MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmatcollpw3fi1lem1 Structured version   Visualization version   GIF version

Theorem pmatcollpw3fi1lem1 22689
Description: Lemma 1 for pmatcollpw3fi1 22691. (Contributed by AV, 6-Nov-2019.) (Revised by AV, 4-Dec-2019.)
Hypotheses
Ref Expression
pmatcollpw.p 𝑃 = (Poly1𝑅)
pmatcollpw.c 𝐶 = (𝑁 Mat 𝑃)
pmatcollpw.b 𝐵 = (Base‘𝐶)
pmatcollpw.m = ( ·𝑠𝐶)
pmatcollpw.e = (.g‘(mulGrp‘𝑃))
pmatcollpw.x 𝑋 = (var1𝑅)
pmatcollpw.t 𝑇 = (𝑁 matToPolyMat 𝑅)
pmatcollpw3.a 𝐴 = (𝑁 Mat 𝑅)
pmatcollpw3.d 𝐷 = (Base‘𝐴)
pmatcollpw3fi1lem1.0 0 = (0g𝐴)
pmatcollpw3fi1lem1.h 𝐻 = (𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝐺‘0), 0 ))
Assertion
Ref Expression
pmatcollpw3fi1lem1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0}) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))) → 𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))))
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑃,𝑛   𝑅,𝑛   𝑛,𝑋   ,𝑛   𝐶,𝑛   𝐵,𝑙   𝑀,𝑙   𝑁,𝑙   𝑅,𝑙   𝐷,𝑙,𝑛   𝐴,𝑙   𝐺,𝑙,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐶(𝑙)   𝑃(𝑙)   𝑇(𝑛,𝑙)   (𝑙)   𝐻(𝑛,𝑙)   (𝑛,𝑙)   𝑋(𝑙)   0 (𝑛,𝑙)

Proof of Theorem pmatcollpw3fi1lem1
StepHypRef Expression
1 simpr 484 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))) → 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛))))))
2 pmatcollpw.p . . . . . . . . . . 11 𝑃 = (Poly1𝑅)
3 pmatcollpw.c . . . . . . . . . . 11 𝐶 = (𝑁 Mat 𝑃)
42, 3pmatring 22595 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
5 ringmnd 20146 . . . . . . . . . 10 (𝐶 ∈ Ring → 𝐶 ∈ Mnd)
64, 5syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Mnd)
76adantr 480 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → 𝐶 ∈ Mnd)
8 pmatcollpw.b . . . . . . . . 9 𝐵 = (Base‘𝐶)
9 ringcmn 20185 . . . . . . . . . . 11 (𝐶 ∈ Ring → 𝐶 ∈ CMnd)
104, 9syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ CMnd)
1110adantr 480 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → 𝐶 ∈ CMnd)
12 snfi 8975 . . . . . . . . . 10 {0} ∈ Fin
1312a1i 11 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → {0} ∈ Fin)
14 simplll 774 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) → 𝑁 ∈ Fin)
15 simpllr 775 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) → 𝑅 ∈ Ring)
16 elmapi 8783 . . . . . . . . . . . . 13 (𝐺 ∈ (𝐷m {0}) → 𝐺:{0}⟶𝐷)
1716adantl 481 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → 𝐺:{0}⟶𝐷)
1817ffvelcdmda 7022 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) → (𝐺𝑛) ∈ 𝐷)
19 elsni 4596 . . . . . . . . . . . . 13 (𝑛 ∈ {0} → 𝑛 = 0)
20 0nn0 12417 . . . . . . . . . . . . 13 0 ∈ ℕ0
2119, 20eqeltrdi 2836 . . . . . . . . . . . 12 (𝑛 ∈ {0} → 𝑛 ∈ ℕ0)
2221adantl 481 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) → 𝑛 ∈ ℕ0)
23 pmatcollpw3.a . . . . . . . . . . . 12 𝐴 = (𝑁 Mat 𝑅)
24 pmatcollpw3.d . . . . . . . . . . . 12 𝐷 = (Base‘𝐴)
25 pmatcollpw.t . . . . . . . . . . . 12 𝑇 = (𝑁 matToPolyMat 𝑅)
26 pmatcollpw.m . . . . . . . . . . . 12 = ( ·𝑠𝐶)
27 pmatcollpw.e . . . . . . . . . . . 12 = (.g‘(mulGrp‘𝑃))
28 pmatcollpw.x . . . . . . . . . . . 12 𝑋 = (var1𝑅)
2923, 24, 25, 2, 3, 8, 26, 27, 28mat2pmatscmxcl 22643 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝐺𝑛) ∈ 𝐷𝑛 ∈ ℕ0)) → ((𝑛 𝑋) (𝑇‘(𝐺𝑛))) ∈ 𝐵)
3014, 15, 18, 22, 29syl22anc 838 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) → ((𝑛 𝑋) (𝑇‘(𝐺𝑛))) ∈ 𝐵)
3130ralrimiva 3121 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → ∀𝑛 ∈ {0} ((𝑛 𝑋) (𝑇‘(𝐺𝑛))) ∈ 𝐵)
328, 11, 13, 31gsummptcl 19864 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛))))) ∈ 𝐵)
33 eqid 2729 . . . . . . . . 9 (+g𝐶) = (+g𝐶)
34 eqid 2729 . . . . . . . . 9 (0g𝐶) = (0g𝐶)
358, 33, 34mndrid 18647 . . . . . . . 8 ((𝐶 ∈ Mnd ∧ (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛))))) ∈ 𝐵) → ((𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))(+g𝐶)(0g𝐶)) = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛))))))
367, 32, 35syl2anc 584 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → ((𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))(+g𝐶)(0g𝐶)) = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛))))))
37 fz0sn 13548 . . . . . . . . . . . 12 (0...0) = {0}
3837eqcomi 2738 . . . . . . . . . . 11 {0} = (0...0)
3938a1i 11 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → {0} = (0...0))
40 pmatcollpw3fi1lem1.h . . . . . . . . . . . . . 14 𝐻 = (𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝐺‘0), 0 ))
41 simpr 484 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) ∧ 𝑙 = 𝑛) → 𝑙 = 𝑛)
4219ad2antlr 727 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) ∧ 𝑙 = 𝑛) → 𝑛 = 0)
4341, 42eqtrd 2764 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) ∧ 𝑙 = 𝑛) → 𝑙 = 0)
4443iftrued 4486 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) ∧ 𝑙 = 𝑛) → if(𝑙 = 0, (𝐺‘0), 0 ) = (𝐺‘0))
45 fveq2 6826 . . . . . . . . . . . . . . . . . 18 (𝑛 = 0 → (𝐺𝑛) = (𝐺‘0))
4645eqcomd 2735 . . . . . . . . . . . . . . . . 17 (𝑛 = 0 → (𝐺‘0) = (𝐺𝑛))
4719, 46syl 17 . . . . . . . . . . . . . . . 16 (𝑛 ∈ {0} → (𝐺‘0) = (𝐺𝑛))
4847ad2antlr 727 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) ∧ 𝑙 = 𝑛) → (𝐺‘0) = (𝐺𝑛))
4944, 48eqtrd 2764 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) ∧ 𝑙 = 𝑛) → if(𝑙 = 0, (𝐺‘0), 0 ) = (𝐺𝑛))
50 1nn0 12418 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℕ0
5150a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 0 → 1 ∈ ℕ0)
52 nn0uz 12795 . . . . . . . . . . . . . . . . . . 19 0 = (ℤ‘0)
5351, 52eleqtrdi 2838 . . . . . . . . . . . . . . . . . 18 (𝑛 = 0 → 1 ∈ (ℤ‘0))
54 eluzfz1 13452 . . . . . . . . . . . . . . . . . 18 (1 ∈ (ℤ‘0) → 0 ∈ (0...1))
5553, 54syl 17 . . . . . . . . . . . . . . . . 17 (𝑛 = 0 → 0 ∈ (0...1))
56 eleq1 2816 . . . . . . . . . . . . . . . . 17 (𝑛 = 0 → (𝑛 ∈ (0...1) ↔ 0 ∈ (0...1)))
5755, 56mpbird 257 . . . . . . . . . . . . . . . 16 (𝑛 = 0 → 𝑛 ∈ (0...1))
5819, 57syl 17 . . . . . . . . . . . . . . 15 (𝑛 ∈ {0} → 𝑛 ∈ (0...1))
5958adantl 481 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) → 𝑛 ∈ (0...1))
60 ffvelcdm 7019 . . . . . . . . . . . . . . . . . 18 ((𝐺:{0}⟶𝐷𝑛 ∈ {0}) → (𝐺𝑛) ∈ 𝐷)
6160ex 412 . . . . . . . . . . . . . . . . 17 (𝐺:{0}⟶𝐷 → (𝑛 ∈ {0} → (𝐺𝑛) ∈ 𝐷))
6216, 61syl 17 . . . . . . . . . . . . . . . 16 (𝐺 ∈ (𝐷m {0}) → (𝑛 ∈ {0} → (𝐺𝑛) ∈ 𝐷))
6362adantl 481 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → (𝑛 ∈ {0} → (𝐺𝑛) ∈ 𝐷))
6463imp 406 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) → (𝐺𝑛) ∈ 𝐷)
6540, 49, 59, 64fvmptd2 6942 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) → (𝐻𝑛) = (𝐺𝑛))
6665eqcomd 2735 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) → (𝐺𝑛) = (𝐻𝑛))
6766fveq2d 6830 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) → (𝑇‘(𝐺𝑛)) = (𝑇‘(𝐻𝑛)))
6867oveq2d 7369 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ {0}) → ((𝑛 𝑋) (𝑇‘(𝐺𝑛))) = ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))
6939, 68mpteq12dva 5181 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))) = (𝑛 ∈ (0...0) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))
7069oveq2d 7369 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛))))) = (𝐶 Σg (𝑛 ∈ (0...0) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))))
71 ovexd 7388 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → (0 + 1) ∈ V)
728, 34mndidcl 18641 . . . . . . . . . . . 12 (𝐶 ∈ Mnd → (0g𝐶) ∈ 𝐵)
736, 72syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐶) ∈ 𝐵)
7473adantr 480 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → (0g𝐶) ∈ 𝐵)
75 0p1e1 12263 . . . . . . . . . . . . . . . . . . . . 21 (0 + 1) = 1
7675eqeq2i 2742 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = (0 + 1) ↔ 𝑛 = 1)
77 ax-1ne0 11097 . . . . . . . . . . . . . . . . . . . . . 22 1 ≠ 0
7877neii 2927 . . . . . . . . . . . . . . . . . . . . 21 ¬ 1 = 0
79 eqeq1 2733 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 1 → (𝑛 = 0 ↔ 1 = 0))
8078, 79mtbiri 327 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 1 → ¬ 𝑛 = 0)
8176, 80sylbi 217 . . . . . . . . . . . . . . . . . . 19 (𝑛 = (0 + 1) → ¬ 𝑛 = 0)
8281ad2antlr 727 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) ∧ 𝑙 = 𝑛) → ¬ 𝑛 = 0)
83 eqeq1 2733 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = 𝑛 → (𝑙 = 0 ↔ 𝑛 = 0))
8483notbid 318 . . . . . . . . . . . . . . . . . . 19 (𝑙 = 𝑛 → (¬ 𝑙 = 0 ↔ ¬ 𝑛 = 0))
8584adantl 481 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) ∧ 𝑙 = 𝑛) → (¬ 𝑙 = 0 ↔ ¬ 𝑛 = 0))
8682, 85mpbird 257 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) ∧ 𝑙 = 𝑛) → ¬ 𝑙 = 0)
8786iffalsed 4489 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) ∧ 𝑙 = 𝑛) → if(𝑙 = 0, (𝐺‘0), 0 ) = 0 )
88 pmatcollpw3fi1lem1.0 . . . . . . . . . . . . . . . 16 0 = (0g𝐴)
8987, 88eqtrdi 2780 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) ∧ 𝑙 = 𝑛) → if(𝑙 = 0, (𝐺‘0), 0 ) = (0g𝐴))
9050a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 1 → 1 ∈ ℕ0)
9190, 52eleqtrdi 2838 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 1 → 1 ∈ (ℤ‘0))
92 eluzfz2 13453 . . . . . . . . . . . . . . . . . . 19 (1 ∈ (ℤ‘0) → 1 ∈ (0...1))
9391, 92syl 17 . . . . . . . . . . . . . . . . . 18 (𝑛 = 1 → 1 ∈ (0...1))
94 eleq1 2816 . . . . . . . . . . . . . . . . . 18 (𝑛 = 1 → (𝑛 ∈ (0...1) ↔ 1 ∈ (0...1)))
9593, 94mpbird 257 . . . . . . . . . . . . . . . . 17 (𝑛 = 1 → 𝑛 ∈ (0...1))
9676, 95sylbi 217 . . . . . . . . . . . . . . . 16 (𝑛 = (0 + 1) → 𝑛 ∈ (0...1))
9796adantl 481 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → 𝑛 ∈ (0...1))
98 fvexd 6841 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → (0g𝐴) ∈ V)
9940, 89, 97, 98fvmptd2 6942 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → (𝐻𝑛) = (0g𝐴))
10099fveq2d 6830 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → (𝑇‘(𝐻𝑛)) = (𝑇‘(0g𝐴)))
10123fveq2i 6829 . . . . . . . . . . . . . . . 16 (0g𝐴) = (0g‘(𝑁 Mat 𝑅))
1023fveq2i 6829 . . . . . . . . . . . . . . . 16 (0g𝐶) = (0g‘(𝑁 Mat 𝑃))
10325, 2, 101, 1020mat2pmat 22639 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → (𝑇‘(0g𝐴)) = (0g𝐶))
104103ancoms 458 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑇‘(0g𝐴)) = (0g𝐶))
105104ad2antrr 726 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → (𝑇‘(0g𝐴)) = (0g𝐶))
106100, 105eqtrd 2764 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → (𝑇‘(𝐻𝑛)) = (0g𝐶))
107106oveq2d 7369 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → ((𝑛 𝑋) (𝑇‘(𝐻𝑛))) = ((𝑛 𝑋) (0g𝐶)))
1082, 3pmatlmod 22596 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ LMod)
109108ad2antrr 726 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → 𝐶 ∈ LMod)
110 simpllr 775 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → 𝑅 ∈ Ring)
111 eleq1 2816 . . . . . . . . . . . . . . . . 17 (𝑛 = 1 → (𝑛 ∈ ℕ0 ↔ 1 ∈ ℕ0))
11290, 111mpbird 257 . . . . . . . . . . . . . . . 16 (𝑛 = 1 → 𝑛 ∈ ℕ0)
11376, 112sylbi 217 . . . . . . . . . . . . . . 15 (𝑛 = (0 + 1) → 𝑛 ∈ ℕ0)
114113adantl 481 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → 𝑛 ∈ ℕ0)
115 eqid 2729 . . . . . . . . . . . . . . 15 (mulGrp‘𝑃) = (mulGrp‘𝑃)
116 eqid 2729 . . . . . . . . . . . . . . 15 (Base‘𝑃) = (Base‘𝑃)
1172, 28, 115, 27, 116ply1moncl 22173 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑛 ∈ ℕ0) → (𝑛 𝑋) ∈ (Base‘𝑃))
118110, 114, 117syl2anc 584 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → (𝑛 𝑋) ∈ (Base‘𝑃))
1192ply1ring 22148 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
1203matsca2 22323 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝑃 = (Scalar‘𝐶))
121119, 120sylan2 593 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑃 = (Scalar‘𝐶))
122121eqcomd 2735 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Scalar‘𝐶) = 𝑃)
123122fveq2d 6830 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘(Scalar‘𝐶)) = (Base‘𝑃))
124123eleq2d 2814 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑛 𝑋) ∈ (Base‘(Scalar‘𝐶)) ↔ (𝑛 𝑋) ∈ (Base‘𝑃)))
125124ad2antrr 726 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → ((𝑛 𝑋) ∈ (Base‘(Scalar‘𝐶)) ↔ (𝑛 𝑋) ∈ (Base‘𝑃)))
126118, 125mpbird 257 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → (𝑛 𝑋) ∈ (Base‘(Scalar‘𝐶)))
127 eqid 2729 . . . . . . . . . . . . 13 (Scalar‘𝐶) = (Scalar‘𝐶)
128 eqid 2729 . . . . . . . . . . . . 13 (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶))
129127, 26, 128, 34lmodvs0 20817 . . . . . . . . . . . 12 ((𝐶 ∈ LMod ∧ (𝑛 𝑋) ∈ (Base‘(Scalar‘𝐶))) → ((𝑛 𝑋) (0g𝐶)) = (0g𝐶))
130109, 126, 129syl2anc 584 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → ((𝑛 𝑋) (0g𝐶)) = (0g𝐶))
131107, 130eqtrd 2764 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 = (0 + 1)) → ((𝑛 𝑋) (𝑇‘(𝐻𝑛))) = (0g𝐶))
1328, 7, 71, 74, 131gsumsnd 19849 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → (𝐶 Σg (𝑛 ∈ {(0 + 1)} ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))) = (0g𝐶))
133132eqcomd 2735 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → (0g𝐶) = (𝐶 Σg (𝑛 ∈ {(0 + 1)} ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))))
13470, 133oveq12d 7371 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → ((𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))(+g𝐶)(0g𝐶)) = ((𝐶 Σg (𝑛 ∈ (0...0) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))(+g𝐶)(𝐶 Σg (𝑛 ∈ {(0 + 1)} ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))))
13536, 134eqtr3d 2766 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛))))) = ((𝐶 Σg (𝑛 ∈ (0...0) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))(+g𝐶)(𝐶 Σg (𝑛 ∈ {(0 + 1)} ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))))
136135adantr 480 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))) → (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛))))) = ((𝐶 Σg (𝑛 ∈ (0...0) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))(+g𝐶)(𝐶 Σg (𝑛 ∈ {(0 + 1)} ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))))
1371, 136eqtrd 2764 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))) → 𝑀 = ((𝐶 Σg (𝑛 ∈ (0...0) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))(+g𝐶)(𝐶 Σg (𝑛 ∈ {(0 + 1)} ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))))
1381373impa 1109 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0}) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))) → 𝑀 = ((𝐶 Σg (𝑛 ∈ (0...0) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))(+g𝐶)(𝐶 Σg (𝑛 ∈ {(0 + 1)} ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))))
13920a1i 11 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → 0 ∈ ℕ0)
140 simplll 774 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ (0...(0 + 1))) → 𝑁 ∈ Fin)
141 simpllr 775 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ (0...(0 + 1))) → 𝑅 ∈ Ring)
142 id 22 . . . . . . . . . . . . 13 (𝐺:{0}⟶𝐷𝐺:{0}⟶𝐷)
143 c0ex 11128 . . . . . . . . . . . . . . 15 0 ∈ V
144143snid 4616 . . . . . . . . . . . . . 14 0 ∈ {0}
145144a1i 11 . . . . . . . . . . . . 13 (𝐺:{0}⟶𝐷 → 0 ∈ {0})
146142, 145ffvelcdmd 7023 . . . . . . . . . . . 12 (𝐺:{0}⟶𝐷 → (𝐺‘0) ∈ 𝐷)
14716, 146syl 17 . . . . . . . . . . 11 (𝐺 ∈ (𝐷m {0}) → (𝐺‘0) ∈ 𝐷)
148147ad2antlr 727 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑙 ∈ (0...1)) → (𝐺‘0) ∈ 𝐷)
14923matring 22346 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
15024, 88ring0cl 20170 . . . . . . . . . . . 12 (𝐴 ∈ Ring → 0𝐷)
151149, 150syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 0𝐷)
152151ad2antrr 726 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑙 ∈ (0...1)) → 0𝐷)
153148, 152ifcld 4525 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑙 ∈ (0...1)) → if(𝑙 = 0, (𝐺‘0), 0 ) ∈ 𝐷)
154153, 40fmptd 7052 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → 𝐻:(0...1)⟶𝐷)
15575oveq2i 7364 . . . . . . . . 9 (0...(0 + 1)) = (0...1)
156155feq2i 6648 . . . . . . . 8 (𝐻:(0...(0 + 1))⟶𝐷𝐻:(0...1)⟶𝐷)
157154, 156sylibr 234 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → 𝐻:(0...(0 + 1))⟶𝐷)
158157ffvelcdmda 7022 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ (0...(0 + 1))) → (𝐻𝑛) ∈ 𝐷)
159 elfznn0 13541 . . . . . . 7 (𝑛 ∈ (0...(0 + 1)) → 𝑛 ∈ ℕ0)
160159adantl 481 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ (0...(0 + 1))) → 𝑛 ∈ ℕ0)
16123, 24, 25, 2, 3, 8, 26, 27, 28mat2pmatscmxcl 22643 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝐻𝑛) ∈ 𝐷𝑛 ∈ ℕ0)) → ((𝑛 𝑋) (𝑇‘(𝐻𝑛))) ∈ 𝐵)
162140, 141, 158, 160, 161syl22anc 838 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) ∧ 𝑛 ∈ (0...(0 + 1))) → ((𝑛 𝑋) (𝑇‘(𝐻𝑛))) ∈ 𝐵)
1638, 33, 11, 139, 162gsummptfzsplit 19829 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0})) → (𝐶 Σg (𝑛 ∈ (0...(0 + 1)) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))) = ((𝐶 Σg (𝑛 ∈ (0...0) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))(+g𝐶)(𝐶 Σg (𝑛 ∈ {(0 + 1)} ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))))
1641633adant3 1132 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0}) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))) → (𝐶 Σg (𝑛 ∈ (0...(0 + 1)) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))) = ((𝐶 Σg (𝑛 ∈ (0...0) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))(+g𝐶)(𝐶 Σg (𝑛 ∈ {(0 + 1)} ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))))
165138, 164eqtr4d 2767 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0}) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))) → 𝑀 = (𝐶 Σg (𝑛 ∈ (0...(0 + 1)) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))))
166155mpteq1i 5186 . . 3 (𝑛 ∈ (0...(0 + 1)) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))) = (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))
167166oveq2i 7364 . 2 (𝐶 Σg (𝑛 ∈ (0...(0 + 1)) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))) = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))
168165, 167eqtrdi 2780 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷m {0}) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))) → 𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3438  ifcif 4478  {csn 4579  cmpt 5176  wf 6482  cfv 6486  (class class class)co 7353  m cmap 8760  Fincfn 8879  0cc0 11028  1c1 11029   + caddc 11031  0cn0 12402  cuz 12753  ...cfz 13428  Basecbs 17138  +gcplusg 17179  Scalarcsca 17182   ·𝑠 cvsca 17183  0gc0g 17361   Σg cgsu 17362  Mndcmnd 18626  .gcmg 18964  CMndccmn 19677  mulGrpcmgp 20043  Ringcrg 20136  LModclmod 20781  var1cv1 22076  Poly1cpl1 22077   Mat cmat 22310   matToPolyMat cmat2pmat 22607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-ofr 7618  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-hom 17203  df-cco 17204  df-0g 17363  df-gsum 17364  df-prds 17369  df-pws 17371  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-ghm 19110  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-subrng 20449  df-subrg 20473  df-lmod 20783  df-lss 20853  df-sra 21095  df-rgmod 21096  df-dsmm 21657  df-frlm 21672  df-ascl 21780  df-psr 21834  df-mvr 21835  df-mpl 21836  df-opsr 21838  df-psr1 22080  df-vr1 22081  df-ply1 22082  df-mamu 22294  df-mat 22311  df-mat2pmat 22610
This theorem is referenced by:  pmatcollpw3fi1lem2  22690
  Copyright terms: Public domain W3C validator