Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvcosax Structured version   Visualization version   GIF version

Theorem dvcosax 43438
Description: Derivative exercise: the derivative with respect to x of cos(Ax), given a constant 𝐴. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
dvcosax (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ (cos‘(𝐴 · 𝑥)))) = (𝑥 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑥)))))
Distinct variable group:   𝑥,𝐴

Proof of Theorem dvcosax
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mulcl 10956 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐴 · 𝑥) ∈ ℂ)
2 eqidd 2741 . . . . . 6 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)) = (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))
3 cosf 15832 . . . . . . . 8 cos:ℂ⟶ℂ
43a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → cos:ℂ⟶ℂ)
54feqmptd 6834 . . . . . 6 (𝐴 ∈ ℂ → cos = (𝑦 ∈ ℂ ↦ (cos‘𝑦)))
6 fveq2 6771 . . . . . 6 (𝑦 = (𝐴 · 𝑥) → (cos‘𝑦) = (cos‘(𝐴 · 𝑥)))
71, 2, 5, 6fmptco 6998 . . . . 5 (𝐴 ∈ ℂ → (cos ∘ (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) = (𝑥 ∈ ℂ ↦ (cos‘(𝐴 · 𝑥))))
87eqcomd 2746 . . . 4 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ (cos‘(𝐴 · 𝑥))) = (cos ∘ (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))))
98oveq2d 7287 . . 3 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ (cos‘(𝐴 · 𝑥)))) = (ℂ D (cos ∘ (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))))
10 cnelprrecn 10965 . . . . 5 ℂ ∈ {ℝ, ℂ}
1110a1i 11 . . . 4 (𝐴 ∈ ℂ → ℂ ∈ {ℝ, ℂ})
121fmpttd 6986 . . . 4 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)):ℂ⟶ℂ)
13 dvcos 25145 . . . . . . 7 (ℂ D cos) = (𝑥 ∈ ℂ ↦ -(sin‘𝑥))
1413dmeqi 5812 . . . . . 6 dom (ℂ D cos) = dom (𝑥 ∈ ℂ ↦ -(sin‘𝑥))
15 dmmptg 6144 . . . . . . 7 (∀𝑥 ∈ ℂ -(sin‘𝑥) ∈ ℂ → dom (𝑥 ∈ ℂ ↦ -(sin‘𝑥)) = ℂ)
16 sincl 15833 . . . . . . . 8 (𝑥 ∈ ℂ → (sin‘𝑥) ∈ ℂ)
1716negcld 11319 . . . . . . 7 (𝑥 ∈ ℂ → -(sin‘𝑥) ∈ ℂ)
1815, 17mprg 3080 . . . . . 6 dom (𝑥 ∈ ℂ ↦ -(sin‘𝑥)) = ℂ
1914, 18eqtri 2768 . . . . 5 dom (ℂ D cos) = ℂ
2019a1i 11 . . . 4 (𝐴 ∈ ℂ → dom (ℂ D cos) = ℂ)
21 simpl 483 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)
22 0red 10979 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → 0 ∈ ℝ)
23 id 22 . . . . . . . 8 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
2411, 23dvmptc 25120 . . . . . . 7 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 0))
25 simpr 485 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
26 1red 10977 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → 1 ∈ ℝ)
2711dvmptid 25119 . . . . . . 7 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1))
2811, 21, 22, 24, 25, 26, 27dvmptmul 25123 . . . . . 6 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) = (𝑥 ∈ ℂ ↦ ((0 · 𝑥) + (1 · 𝐴))))
2928dmeqd 5813 . . . . 5 (𝐴 ∈ ℂ → dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) = dom (𝑥 ∈ ℂ ↦ ((0 · 𝑥) + (1 · 𝐴))))
30 dmmptg 6144 . . . . . 6 (∀𝑥 ∈ ℂ ((0 · 𝑥) + (1 · 𝐴)) ∈ V → dom (𝑥 ∈ ℂ ↦ ((0 · 𝑥) + (1 · 𝐴))) = ℂ)
31 ovex 7304 . . . . . . 7 ((0 · 𝑥) + (1 · 𝐴)) ∈ V
3231a1i 11 . . . . . 6 (𝑥 ∈ ℂ → ((0 · 𝑥) + (1 · 𝐴)) ∈ V)
3330, 32mprg 3080 . . . . 5 dom (𝑥 ∈ ℂ ↦ ((0 · 𝑥) + (1 · 𝐴))) = ℂ
3429, 33eqtrdi 2796 . . . 4 (𝐴 ∈ ℂ → dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) = ℂ)
3511, 11, 4, 12, 20, 34dvcof 25110 . . 3 (𝐴 ∈ ℂ → (ℂ D (cos ∘ (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = (((ℂ D cos) ∘ (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) ∘f · (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))))
36 dvcos 25145 . . . . . . 7 (ℂ D cos) = (𝑦 ∈ ℂ ↦ -(sin‘𝑦))
3736a1i 11 . . . . . 6 (𝐴 ∈ ℂ → (ℂ D cos) = (𝑦 ∈ ℂ ↦ -(sin‘𝑦)))
38 fveq2 6771 . . . . . . 7 (𝑦 = (𝐴 · 𝑥) → (sin‘𝑦) = (sin‘(𝐴 · 𝑥)))
3938negeqd 11215 . . . . . 6 (𝑦 = (𝐴 · 𝑥) → -(sin‘𝑦) = -(sin‘(𝐴 · 𝑥)))
401, 2, 37, 39fmptco 6998 . . . . 5 (𝐴 ∈ ℂ → ((ℂ D cos) ∘ (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) = (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))))
4140oveq1d 7286 . . . 4 (𝐴 ∈ ℂ → (((ℂ D cos) ∘ (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) ∘f · (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = ((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∘f · (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))))
42 cnex 10953 . . . . . . 7 ℂ ∈ V
4342mptex 7096 . . . . . 6 (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∈ V
44 ovex 7304 . . . . . 6 (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) ∈ V
45 offval3 7818 . . . . . 6 (((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∈ V ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) ∈ V) → ((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∘f · (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = (𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) ↦ (((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) · ((ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))‘𝑦))))
4643, 44, 45mp2an 689 . . . . 5 ((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∘f · (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = (𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) ↦ (((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) · ((ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))‘𝑦)))
4746a1i 11 . . . 4 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∘f · (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = (𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) ↦ (((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) · ((ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))‘𝑦))))
481sincld 15837 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (sin‘(𝐴 · 𝑥)) ∈ ℂ)
4948negcld 11319 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → -(sin‘(𝐴 · 𝑥)) ∈ ℂ)
5049ralrimiva 3110 . . . . . . . 8 (𝐴 ∈ ℂ → ∀𝑥 ∈ ℂ -(sin‘(𝐴 · 𝑥)) ∈ ℂ)
51 dmmptg 6144 . . . . . . . 8 (∀𝑥 ∈ ℂ -(sin‘(𝐴 · 𝑥)) ∈ ℂ → dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) = ℂ)
5250, 51syl 17 . . . . . . 7 (𝐴 ∈ ℂ → dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) = ℂ)
5352, 34ineq12d 4153 . . . . . 6 (𝐴 ∈ ℂ → (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = (ℂ ∩ ℂ))
54 inidm 4158 . . . . . 6 (ℂ ∩ ℂ) = ℂ
5553, 54eqtrdi 2796 . . . . 5 (𝐴 ∈ ℂ → (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = ℂ)
56 simpr 485 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))))) → 𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))))
5755adantr 481 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))))) → (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = ℂ)
5856, 57eleqtrd 2843 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))))) → 𝑦 ∈ ℂ)
59 eqidd 2741 . . . . . . . . . 10 (𝑦 ∈ ℂ → (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) = (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))))
60 oveq2 7279 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝐴 · 𝑥) = (𝐴 · 𝑦))
6160fveq2d 6775 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (sin‘(𝐴 · 𝑥)) = (sin‘(𝐴 · 𝑦)))
6261negeqd 11215 . . . . . . . . . . 11 (𝑥 = 𝑦 → -(sin‘(𝐴 · 𝑥)) = -(sin‘(𝐴 · 𝑦)))
6362adantl 482 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ 𝑥 = 𝑦) → -(sin‘(𝐴 · 𝑥)) = -(sin‘(𝐴 · 𝑦)))
64 id 22 . . . . . . . . . 10 (𝑦 ∈ ℂ → 𝑦 ∈ ℂ)
65 negex 11219 . . . . . . . . . . 11 -(sin‘(𝐴 · 𝑦)) ∈ V
6665a1i 11 . . . . . . . . . 10 (𝑦 ∈ ℂ → -(sin‘(𝐴 · 𝑦)) ∈ V)
6759, 63, 64, 66fvmptd 6879 . . . . . . . . 9 (𝑦 ∈ ℂ → ((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) = -(sin‘(𝐴 · 𝑦)))
6867adantl 482 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) = -(sin‘(𝐴 · 𝑦)))
6928adantr 481 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) = (𝑥 ∈ ℂ ↦ ((0 · 𝑥) + (1 · 𝐴))))
70 oveq2 7279 . . . . . . . . . . 11 (𝑥 = 𝑦 → (0 · 𝑥) = (0 · 𝑦))
7170oveq1d 7286 . . . . . . . . . 10 (𝑥 = 𝑦 → ((0 · 𝑥) + (1 · 𝐴)) = ((0 · 𝑦) + (1 · 𝐴)))
72 mul02 11153 . . . . . . . . . . . 12 (𝑦 ∈ ℂ → (0 · 𝑦) = 0)
73 mulid2 10975 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
7472, 73oveqan12rd 7291 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((0 · 𝑦) + (1 · 𝐴)) = (0 + 𝐴))
75 addid2 11158 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴)
7675adantr 481 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 + 𝐴) = 𝐴)
7774, 76eqtrd 2780 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((0 · 𝑦) + (1 · 𝐴)) = 𝐴)
7871, 77sylan9eqr 2802 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑥 = 𝑦) → ((0 · 𝑥) + (1 · 𝐴)) = 𝐴)
79 simpr 485 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
80 simpl 483 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝐴 ∈ ℂ)
8169, 78, 79, 80fvmptd 6879 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))‘𝑦) = 𝐴)
8268, 81oveq12d 7289 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) · ((ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))‘𝑦)) = (-(sin‘(𝐴 · 𝑦)) · 𝐴))
83 mulcl 10956 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴 · 𝑦) ∈ ℂ)
8483sincld 15837 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (sin‘(𝐴 · 𝑦)) ∈ ℂ)
8584negcld 11319 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → -(sin‘(𝐴 · 𝑦)) ∈ ℂ)
8685, 80mulcomd 10997 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (-(sin‘(𝐴 · 𝑦)) · 𝐴) = (𝐴 · -(sin‘(𝐴 · 𝑦))))
8782, 86eqtrd 2780 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) · ((ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))‘𝑦)) = (𝐴 · -(sin‘(𝐴 · 𝑦))))
8858, 87syldan 591 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))))) → (((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) · ((ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))‘𝑦)) = (𝐴 · -(sin‘(𝐴 · 𝑦))))
8955, 88mpteq12dva 5168 . . . 4 (𝐴 ∈ ℂ → (𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) ↦ (((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) · ((ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))‘𝑦))) = (𝑦 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑦)))))
9041, 47, 893eqtrd 2784 . . 3 (𝐴 ∈ ℂ → (((ℂ D cos) ∘ (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) ∘f · (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = (𝑦 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑦)))))
919, 35, 903eqtrd 2784 . 2 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ (cos‘(𝐴 · 𝑥)))) = (𝑦 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑦)))))
92 oveq2 7279 . . . . . 6 (𝑦 = 𝑥 → (𝐴 · 𝑦) = (𝐴 · 𝑥))
9392fveq2d 6775 . . . . 5 (𝑦 = 𝑥 → (sin‘(𝐴 · 𝑦)) = (sin‘(𝐴 · 𝑥)))
9493negeqd 11215 . . . 4 (𝑦 = 𝑥 → -(sin‘(𝐴 · 𝑦)) = -(sin‘(𝐴 · 𝑥)))
9594oveq2d 7287 . . 3 (𝑦 = 𝑥 → (𝐴 · -(sin‘(𝐴 · 𝑦))) = (𝐴 · -(sin‘(𝐴 · 𝑥))))
9695cbvmptv 5192 . 2 (𝑦 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑦)))) = (𝑥 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑥))))
9791, 96eqtrdi 2796 1 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ (cos‘(𝐴 · 𝑥)))) = (𝑥 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  wral 3066  Vcvv 3431  cin 3891  {cpr 4569  cmpt 5162  dom cdm 5590  ccom 5594  wf 6428  cfv 6432  (class class class)co 7271  f cof 7525  cc 10870  cr 10871  0cc0 10872  1c1 10873   + caddc 10875   · cmul 10877  -cneg 11206  sincsin 15771  cosccos 15772   D cdv 25025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-inf2 9377  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950  ax-addf 10951  ax-mulf 10952
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-of 7527  df-om 7707  df-1st 7824  df-2nd 7825  df-supp 7969  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-2o 8289  df-er 8481  df-map 8600  df-pm 8601  df-ixp 8669  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-fsupp 9107  df-fi 9148  df-sup 9179  df-inf 9180  df-oi 9247  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12437  df-uz 12582  df-q 12688  df-rp 12730  df-xneg 12847  df-xadd 12848  df-xmul 12849  df-ico 13084  df-icc 13085  df-fz 13239  df-fzo 13382  df-fl 13510  df-seq 13720  df-exp 13781  df-fac 13986  df-bc 14015  df-hash 14043  df-shft 14776  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-limsup 15178  df-clim 15195  df-rlim 15196  df-sum 15396  df-ef 15775  df-sin 15777  df-cos 15778  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-starv 16975  df-sca 16976  df-vsca 16977  df-ip 16978  df-tset 16979  df-ple 16980  df-ds 16982  df-unif 16983  df-hom 16984  df-cco 16985  df-rest 17131  df-topn 17132  df-0g 17150  df-gsum 17151  df-topgen 17152  df-pt 17153  df-prds 17156  df-xrs 17211  df-qtop 17216  df-imas 17217  df-xps 17219  df-mre 17293  df-mrc 17294  df-acs 17296  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-submnd 18429  df-mulg 18699  df-cntz 18921  df-cmn 19386  df-psmet 20587  df-xmet 20588  df-met 20589  df-bl 20590  df-mopn 20591  df-fbas 20592  df-fg 20593  df-cnfld 20596  df-top 22041  df-topon 22058  df-topsp 22080  df-bases 22094  df-cld 22168  df-ntr 22169  df-cls 22170  df-nei 22247  df-lp 22285  df-perf 22286  df-cn 22376  df-cnp 22377  df-haus 22464  df-tx 22711  df-hmeo 22904  df-fil 22995  df-fm 23087  df-flim 23088  df-flf 23089  df-xms 23471  df-ms 23472  df-tms 23473  df-cncf 24039  df-limc 25028  df-dv 25029
This theorem is referenced by:  itgsincmulx  43486
  Copyright terms: Public domain W3C validator