑙 ∈ (0...1)) → if(𝑙 = 0, (𝐺‘0), 0 ) ∈ 𝐷)
154153, 40fmptd 6880 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → 𝐻:(0...1)⟶𝐷)
15575oveq2i 7169 . . . . . . . . 9 (0...(0 + 1)) = (0...1)
156155feq2i 6508 . . . . . . . 8 (𝐻:(0...(0 + 1))⟶𝐷𝐻:(0...1)⟶𝐷)
157154, 156sylibr 236 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → 𝐻:(0...(0 + 1))⟶𝐷)
158157ffvelrnda 6853 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ (0...(0 + 1))) → (𝐻𝑛) ∈ 𝐷)
159 elfznn0 13003 . . . . . . 7 (𝑛 ∈ (0...(0 + 1)) → 𝑛 ∈ ℕ0)
160159adantl 484 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ (0...(0 + 1))) → 𝑛 ∈ ℕ0)
16123, 24, 25, 2, 3, 8, 26, 27, 28mat2pmatscmxcl 21350 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝐻𝑛) ∈ 𝐷𝑛 ∈ ℕ0)) → ((𝑛 𝑋) (𝑇‘(𝐻𝑛))) ∈ 𝐵)
162140, 141, 158, 160, 161syl22anc 836 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ (0...(0 + 1))) → ((𝑛 𝑋) (𝑇‘(𝐻𝑛))) ∈ 𝐵)
1638, 33, 11, 139, 162gsummptfzsplit 19054 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → (𝐶 Σg (𝑛 ∈ (0...(0 + 1)) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))) = ((𝐶 Σg (𝑛 ∈ (0...0) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))(+g𝐶)(𝐶 Σg (𝑛 ∈ {(0 + 1)} ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))))
1641633adant3 1128 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0}) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))) → (𝐶 Σg (𝑛 ∈ (0...(0 + 1)) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))) = ((𝐶 Σg (𝑛 ∈ (0...0) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))(+g𝐶)(𝐶 Σg (𝑛 ∈ {(0 + 1)} ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))))
165138, 164eqtr4d 2861 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0}) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))) → 𝑀 = (𝐶 Σg (𝑛 ∈ (0...(0 + 1)) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))))
166155mpteq1i 5158 . . 3 (𝑛 ∈ (0...(0 + 1)) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))) = (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))
167166oveq2i 7169 . 2 (𝐶 Σg (𝑛 ∈ (0...(0 + 1)) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))) = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))
168165, 167syl6eq 2874 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0}) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))) → 𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  Vcvv 3496  ifcif 4469  {csn 4569  cmpt 5148  wf 6353  cfv 6357  (class class class)co 7158  m cmap 8408  Fincfn 8511  0cc0 10539  1c1 10540   + caddc 10542  0cn0 11900  cuz 12246  ...cfz 12895  Basecbs 16485  +gcplusg 16567  Scalarcsca 16570   ·𝑠 cvsca 16571  0gc0g 16715   Σg cgsu 16716  Mndcmnd 17913  .gcmg 18226  CMndccmn 18908  mulGrpcmgp 19241  Ringcrg 19299  LModclmod 19636  var1cv1 20346  Poly1cpl1 20347   Mat cmat 21018   matToPolyMat cmat2pmat 21314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-ot 4578  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-ofr 7412  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-hom 16591  df-cco 16592  df-0g 16717  df-gsum 16718  df-prds 16723  df-pws 16725  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-mulg 18227  df-subg 18278  df-ghm 18358  df-cntz 18449  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-subrg 19535  df-lmod 19638  df-lss 19706  df-sra 19946  df-rgmod 19947  df-ascl 20089  df-psr 20138  df-mvr 20139  df-mpl 20140  df-opsr 20142  df-psr1 20350  df-vr1 20351  df-ply1 20352  df-dsmm 20878  df-frlm 20893  df-mamu 20997  df-mat 21019  df-mat2pmat 21317
This theorem is referenced by:  pmatcollpw3fi1lem2  21397
  Copyright terms: Public domain W3C validator