MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmatcollpw3fi1lem1 Structured version   Visualization version   GIF version

Theorem pmatcollpw3fi1lem1 22776
Description: Lemma 1 for pmatcollpw3fi1 22778. (Contributed by AV, 6-Nov-2019.) (Revised by AV, 4-Dec-2019.)
Hypotheses
Ref Expression
pmatcollpw.p 𝑃 = (Poly1𝑅)
pmatcollpw.c 𝐶 = (𝑁 Mat 𝑃)
pmatcollpw.b 𝐵 = (Base‘𝐶)
pmatcollpw.m = ( ·𝑠𝐶)
pmatcollpw.e = (.g‘(mulGrp‘𝑃))
pmatcollpw.x 𝑋 = (var1𝑅)
pmatcollpw.t 𝑇 = (𝑁 matToPolyMat 𝑅)
pmatcollpw3.a 𝐴 = (𝑁 Mat 𝑅)
pmatcollpw3.d 𝐷 = (Base‘𝐴)
pmatcollpw3fi1lem1.0 0 = (0g𝐴)
pmatcollpw3fi1lem1.h 𝐻 = (𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝐺‘0), 0 ))
Assertion
Ref Expression
pmatcollpw3fi1lem1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0}) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))) → 𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))))
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑃,𝑛   𝑅,𝑛   𝑛,𝑋   ,𝑛   𝐶,𝑛   𝐵,𝑙   𝑀,𝑙   𝑁,𝑙   𝑅,𝑙   𝐷,𝑙,𝑛   𝐴,𝑙   𝐺,𝑙,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐶(𝑙)   𝑃(𝑙)   𝑇(𝑛,𝑙)   (𝑙)   𝐻(𝑛,𝑙)   (𝑛,𝑙)   𝑋(𝑙)   0 (𝑛,𝑙)

Proof of Theorem pmatcollpw3fi1lem1
StepHypRef Expression
1 simpr 483 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))) → 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛))))))
2 pmatcollpw.p . . . . . . . . . . 11 𝑃 = (Poly1𝑅)
3 pmatcollpw.c . . . . . . . . . . 11 𝐶 = (𝑁 Mat 𝑃)
42, 3pmatring 22682 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
5 ringmnd 20222 . . . . . . . . . 10 (𝐶 ∈ Ring → 𝐶 ∈ Mnd)
64, 5syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Mnd)
76adantr 479 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → 𝐶 ∈ Mnd)
8 pmatcollpw.b . . . . . . . . 9 𝐵 = (Base‘𝐶)
9 ringcmn 20257 . . . . . . . . . . 11 (𝐶 ∈ Ring → 𝐶 ∈ CMnd)
104, 9syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ CMnd)
1110adantr 479 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → 𝐶 ∈ CMnd)
12 snfi 9073 . . . . . . . . . 10 {0} ∈ Fin
1312a1i 11 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → {0} ∈ Fin)
14 simplll 773 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) → 𝑁 ∈ Fin)
15 simpllr 774 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) → 𝑅 ∈ Ring)
16 elmapi 8870 . . . . . . . . . . . . 13 (𝐺 ∈ (𝐷m {0}) → 𝐺:{0}⟶𝐷)
1716adantl 480 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → 𝐺:{0}⟶𝐷)
1817ffvelcdmda 7090 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) → (𝐺𝑛) ∈ 𝐷)
19 elsni 4640 . . . . . . . . . . . . 13 (𝑛 ∈ {0} → 𝑛 = 0)
20 0nn0 12533 . . . . . . . . . . . . 13 0 ∈ ℕ0
2119, 20eqeltrdi 2834 . . . . . . . . . . . 12 (𝑛 ∈ {0} → 𝑛 ∈ ℕ0)
2221adantl 480 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) → 𝑛 ∈ ℕ0)
23 pmatcollpw3.a . . . . . . . . . . . 12 𝐴 = (𝑁 Mat 𝑅)
24 pmatcollpw3.d . . . . . . . . . . . 12 𝐷 = (Base‘𝐴)
25 pmatcollpw.t . . . . . . . . . . . 12 𝑇 = (𝑁 matToPolyMat 𝑅)
26 pmatcollpw.m . . . . . . . . . . . 12 = ( ·𝑠𝐶)
27 pmatcollpw.e . . . . . . . . . . . 12 = (.g‘(mulGrp‘𝑃))
28 pmatcollpw.x . . . . . . . . . . . 12 𝑋 = (var1𝑅)
2923, 24, 25, 2, 3, 8, 26, 27, 28mat2pmatscmxcl 22730 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝐺𝑛) ∈ 𝐷𝑛 ∈ ℕ0)) → ((𝑛 𝑋) (𝑇‘(𝐺𝑛))) ∈ 𝐵)
3014, 15, 18, 22, 29syl22anc 837 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) → ((𝑛 𝑋) (𝑇‘(𝐺𝑛))) ∈ 𝐵)
3130ralrimiva 3136 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → ∀𝑛 ∈ {0} ((𝑛 𝑋) (𝑇‘(𝐺𝑛))) ∈ 𝐵)
328, 11, 13, 31gsummptcl 19961 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛))))) ∈ 𝐵)
33 eqid 2726 . . . . . . . . 9 (+g𝐶) = (+g𝐶)
34 eqid 2726 . . . . . . . . 9 (0g𝐶) = (0g𝐶)
358, 33, 34mndrid 18743 . . . . . . . 8 ((𝐶 ∈ Mnd ∧ (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛))))) ∈ 𝐵) → ((𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))(+g𝐶)(0g𝐶)) = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛))))))
367, 32, 35syl2anc 582 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → ((𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))(+g𝐶)(0g𝐶)) = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛))))))
37 fz0sn 13649 . . . . . . . . . . . 12 (0...0) = {0}
3837eqcomi 2735 . . . . . . . . . . 11 {0} = (0...0)
3938a1i 11 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → {0} = (0...0))
40 pmatcollpw3fi1lem1.h . . . . . . . . . . . . . 14 𝐻 = (𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝐺‘0), 0 ))
41 simpr 483 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) ∧ 𝑙 = 𝑛) → 𝑙 = 𝑛)
4219ad2antlr 725 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) ∧ 𝑙 = 𝑛) → 𝑛 = 0)
4341, 42eqtrd 2766 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) ∧ 𝑙 = 𝑛) → 𝑙 = 0)
4443iftrued 4531 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) ∧ 𝑙 = 𝑛) → if(𝑙 = 0, (𝐺‘0), 0 ) = (𝐺‘0))
45 fveq2 6893 . . . . . . . . . . . . . . . . . 18 (𝑛 = 0 → (𝐺𝑛) = (𝐺‘0))
4645eqcomd 2732 . . . . . . . . . . . . . . . . 17 (𝑛 = 0 → (𝐺‘0) = (𝐺𝑛))
4719, 46syl 17 . . . . . . . . . . . . . . . 16 (𝑛 ∈ {0} → (𝐺‘0) = (𝐺𝑛))
4847ad2antlr 725 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) ∧ 𝑙 = 𝑛) → (𝐺‘0) = (𝐺𝑛))
4944, 48eqtrd 2766 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) ∧ 𝑙 = 𝑛) → if(𝑙 = 0, (𝐺‘0), 0 ) = (𝐺𝑛))
50 1nn0 12534 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℕ0
5150a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 0 → 1 ∈ ℕ0)
52 nn0uz 12910 . . . . . . . . . . . . . . . . . . 19 0 = (ℤ‘0)
5351, 52eleqtrdi 2836 . . . . . . . . . . . . . . . . . 18 (𝑛 = 0 → 1 ∈ (ℤ‘0))
54 eluzfz1 13556 . . . . . . . . . . . . . . . . . 18 (1 ∈ (ℤ‘0) → 0 ∈ (0...1))
5553, 54syl 17 . . . . . . . . . . . . . . . . 17 (𝑛 = 0 → 0 ∈ (0...1))
56 eleq1 2814 . . . . . . . . . . . . . . . . 17 (𝑛 = 0 → (𝑛 ∈ (0...1) ↔ 0 ∈ (0...1)))
5755, 56mpbird 256 . . . . . . . . . . . . . . . 16 (𝑛 = 0 → 𝑛 ∈ (0...1))
5819, 57syl 17 . . . . . . . . . . . . . . 15 (𝑛 ∈ {0} → 𝑛 ∈ (0...1))
5958adantl 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) → 𝑛 ∈ (0...1))
60 ffvelcdm 7087 . . . . . . . . . . . . . . . . . 18 ((𝐺:{0}⟶𝐷𝑛 ∈ {0}) → (𝐺𝑛) ∈ 𝐷)
6160ex 411 . . . . . . . . . . . . . . . . 17 (𝐺:{0}⟶𝐷 → (𝑛 ∈ {0} → (𝐺𝑛) ∈ 𝐷))
6216, 61syl 17 . . . . . . . . . . . . . . . 16 (𝐺 ∈ (𝐷m {0}) → (𝑛 ∈ {0} → (𝐺𝑛) ∈ 𝐷))
6362adantl 480 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → (𝑛 ∈ {0} → (𝐺𝑛) ∈ 𝐷))
6463imp 405 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) → (𝐺𝑛) ∈ 𝐷)
6540, 49, 59, 64fvmptd2 7009 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) → (𝐻𝑛) = (𝐺𝑛))
6665eqcomd 2732 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) → (𝐺𝑛) = (𝐻𝑛))
6766fveq2d 6897 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) → (𝑇‘(𝐺𝑛)) = (𝑇‘(𝐻𝑛)))
6867oveq2d 7432 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) → ((𝑛 𝑋) (𝑇‘(𝐺𝑛))) = ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))
6939, 68mpteq12dva 5234 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))) = (𝑛 ∈ (0...0) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))
7069oveq2d 7432 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛))))) = (𝐶 Σg (𝑛 ∈ (0...0) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))))
71 ovexd 7451 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → (0 + 1) ∈ V)
728, 34mndidcl 18737 . . . . . . . . . . . 12 (𝐶 ∈ Mnd → (0g𝐶) ∈ 𝐵)
736, 72syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐶) ∈ 𝐵)
7473adantr 479 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → (0g𝐶) ∈ 𝐵)
75 0p1e1 12380 . . . . . . . . . . . . . . . . . . . . 21 (0 + 1) = 1
7675eqeq2i 2739 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = (0 + 1) ↔ 𝑛 = 1)
77 ax-1ne0 11218 . . . . . . . . . . . . . . . . . . . . . 22 1 ≠ 0
7877neii 2932 . . . . . . . . . . . . . . . . . . . . 21 ¬ 1 = 0
79 eqeq1 2730 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 1 → (𝑛 = 0 ↔ 1 = 0))
8078, 79mtbiri 326 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 1 → ¬ 𝑛 = 0)
8176, 80sylbi 216 . . . . . . . . . . . . . . . . . . 19 (𝑛 = (0 + 1) → ¬ 𝑛 = 0)
8281ad2antlr 725 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) ∧ 𝑙 = 𝑛) → ¬ 𝑛 = 0)
83 eqeq1 2730 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = 𝑛 → (𝑙 = 0 ↔ 𝑛 = 0))
8483notbid 317 . . . . . . . . . . . . . . . . . . 19 (𝑙 = 𝑛 → (¬ 𝑙 = 0 ↔ ¬ 𝑛 = 0))
8584adantl 480 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) ∧ 𝑙 = 𝑛) → (¬ 𝑙 = 0 ↔ ¬ 𝑛 = 0))
8682, 85mpbird 256 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) ∧ 𝑙 = 𝑛) → ¬ 𝑙 = 0)
8786iffalsed 4534 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) ∧ 𝑙 = 𝑛) → if(𝑙 = 0, (𝐺‘0), 0 ) = 0 )
88 pmatcollpw3fi1lem1.0 . . . . . . . . . . . . . . . 16 0 = (0g𝐴)
8987, 88eqtrdi 2782 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) ∧ 𝑙 = 𝑛) → if(𝑙 = 0, (𝐺‘0), 0 ) = (0g𝐴))
9050a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 1 → 1 ∈ ℕ0)
9190, 52eleqtrdi 2836 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 1 → 1 ∈ (ℤ‘0))
92 eluzfz2 13557 . . . . . . . . . . . . . . . . . . 19 (1 ∈ (ℤ‘0) → 1 ∈ (0...1))
9391, 92syl 17 . . . . . . . . . . . . . . . . . 18 (𝑛 = 1 → 1 ∈ (0...1))
94 eleq1 2814 . . . . . . . . . . . . . . . . . 18 (𝑛 = 1 → (𝑛 ∈ (0...1) ↔ 1 ∈ (0...1)))
9593, 94mpbird 256 . . . . . . . . . . . . . . . . 17 (𝑛 = 1 → 𝑛 ∈ (0...1))
9676, 95sylbi 216 . . . . . . . . . . . . . . . 16 (𝑛 = (0 + 1) → 𝑛 ∈ (0...1))
9796adantl 480 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → 𝑛 ∈ (0...1))
98 fvexd 6908 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → (0g𝐴) ∈ V)
9940, 89, 97, 98fvmptd2 7009 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → (𝐻𝑛) = (0g𝐴))
10099fveq2d 6897 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → (𝑇‘(𝐻𝑛)) = (𝑇‘(0g𝐴)))
10123fveq2i 6896 . . . . . . . . . . . . . . . 16 (0g𝐴) = (0g‘(𝑁 Mat 𝑅))
1023fveq2i 6896 . . . . . . . . . . . . . . . 16 (0g𝐶) = (0g‘(𝑁 Mat 𝑃))
10325, 2, 101, 1020mat2pmat 22726 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → (𝑇‘(0g𝐴)) = (0g𝐶))
104103ancoms 457 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑇‘(0g𝐴)) = (0g𝐶))
105104ad2antrr 724 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → (𝑇‘(0g𝐴)) = (0g𝐶))
106100, 105eqtrd 2766 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → (𝑇‘(𝐻𝑛)) = (0g𝐶))
107106oveq2d 7432 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → ((𝑛 𝑋) (𝑇‘(𝐻𝑛))) = ((𝑛 𝑋) (0g𝐶)))
1082, 3pmatlmod 22683 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ LMod)
109108ad2antrr 724 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → 𝐶 ∈ LMod)
110 simpllr 774 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → 𝑅 ∈ Ring)
111 eleq1 2814 . . . . . . . . . . . . . . . . 17 (𝑛 = 1 → (𝑛 ∈ ℕ0 ↔ 1 ∈ ℕ0))
11290, 111mpbird 256 . . . . . . . . . . . . . . . 16 (𝑛 = 1 → 𝑛 ∈ ℕ0)
11376, 112sylbi 216 . . . . . . . . . . . . . . 15 (𝑛 = (0 + 1) → 𝑛 ∈ ℕ0)
114113adantl 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → 𝑛 ∈ ℕ0)
115 eqid 2726 . . . . . . . . . . . . . . 15 (mulGrp‘𝑃) = (mulGrp‘𝑃)
116 eqid 2726 . . . . . . . . . . . . . . 15 (Base‘𝑃) = (Base‘𝑃)
1172, 28, 115, 27, 116ply1moncl 22258 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑛 ∈ ℕ0) → (𝑛 𝑋) ∈ (Base‘𝑃))
118110, 114, 117syl2anc 582 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → (𝑛 𝑋) ∈ (Base‘𝑃))
1192ply1ring 22233 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
1203matsca2 22410 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝑃 = (Scalar‘𝐶))
121119, 120sylan2 591 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑃 = (Scalar‘𝐶))
122121eqcomd 2732 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Scalar‘𝐶) = 𝑃)
123122fveq2d 6897 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘(Scalar‘𝐶)) = (Base‘𝑃))
124123eleq2d 2812 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑛 𝑋) ∈ (Base‘(Scalar‘𝐶)) ↔ (𝑛 𝑋) ∈ (Base‘𝑃)))
125124ad2antrr 724 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → ((𝑛 𝑋) ∈ (Base‘(Scalar‘𝐶)) ↔ (𝑛 𝑋) ∈ (Base‘𝑃)))
126118, 125mpbird 256 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → (𝑛 𝑋) ∈ (Base‘(Scalar‘𝐶)))
127 eqid 2726 . . . . . . . . . . . . 13 (Scalar‘𝐶) = (Scalar‘𝐶)
128 eqid 2726 . . . . . . . . . . . . 13 (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶))
129127, 26, 128, 34lmodvs0 20868 . . . . . . . . . . . 12 ((𝐶 ∈ LMod ∧ (𝑛 𝑋) ∈ (Base‘(Scalar‘𝐶))) → ((𝑛 𝑋) (0g𝐶)) = (0g𝐶))
130109, 126, 129syl2anc 582 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → ((𝑛 𝑋) (0g𝐶)) = (0g𝐶))
131107, 130eqtrd 2766 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → ((𝑛 𝑋) (𝑇‘(𝐻𝑛))) = (0g𝐶))
1328, 7, 71, 74, 131gsumsnd 19946 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → (𝐶 Σg (𝑛 ∈ {(0 + 1)} ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))) = (0g𝐶))
133132eqcomd 2732 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → (0g𝐶) = (𝐶 Σg (𝑛 ∈ {(0 + 1)} ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))))
13470, 133oveq12d 7434 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → ((𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))(+g𝐶)(0g𝐶)) = ((𝐶 Σg (𝑛 ∈ (0...0) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))(+g𝐶)(𝐶 Σg (𝑛 ∈ {(0 + 1)} ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))))
13536, 134eqtr3d 2768 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛))))) = ((𝐶 Σg (𝑛 ∈ (0...0) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))(+g𝐶)(𝐶 Σg (𝑛 ∈ {(0 + 1)} ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))))
136135adantr 479 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))) → (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛))))) = ((𝐶 Σg (𝑛 ∈ (0...0) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))(+g𝐶)(𝐶 Σg (𝑛 ∈ {(0 + 1)} ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))))
1371, 136eqtrd 2766 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))) → 𝑀 = ((𝐶 Σg (𝑛 ∈ (0...0) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))(+g𝐶)(𝐶 Σg (𝑛 ∈ {(0 + 1)} ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))))
1381373impa 1107 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0}) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))) → 𝑀 = ((𝐶 Σg (𝑛 ∈ (0...0) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))(+g𝐶)(𝐶 Σg (𝑛 ∈ {(0 + 1)} ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))))
13920a1i 11 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → 0 ∈ ℕ0)
140 simplll 773 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ (0...(0 + 1))) → 𝑁 ∈ Fin)
141 simpllr 774 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ (0...(0 + 1))) → 𝑅 ∈ Ring)
142 id 22 . . . . . . . . . . . . 13 (𝐺:{0}⟶𝐷𝐺:{0}⟶𝐷)
143 c0ex 11249 . . . . . . . . . . . . . . 15 0 ∈ V
144143snid 4659 . . . . . . . . . . . . . 14 0 ∈ {0}
145144a1i 11 . . . . . . . . . . . . 13 (𝐺:{0}⟶𝐷 → 0 ∈ {0})
146142, 145ffvelcdmd 7091 . . . . . . . . . . . 12 (𝐺:{0}⟶𝐷 → (𝐺‘0) ∈ 𝐷)
14716, 146syl 17 . . . . . . . . . . 11 (𝐺 ∈ (𝐷m {0}) → (𝐺‘0) ∈ 𝐷)
148147ad2antlr 725 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑙 ∈ (0...1)) → (𝐺‘0) ∈ 𝐷)
14923matring 22433 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
15024, 88ring0cl 20242 . . . . . . . . . . . 12 (𝐴 ∈ Ring → 0𝐷)
151149, 150syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 0𝐷)
152151ad2antrr 724 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑙 ∈ (0...1)) → 0𝐷)
153148, 152ifcld 4569 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑙 ∈ (0...1)) → if(𝑙 = 0, (𝐺‘0), 0 ) ∈ 𝐷)
154153, 40fmptd 7120 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → 𝐻:(0...1)⟶𝐷)
15575oveq2i 7427 . . . . . . . . 9 (0...(0 + 1)) = (0...1)
156155feq2i 6712 . . . . . . . 8 (𝐻:(0...(0 + 1))⟶𝐷𝐻:(0...1)⟶𝐷)
157154, 156sylibr 233 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → 𝐻:(0...(0 + 1))⟶𝐷)
158157ffvelcdmda 7090 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ (0...(0 + 1))) → (𝐻𝑛) ∈ 𝐷)
159 elfznn0 13642 . . . . . . 7 (𝑛 ∈ (0...(0 + 1)) → 𝑛 ∈ ℕ0)
160159adantl 480 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ (0...(0 + 1))) → 𝑛 ∈ ℕ0)
16123, 24, 25, 2, 3, 8, 26, 27, 28mat2pmatscmxcl 22730 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝐻𝑛) ∈ 𝐷𝑛 ∈ ℕ0)) → ((𝑛 𝑋) (𝑇‘(𝐻𝑛))) ∈ 𝐵)
162140, 141, 158, 160, 161syl22anc 837 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ (0...(0 + 1))) → ((𝑛 𝑋) (𝑇‘(𝐻𝑛))) ∈ 𝐵)
1638, 33, 11, 139, 162gsummptfzsplit 19926 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → (𝐶 Σg (𝑛 ∈ (0...(0 + 1)) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))) = ((𝐶 Σg (𝑛 ∈ (0...0) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))(+g𝐶)(𝐶 Σg (𝑛 ∈ {(0 + 1)} ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))))
1641633adant3 1129 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0}) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))) → (𝐶 Σg (𝑛 ∈ (0...(0 + 1)) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))) = ((𝐶 Σg (𝑛 ∈ (0...0) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))(+g𝐶)(𝐶 Σg (𝑛 ∈ {(0 + 1)} ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))))
165138, 164eqtr4d 2769 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0}) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))) → 𝑀 = (𝐶 Σg (𝑛 ∈ (0...(0 + 1)) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))))
166155mpteq1i 5241 . . 3 (𝑛 ∈ (0...(0 + 1)) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))) = (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))
167166oveq2i 7427 . 2 (𝐶 Σg (𝑛 ∈ (0...(0 + 1)) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))) = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))
168165, 167eqtrdi 2782 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0}) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))) → 𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  Vcvv 3462  ifcif 4523  {csn 4623  cmpt 5228  wf 6542  cfv 6546  (class class class)co 7416  m cmap 8847  Fincfn 8966  0cc0 11149  1c1 11150   + caddc 11152  0cn0 12518  cuz 12868  ...cfz 13532  Basecbs 17208  +gcplusg 17261  Scalarcsca 17264   ·𝑠 cvsca 17265  0gc0g 17449   Σg cgsu 17450  Mndcmnd 18722  .gcmg 19057  CMndccmn 19774  mulGrpcmgp 20113  Ringcrg 20212  LModclmod 20832  var1cv1 22161  Poly1cpl1 22162   Mat cmat 22395   matToPolyMat cmat2pmat 22694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-ot 4632  df-uni 4906  df-int 4947  df-iun 4995  df-iin 4996  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-isom 6555  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-of 7682  df-ofr 7683  df-om 7869  df-1st 7995  df-2nd 7996  df-supp 8167  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8726  df-map 8849  df-pm 8850  df-ixp 8919  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-fsupp 9399  df-sup 9478  df-oi 9546  df-card 9975  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-nn 12259  df-2 12321  df-3 12322  df-4 12323  df-5 12324  df-6 12325  df-7 12326  df-8 12327  df-9 12328  df-n0 12519  df-z 12605  df-dec 12724  df-uz 12869  df-fz 13533  df-fzo 13676  df-seq 14016  df-hash 14343  df-struct 17144  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-ress 17238  df-plusg 17274  df-mulr 17275  df-sca 17277  df-vsca 17278  df-ip 17279  df-tset 17280  df-ple 17281  df-ds 17283  df-hom 17285  df-cco 17286  df-0g 17451  df-gsum 17452  df-prds 17457  df-pws 17459  df-mre 17594  df-mrc 17595  df-acs 17597  df-mgm 18628  df-sgrp 18707  df-mnd 18723  df-mhm 18768  df-submnd 18769  df-grp 18926  df-minusg 18927  df-sbg 18928  df-mulg 19058  df-subg 19113  df-ghm 19203  df-cntz 19307  df-cmn 19776  df-abl 19777  df-mgp 20114  df-rng 20132  df-ur 20161  df-ring 20214  df-subrng 20524  df-subrg 20549  df-lmod 20834  df-lss 20905  df-sra 21147  df-rgmod 21148  df-dsmm 21726  df-frlm 21741  df-ascl 21849  df-psr 21902  df-mvr 21903  df-mpl 21904  df-opsr 21906  df-psr1 22165  df-vr1 22166  df-ply1 22167  df-mamu 22379  df-mat 22396  df-mat2pmat 22697
This theorem is referenced by:  pmatcollpw3fi1lem2  22777
  Copyright terms: Public domain W3C validator