Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvcosax Structured version   Visualization version   GIF version

Theorem dvcosax 45911
Description: Derivative exercise: the derivative with respect to x of cos(Ax), given a constant 𝐴. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
dvcosax (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ (cos‘(𝐴 · 𝑥)))) = (𝑥 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑥)))))
Distinct variable group:   𝑥,𝐴

Proof of Theorem dvcosax
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mulcl 11112 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐴 · 𝑥) ∈ ℂ)
2 eqidd 2730 . . . . . 6 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)) = (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))
3 cosf 16052 . . . . . . . 8 cos:ℂ⟶ℂ
43a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → cos:ℂ⟶ℂ)
54feqmptd 6895 . . . . . 6 (𝐴 ∈ ℂ → cos = (𝑦 ∈ ℂ ↦ (cos‘𝑦)))
6 fveq2 6826 . . . . . 6 (𝑦 = (𝐴 · 𝑥) → (cos‘𝑦) = (cos‘(𝐴 · 𝑥)))
71, 2, 5, 6fmptco 7067 . . . . 5 (𝐴 ∈ ℂ → (cos ∘ (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) = (𝑥 ∈ ℂ ↦ (cos‘(𝐴 · 𝑥))))
87eqcomd 2735 . . . 4 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ (cos‘(𝐴 · 𝑥))) = (cos ∘ (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))))
98oveq2d 7369 . . 3 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ (cos‘(𝐴 · 𝑥)))) = (ℂ D (cos ∘ (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))))
10 cnelprrecn 11121 . . . . 5 ℂ ∈ {ℝ, ℂ}
1110a1i 11 . . . 4 (𝐴 ∈ ℂ → ℂ ∈ {ℝ, ℂ})
121fmpttd 7053 . . . 4 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)):ℂ⟶ℂ)
13 dvcos 25903 . . . . . . 7 (ℂ D cos) = (𝑥 ∈ ℂ ↦ -(sin‘𝑥))
1413dmeqi 5851 . . . . . 6 dom (ℂ D cos) = dom (𝑥 ∈ ℂ ↦ -(sin‘𝑥))
15 dmmptg 6195 . . . . . . 7 (∀𝑥 ∈ ℂ -(sin‘𝑥) ∈ ℂ → dom (𝑥 ∈ ℂ ↦ -(sin‘𝑥)) = ℂ)
16 sincl 16053 . . . . . . . 8 (𝑥 ∈ ℂ → (sin‘𝑥) ∈ ℂ)
1716negcld 11480 . . . . . . 7 (𝑥 ∈ ℂ → -(sin‘𝑥) ∈ ℂ)
1815, 17mprg 3050 . . . . . 6 dom (𝑥 ∈ ℂ ↦ -(sin‘𝑥)) = ℂ
1914, 18eqtri 2752 . . . . 5 dom (ℂ D cos) = ℂ
2019a1i 11 . . . 4 (𝐴 ∈ ℂ → dom (ℂ D cos) = ℂ)
21 simpl 482 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)
22 0red 11137 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → 0 ∈ ℝ)
23 id 22 . . . . . . . 8 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
2411, 23dvmptc 25878 . . . . . . 7 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 0))
25 simpr 484 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
26 1red 11135 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → 1 ∈ ℝ)
2711dvmptid 25877 . . . . . . 7 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1))
2811, 21, 22, 24, 25, 26, 27dvmptmul 25881 . . . . . 6 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) = (𝑥 ∈ ℂ ↦ ((0 · 𝑥) + (1 · 𝐴))))
2928dmeqd 5852 . . . . 5 (𝐴 ∈ ℂ → dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) = dom (𝑥 ∈ ℂ ↦ ((0 · 𝑥) + (1 · 𝐴))))
30 dmmptg 6195 . . . . . 6 (∀𝑥 ∈ ℂ ((0 · 𝑥) + (1 · 𝐴)) ∈ V → dom (𝑥 ∈ ℂ ↦ ((0 · 𝑥) + (1 · 𝐴))) = ℂ)
31 ovex 7386 . . . . . . 7 ((0 · 𝑥) + (1 · 𝐴)) ∈ V
3231a1i 11 . . . . . 6 (𝑥 ∈ ℂ → ((0 · 𝑥) + (1 · 𝐴)) ∈ V)
3330, 32mprg 3050 . . . . 5 dom (𝑥 ∈ ℂ ↦ ((0 · 𝑥) + (1 · 𝐴))) = ℂ
3429, 33eqtrdi 2780 . . . 4 (𝐴 ∈ ℂ → dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) = ℂ)
3511, 11, 4, 12, 20, 34dvcof 25868 . . 3 (𝐴 ∈ ℂ → (ℂ D (cos ∘ (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = (((ℂ D cos) ∘ (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) ∘f · (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))))
36 dvcos 25903 . . . . . . 7 (ℂ D cos) = (𝑦 ∈ ℂ ↦ -(sin‘𝑦))
3736a1i 11 . . . . . 6 (𝐴 ∈ ℂ → (ℂ D cos) = (𝑦 ∈ ℂ ↦ -(sin‘𝑦)))
38 fveq2 6826 . . . . . . 7 (𝑦 = (𝐴 · 𝑥) → (sin‘𝑦) = (sin‘(𝐴 · 𝑥)))
3938negeqd 11375 . . . . . 6 (𝑦 = (𝐴 · 𝑥) → -(sin‘𝑦) = -(sin‘(𝐴 · 𝑥)))
401, 2, 37, 39fmptco 7067 . . . . 5 (𝐴 ∈ ℂ → ((ℂ D cos) ∘ (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) = (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))))
4140oveq1d 7368 . . . 4 (𝐴 ∈ ℂ → (((ℂ D cos) ∘ (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) ∘f · (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = ((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∘f · (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))))
42 cnex 11109 . . . . . . 7 ℂ ∈ V
4342mptex 7163 . . . . . 6 (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∈ V
44 ovex 7386 . . . . . 6 (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) ∈ V
45 offval3 7924 . . . . . 6 (((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∈ V ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) ∈ V) → ((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∘f · (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = (𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) ↦ (((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) · ((ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))‘𝑦))))
4643, 44, 45mp2an 692 . . . . 5 ((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∘f · (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = (𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) ↦ (((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) · ((ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))‘𝑦)))
4746a1i 11 . . . 4 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∘f · (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = (𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) ↦ (((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) · ((ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))‘𝑦))))
481sincld 16057 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (sin‘(𝐴 · 𝑥)) ∈ ℂ)
4948negcld 11480 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → -(sin‘(𝐴 · 𝑥)) ∈ ℂ)
5049ralrimiva 3121 . . . . . . . 8 (𝐴 ∈ ℂ → ∀𝑥 ∈ ℂ -(sin‘(𝐴 · 𝑥)) ∈ ℂ)
51 dmmptg 6195 . . . . . . . 8 (∀𝑥 ∈ ℂ -(sin‘(𝐴 · 𝑥)) ∈ ℂ → dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) = ℂ)
5250, 51syl 17 . . . . . . 7 (𝐴 ∈ ℂ → dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) = ℂ)
5352, 34ineq12d 4174 . . . . . 6 (𝐴 ∈ ℂ → (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = (ℂ ∩ ℂ))
54 inidm 4180 . . . . . 6 (ℂ ∩ ℂ) = ℂ
5553, 54eqtrdi 2780 . . . . 5 (𝐴 ∈ ℂ → (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = ℂ)
56 simpr 484 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))))) → 𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))))
5755adantr 480 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))))) → (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = ℂ)
5856, 57eleqtrd 2830 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))))) → 𝑦 ∈ ℂ)
59 eqidd 2730 . . . . . . . . . 10 (𝑦 ∈ ℂ → (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) = (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))))
60 oveq2 7361 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝐴 · 𝑥) = (𝐴 · 𝑦))
6160fveq2d 6830 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (sin‘(𝐴 · 𝑥)) = (sin‘(𝐴 · 𝑦)))
6261negeqd 11375 . . . . . . . . . . 11 (𝑥 = 𝑦 → -(sin‘(𝐴 · 𝑥)) = -(sin‘(𝐴 · 𝑦)))
6362adantl 481 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ 𝑥 = 𝑦) → -(sin‘(𝐴 · 𝑥)) = -(sin‘(𝐴 · 𝑦)))
64 id 22 . . . . . . . . . 10 (𝑦 ∈ ℂ → 𝑦 ∈ ℂ)
65 negex 11379 . . . . . . . . . . 11 -(sin‘(𝐴 · 𝑦)) ∈ V
6665a1i 11 . . . . . . . . . 10 (𝑦 ∈ ℂ → -(sin‘(𝐴 · 𝑦)) ∈ V)
6759, 63, 64, 66fvmptd 6941 . . . . . . . . 9 (𝑦 ∈ ℂ → ((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) = -(sin‘(𝐴 · 𝑦)))
6867adantl 481 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) = -(sin‘(𝐴 · 𝑦)))
6928adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) = (𝑥 ∈ ℂ ↦ ((0 · 𝑥) + (1 · 𝐴))))
70 oveq2 7361 . . . . . . . . . . 11 (𝑥 = 𝑦 → (0 · 𝑥) = (0 · 𝑦))
7170oveq1d 7368 . . . . . . . . . 10 (𝑥 = 𝑦 → ((0 · 𝑥) + (1 · 𝐴)) = ((0 · 𝑦) + (1 · 𝐴)))
72 mul02 11312 . . . . . . . . . . . 12 (𝑦 ∈ ℂ → (0 · 𝑦) = 0)
73 mullid 11133 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
7472, 73oveqan12rd 7373 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((0 · 𝑦) + (1 · 𝐴)) = (0 + 𝐴))
75 addlid 11317 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴)
7675adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 + 𝐴) = 𝐴)
7774, 76eqtrd 2764 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((0 · 𝑦) + (1 · 𝐴)) = 𝐴)
7871, 77sylan9eqr 2786 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑥 = 𝑦) → ((0 · 𝑥) + (1 · 𝐴)) = 𝐴)
79 simpr 484 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
80 simpl 482 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝐴 ∈ ℂ)
8169, 78, 79, 80fvmptd 6941 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))‘𝑦) = 𝐴)
8268, 81oveq12d 7371 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) · ((ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))‘𝑦)) = (-(sin‘(𝐴 · 𝑦)) · 𝐴))
83 mulcl 11112 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴 · 𝑦) ∈ ℂ)
8483sincld 16057 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (sin‘(𝐴 · 𝑦)) ∈ ℂ)
8584negcld 11480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → -(sin‘(𝐴 · 𝑦)) ∈ ℂ)
8685, 80mulcomd 11155 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (-(sin‘(𝐴 · 𝑦)) · 𝐴) = (𝐴 · -(sin‘(𝐴 · 𝑦))))
8782, 86eqtrd 2764 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) · ((ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))‘𝑦)) = (𝐴 · -(sin‘(𝐴 · 𝑦))))
8858, 87syldan 591 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))))) → (((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) · ((ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))‘𝑦)) = (𝐴 · -(sin‘(𝐴 · 𝑦))))
8955, 88mpteq12dva 5181 . . . 4 (𝐴 ∈ ℂ → (𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) ↦ (((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) · ((ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))‘𝑦))) = (𝑦 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑦)))))
9041, 47, 893eqtrd 2768 . . 3 (𝐴 ∈ ℂ → (((ℂ D cos) ∘ (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) ∘f · (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = (𝑦 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑦)))))
919, 35, 903eqtrd 2768 . 2 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ (cos‘(𝐴 · 𝑥)))) = (𝑦 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑦)))))
92 oveq2 7361 . . . . . 6 (𝑦 = 𝑥 → (𝐴 · 𝑦) = (𝐴 · 𝑥))
9392fveq2d 6830 . . . . 5 (𝑦 = 𝑥 → (sin‘(𝐴 · 𝑦)) = (sin‘(𝐴 · 𝑥)))
9493negeqd 11375 . . . 4 (𝑦 = 𝑥 → -(sin‘(𝐴 · 𝑦)) = -(sin‘(𝐴 · 𝑥)))
9594oveq2d 7369 . . 3 (𝑦 = 𝑥 → (𝐴 · -(sin‘(𝐴 · 𝑦))) = (𝐴 · -(sin‘(𝐴 · 𝑥))))
9695cbvmptv 5199 . 2 (𝑦 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑦)))) = (𝑥 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑥))))
9791, 96eqtrdi 2780 1 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ (cos‘(𝐴 · 𝑥)))) = (𝑥 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3438  cin 3904  {cpr 4581  cmpt 5176  dom cdm 5623  ccom 5627  wf 6482  cfv 6486  (class class class)co 7353  f cof 7615  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  -cneg 11366  sincsin 15988  cosccos 15989   D cdv 25780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-ef 15992  df-sin 15994  df-cos 15995  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-limc 25783  df-dv 25784
This theorem is referenced by:  itgsincmulx  45959
  Copyright terms: Public domain W3C validator