Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvcosax Structured version   Visualization version   GIF version

Theorem dvcosax 42087
Description: Derivative exercise: the derivative with respect to x of cos(Ax), given a constant 𝐴. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
dvcosax (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ (cos‘(𝐴 · 𝑥)))) = (𝑥 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑥)))))
Distinct variable group:   𝑥,𝐴

Proof of Theorem dvcosax
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mulcl 10609 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐴 · 𝑥) ∈ ℂ)
2 eqidd 2819 . . . . . 6 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)) = (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))
3 cosf 15466 . . . . . . . 8 cos:ℂ⟶ℂ
43a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → cos:ℂ⟶ℂ)
54feqmptd 6726 . . . . . 6 (𝐴 ∈ ℂ → cos = (𝑦 ∈ ℂ ↦ (cos‘𝑦)))
6 fveq2 6663 . . . . . 6 (𝑦 = (𝐴 · 𝑥) → (cos‘𝑦) = (cos‘(𝐴 · 𝑥)))
71, 2, 5, 6fmptco 6883 . . . . 5 (𝐴 ∈ ℂ → (cos ∘ (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) = (𝑥 ∈ ℂ ↦ (cos‘(𝐴 · 𝑥))))
87eqcomd 2824 . . . 4 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ (cos‘(𝐴 · 𝑥))) = (cos ∘ (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))))
98oveq2d 7161 . . 3 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ (cos‘(𝐴 · 𝑥)))) = (ℂ D (cos ∘ (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))))
10 cnelprrecn 10618 . . . . 5 ℂ ∈ {ℝ, ℂ}
1110a1i 11 . . . 4 (𝐴 ∈ ℂ → ℂ ∈ {ℝ, ℂ})
121fmpttd 6871 . . . 4 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)):ℂ⟶ℂ)
13 dvcos 24507 . . . . . . 7 (ℂ D cos) = (𝑥 ∈ ℂ ↦ -(sin‘𝑥))
1413dmeqi 5766 . . . . . 6 dom (ℂ D cos) = dom (𝑥 ∈ ℂ ↦ -(sin‘𝑥))
15 dmmptg 6089 . . . . . . 7 (∀𝑥 ∈ ℂ -(sin‘𝑥) ∈ ℂ → dom (𝑥 ∈ ℂ ↦ -(sin‘𝑥)) = ℂ)
16 sincl 15467 . . . . . . . 8 (𝑥 ∈ ℂ → (sin‘𝑥) ∈ ℂ)
1716negcld 10972 . . . . . . 7 (𝑥 ∈ ℂ → -(sin‘𝑥) ∈ ℂ)
1815, 17mprg 3149 . . . . . 6 dom (𝑥 ∈ ℂ ↦ -(sin‘𝑥)) = ℂ
1914, 18eqtri 2841 . . . . 5 dom (ℂ D cos) = ℂ
2019a1i 11 . . . 4 (𝐴 ∈ ℂ → dom (ℂ D cos) = ℂ)
21 simpl 483 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)
22 0red 10632 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → 0 ∈ ℝ)
23 id 22 . . . . . . . 8 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
2411, 23dvmptc 24482 . . . . . . 7 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 0))
25 simpr 485 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
26 1red 10630 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → 1 ∈ ℝ)
2711dvmptid 24481 . . . . . . 7 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1))
2811, 21, 22, 24, 25, 26, 27dvmptmul 24485 . . . . . 6 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) = (𝑥 ∈ ℂ ↦ ((0 · 𝑥) + (1 · 𝐴))))
2928dmeqd 5767 . . . . 5 (𝐴 ∈ ℂ → dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) = dom (𝑥 ∈ ℂ ↦ ((0 · 𝑥) + (1 · 𝐴))))
30 dmmptg 6089 . . . . . 6 (∀𝑥 ∈ ℂ ((0 · 𝑥) + (1 · 𝐴)) ∈ V → dom (𝑥 ∈ ℂ ↦ ((0 · 𝑥) + (1 · 𝐴))) = ℂ)
31 ovex 7178 . . . . . . 7 ((0 · 𝑥) + (1 · 𝐴)) ∈ V
3231a1i 11 . . . . . 6 (𝑥 ∈ ℂ → ((0 · 𝑥) + (1 · 𝐴)) ∈ V)
3330, 32mprg 3149 . . . . 5 dom (𝑥 ∈ ℂ ↦ ((0 · 𝑥) + (1 · 𝐴))) = ℂ
3429, 33syl6eq 2869 . . . 4 (𝐴 ∈ ℂ → dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) = ℂ)
3511, 11, 4, 12, 20, 34dvcof 24472 . . 3 (𝐴 ∈ ℂ → (ℂ D (cos ∘ (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = (((ℂ D cos) ∘ (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) ∘f · (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))))
36 dvcos 24507 . . . . . . 7 (ℂ D cos) = (𝑦 ∈ ℂ ↦ -(sin‘𝑦))
3736a1i 11 . . . . . 6 (𝐴 ∈ ℂ → (ℂ D cos) = (𝑦 ∈ ℂ ↦ -(sin‘𝑦)))
38 fveq2 6663 . . . . . . 7 (𝑦 = (𝐴 · 𝑥) → (sin‘𝑦) = (sin‘(𝐴 · 𝑥)))
3938negeqd 10868 . . . . . 6 (𝑦 = (𝐴 · 𝑥) → -(sin‘𝑦) = -(sin‘(𝐴 · 𝑥)))
401, 2, 37, 39fmptco 6883 . . . . 5 (𝐴 ∈ ℂ → ((ℂ D cos) ∘ (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) = (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))))
4140oveq1d 7160 . . . 4 (𝐴 ∈ ℂ → (((ℂ D cos) ∘ (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) ∘f · (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = ((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∘f · (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))))
42 cnex 10606 . . . . . . 7 ℂ ∈ V
4342mptex 6977 . . . . . 6 (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∈ V
44 ovex 7178 . . . . . 6 (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) ∈ V
45 offval3 7672 . . . . . 6 (((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∈ V ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) ∈ V) → ((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∘f · (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = (𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) ↦ (((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) · ((ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))‘𝑦))))
4643, 44, 45mp2an 688 . . . . 5 ((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∘f · (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = (𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) ↦ (((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) · ((ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))‘𝑦)))
4746a1i 11 . . . 4 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∘f · (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = (𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) ↦ (((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) · ((ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))‘𝑦))))
481sincld 15471 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (sin‘(𝐴 · 𝑥)) ∈ ℂ)
4948negcld 10972 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → -(sin‘(𝐴 · 𝑥)) ∈ ℂ)
5049ralrimiva 3179 . . . . . . . 8 (𝐴 ∈ ℂ → ∀𝑥 ∈ ℂ -(sin‘(𝐴 · 𝑥)) ∈ ℂ)
51 dmmptg 6089 . . . . . . . 8 (∀𝑥 ∈ ℂ -(sin‘(𝐴 · 𝑥)) ∈ ℂ → dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) = ℂ)
5250, 51syl 17 . . . . . . 7 (𝐴 ∈ ℂ → dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) = ℂ)
5352, 34ineq12d 4187 . . . . . 6 (𝐴 ∈ ℂ → (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = (ℂ ∩ ℂ))
54 inidm 4192 . . . . . 6 (ℂ ∩ ℂ) = ℂ
5553, 54syl6eq 2869 . . . . 5 (𝐴 ∈ ℂ → (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = ℂ)
56 simpr 485 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))))) → 𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))))
5755adantr 481 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))))) → (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = ℂ)
5856, 57eleqtrd 2912 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))))) → 𝑦 ∈ ℂ)
59 eqidd 2819 . . . . . . . . . 10 (𝑦 ∈ ℂ → (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) = (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))))
60 oveq2 7153 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝐴 · 𝑥) = (𝐴 · 𝑦))
6160fveq2d 6667 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (sin‘(𝐴 · 𝑥)) = (sin‘(𝐴 · 𝑦)))
6261negeqd 10868 . . . . . . . . . . 11 (𝑥 = 𝑦 → -(sin‘(𝐴 · 𝑥)) = -(sin‘(𝐴 · 𝑦)))
6362adantl 482 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ 𝑥 = 𝑦) → -(sin‘(𝐴 · 𝑥)) = -(sin‘(𝐴 · 𝑦)))
64 id 22 . . . . . . . . . 10 (𝑦 ∈ ℂ → 𝑦 ∈ ℂ)
65 negex 10872 . . . . . . . . . . 11 -(sin‘(𝐴 · 𝑦)) ∈ V
6665a1i 11 . . . . . . . . . 10 (𝑦 ∈ ℂ → -(sin‘(𝐴 · 𝑦)) ∈ V)
6759, 63, 64, 66fvmptd 6767 . . . . . . . . 9 (𝑦 ∈ ℂ → ((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) = -(sin‘(𝐴 · 𝑦)))
6867adantl 482 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) = -(sin‘(𝐴 · 𝑦)))
6928adantr 481 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) = (𝑥 ∈ ℂ ↦ ((0 · 𝑥) + (1 · 𝐴))))
70 oveq2 7153 . . . . . . . . . . 11 (𝑥 = 𝑦 → (0 · 𝑥) = (0 · 𝑦))
7170oveq1d 7160 . . . . . . . . . 10 (𝑥 = 𝑦 → ((0 · 𝑥) + (1 · 𝐴)) = ((0 · 𝑦) + (1 · 𝐴)))
72 mul02 10806 . . . . . . . . . . . 12 (𝑦 ∈ ℂ → (0 · 𝑦) = 0)
73 mulid2 10628 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
7472, 73oveqan12rd 7165 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((0 · 𝑦) + (1 · 𝐴)) = (0 + 𝐴))
75 addid2 10811 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴)
7675adantr 481 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 + 𝐴) = 𝐴)
7774, 76eqtrd 2853 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((0 · 𝑦) + (1 · 𝐴)) = 𝐴)
7871, 77sylan9eqr 2875 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑥 = 𝑦) → ((0 · 𝑥) + (1 · 𝐴)) = 𝐴)
79 simpr 485 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
80 simpl 483 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝐴 ∈ ℂ)
8169, 78, 79, 80fvmptd 6767 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))‘𝑦) = 𝐴)
8268, 81oveq12d 7163 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) · ((ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))‘𝑦)) = (-(sin‘(𝐴 · 𝑦)) · 𝐴))
83 mulcl 10609 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴 · 𝑦) ∈ ℂ)
8483sincld 15471 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (sin‘(𝐴 · 𝑦)) ∈ ℂ)
8584negcld 10972 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → -(sin‘(𝐴 · 𝑦)) ∈ ℂ)
8685, 80mulcomd 10650 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (-(sin‘(𝐴 · 𝑦)) · 𝐴) = (𝐴 · -(sin‘(𝐴 · 𝑦))))
8782, 86eqtrd 2853 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) · ((ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))‘𝑦)) = (𝐴 · -(sin‘(𝐴 · 𝑦))))
8858, 87syldan 591 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))))) → (((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) · ((ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))‘𝑦)) = (𝐴 · -(sin‘(𝐴 · 𝑦))))
8955, 88mpteq12dva 5141 . . . 4 (𝐴 ∈ ℂ → (𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) ↦ (((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) · ((ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))‘𝑦))) = (𝑦 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑦)))))
9041, 47, 893eqtrd 2857 . . 3 (𝐴 ∈ ℂ → (((ℂ D cos) ∘ (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) ∘f · (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = (𝑦 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑦)))))
919, 35, 903eqtrd 2857 . 2 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ (cos‘(𝐴 · 𝑥)))) = (𝑦 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑦)))))
92 oveq2 7153 . . . . . 6 (𝑦 = 𝑥 → (𝐴 · 𝑦) = (𝐴 · 𝑥))
9392fveq2d 6667 . . . . 5 (𝑦 = 𝑥 → (sin‘(𝐴 · 𝑦)) = (sin‘(𝐴 · 𝑥)))
9493negeqd 10868 . . . 4 (𝑦 = 𝑥 → -(sin‘(𝐴 · 𝑦)) = -(sin‘(𝐴 · 𝑥)))
9594oveq2d 7161 . . 3 (𝑦 = 𝑥 → (𝐴 · -(sin‘(𝐴 · 𝑦))) = (𝐴 · -(sin‘(𝐴 · 𝑥))))
9695cbvmptv 5160 . 2 (𝑦 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑦)))) = (𝑥 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑥))))
9791, 96syl6eq 2869 1 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ (cos‘(𝐴 · 𝑥)))) = (𝑥 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  wral 3135  Vcvv 3492  cin 3932  {cpr 4559  cmpt 5137  dom cdm 5548  ccom 5552  wf 6344  cfv 6348  (class class class)co 7145  f cof 7396  cc 10523  cr 10524  0cc0 10525  1c1 10526   + caddc 10528   · cmul 10530  -cneg 10859  sincsin 15405  cosccos 15406   D cdv 24388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-fl 13150  df-seq 13358  df-exp 13418  df-fac 13622  df-bc 13651  df-hash 13679  df-shft 14414  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-limsup 14816  df-clim 14833  df-rlim 14834  df-sum 15031  df-ef 15409  df-sin 15411  df-cos 15412  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-rest 16684  df-topn 16685  df-0g 16703  df-gsum 16704  df-topgen 16705  df-pt 16706  df-prds 16709  df-xrs 16763  df-qtop 16768  df-imas 16769  df-xps 16771  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-mulg 18163  df-cntz 18385  df-cmn 18837  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-fbas 20470  df-fg 20471  df-cnfld 20474  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-cld 21555  df-ntr 21556  df-cls 21557  df-nei 21634  df-lp 21672  df-perf 21673  df-cn 21763  df-cnp 21764  df-haus 21851  df-tx 22098  df-hmeo 22291  df-fil 22382  df-fm 22474  df-flim 22475  df-flf 22476  df-xms 22857  df-ms 22858  df-tms 22859  df-cncf 23413  df-limc 24391  df-dv 24392
This theorem is referenced by:  itgsincmulx  42135
  Copyright terms: Public domain W3C validator