Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvcosax Structured version   Visualization version   GIF version

Theorem dvcosax 45924
Description: Derivative exercise: the derivative with respect to x of cos(Ax), given a constant 𝐴. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
dvcosax (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ (cos‘(𝐴 · 𝑥)))) = (𝑥 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑥)))))
Distinct variable group:   𝑥,𝐴

Proof of Theorem dvcosax
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mulcl 11152 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐴 · 𝑥) ∈ ℂ)
2 eqidd 2730 . . . . . 6 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)) = (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))
3 cosf 16093 . . . . . . . 8 cos:ℂ⟶ℂ
43a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → cos:ℂ⟶ℂ)
54feqmptd 6929 . . . . . 6 (𝐴 ∈ ℂ → cos = (𝑦 ∈ ℂ ↦ (cos‘𝑦)))
6 fveq2 6858 . . . . . 6 (𝑦 = (𝐴 · 𝑥) → (cos‘𝑦) = (cos‘(𝐴 · 𝑥)))
71, 2, 5, 6fmptco 7101 . . . . 5 (𝐴 ∈ ℂ → (cos ∘ (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) = (𝑥 ∈ ℂ ↦ (cos‘(𝐴 · 𝑥))))
87eqcomd 2735 . . . 4 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ (cos‘(𝐴 · 𝑥))) = (cos ∘ (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))))
98oveq2d 7403 . . 3 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ (cos‘(𝐴 · 𝑥)))) = (ℂ D (cos ∘ (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))))
10 cnelprrecn 11161 . . . . 5 ℂ ∈ {ℝ, ℂ}
1110a1i 11 . . . 4 (𝐴 ∈ ℂ → ℂ ∈ {ℝ, ℂ})
121fmpttd 7087 . . . 4 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)):ℂ⟶ℂ)
13 dvcos 25887 . . . . . . 7 (ℂ D cos) = (𝑥 ∈ ℂ ↦ -(sin‘𝑥))
1413dmeqi 5868 . . . . . 6 dom (ℂ D cos) = dom (𝑥 ∈ ℂ ↦ -(sin‘𝑥))
15 dmmptg 6215 . . . . . . 7 (∀𝑥 ∈ ℂ -(sin‘𝑥) ∈ ℂ → dom (𝑥 ∈ ℂ ↦ -(sin‘𝑥)) = ℂ)
16 sincl 16094 . . . . . . . 8 (𝑥 ∈ ℂ → (sin‘𝑥) ∈ ℂ)
1716negcld 11520 . . . . . . 7 (𝑥 ∈ ℂ → -(sin‘𝑥) ∈ ℂ)
1815, 17mprg 3050 . . . . . 6 dom (𝑥 ∈ ℂ ↦ -(sin‘𝑥)) = ℂ
1914, 18eqtri 2752 . . . . 5 dom (ℂ D cos) = ℂ
2019a1i 11 . . . 4 (𝐴 ∈ ℂ → dom (ℂ D cos) = ℂ)
21 simpl 482 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)
22 0red 11177 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → 0 ∈ ℝ)
23 id 22 . . . . . . . 8 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
2411, 23dvmptc 25862 . . . . . . 7 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 0))
25 simpr 484 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
26 1red 11175 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → 1 ∈ ℝ)
2711dvmptid 25861 . . . . . . 7 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1))
2811, 21, 22, 24, 25, 26, 27dvmptmul 25865 . . . . . 6 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) = (𝑥 ∈ ℂ ↦ ((0 · 𝑥) + (1 · 𝐴))))
2928dmeqd 5869 . . . . 5 (𝐴 ∈ ℂ → dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) = dom (𝑥 ∈ ℂ ↦ ((0 · 𝑥) + (1 · 𝐴))))
30 dmmptg 6215 . . . . . 6 (∀𝑥 ∈ ℂ ((0 · 𝑥) + (1 · 𝐴)) ∈ V → dom (𝑥 ∈ ℂ ↦ ((0 · 𝑥) + (1 · 𝐴))) = ℂ)
31 ovex 7420 . . . . . . 7 ((0 · 𝑥) + (1 · 𝐴)) ∈ V
3231a1i 11 . . . . . 6 (𝑥 ∈ ℂ → ((0 · 𝑥) + (1 · 𝐴)) ∈ V)
3330, 32mprg 3050 . . . . 5 dom (𝑥 ∈ ℂ ↦ ((0 · 𝑥) + (1 · 𝐴))) = ℂ
3429, 33eqtrdi 2780 . . . 4 (𝐴 ∈ ℂ → dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) = ℂ)
3511, 11, 4, 12, 20, 34dvcof 25852 . . 3 (𝐴 ∈ ℂ → (ℂ D (cos ∘ (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = (((ℂ D cos) ∘ (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) ∘f · (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))))
36 dvcos 25887 . . . . . . 7 (ℂ D cos) = (𝑦 ∈ ℂ ↦ -(sin‘𝑦))
3736a1i 11 . . . . . 6 (𝐴 ∈ ℂ → (ℂ D cos) = (𝑦 ∈ ℂ ↦ -(sin‘𝑦)))
38 fveq2 6858 . . . . . . 7 (𝑦 = (𝐴 · 𝑥) → (sin‘𝑦) = (sin‘(𝐴 · 𝑥)))
3938negeqd 11415 . . . . . 6 (𝑦 = (𝐴 · 𝑥) → -(sin‘𝑦) = -(sin‘(𝐴 · 𝑥)))
401, 2, 37, 39fmptco 7101 . . . . 5 (𝐴 ∈ ℂ → ((ℂ D cos) ∘ (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) = (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))))
4140oveq1d 7402 . . . 4 (𝐴 ∈ ℂ → (((ℂ D cos) ∘ (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) ∘f · (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = ((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∘f · (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))))
42 cnex 11149 . . . . . . 7 ℂ ∈ V
4342mptex 7197 . . . . . 6 (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∈ V
44 ovex 7420 . . . . . 6 (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) ∈ V
45 offval3 7961 . . . . . 6 (((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∈ V ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) ∈ V) → ((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∘f · (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = (𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) ↦ (((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) · ((ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))‘𝑦))))
4643, 44, 45mp2an 692 . . . . 5 ((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∘f · (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = (𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) ↦ (((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) · ((ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))‘𝑦)))
4746a1i 11 . . . 4 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∘f · (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = (𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) ↦ (((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) · ((ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))‘𝑦))))
481sincld 16098 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (sin‘(𝐴 · 𝑥)) ∈ ℂ)
4948negcld 11520 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → -(sin‘(𝐴 · 𝑥)) ∈ ℂ)
5049ralrimiva 3125 . . . . . . . 8 (𝐴 ∈ ℂ → ∀𝑥 ∈ ℂ -(sin‘(𝐴 · 𝑥)) ∈ ℂ)
51 dmmptg 6215 . . . . . . . 8 (∀𝑥 ∈ ℂ -(sin‘(𝐴 · 𝑥)) ∈ ℂ → dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) = ℂ)
5250, 51syl 17 . . . . . . 7 (𝐴 ∈ ℂ → dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) = ℂ)
5352, 34ineq12d 4184 . . . . . 6 (𝐴 ∈ ℂ → (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = (ℂ ∩ ℂ))
54 inidm 4190 . . . . . 6 (ℂ ∩ ℂ) = ℂ
5553, 54eqtrdi 2780 . . . . 5 (𝐴 ∈ ℂ → (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = ℂ)
56 simpr 484 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))))) → 𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))))
5755adantr 480 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))))) → (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = ℂ)
5856, 57eleqtrd 2830 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))))) → 𝑦 ∈ ℂ)
59 eqidd 2730 . . . . . . . . . 10 (𝑦 ∈ ℂ → (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) = (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))))
60 oveq2 7395 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝐴 · 𝑥) = (𝐴 · 𝑦))
6160fveq2d 6862 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (sin‘(𝐴 · 𝑥)) = (sin‘(𝐴 · 𝑦)))
6261negeqd 11415 . . . . . . . . . . 11 (𝑥 = 𝑦 → -(sin‘(𝐴 · 𝑥)) = -(sin‘(𝐴 · 𝑦)))
6362adantl 481 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ 𝑥 = 𝑦) → -(sin‘(𝐴 · 𝑥)) = -(sin‘(𝐴 · 𝑦)))
64 id 22 . . . . . . . . . 10 (𝑦 ∈ ℂ → 𝑦 ∈ ℂ)
65 negex 11419 . . . . . . . . . . 11 -(sin‘(𝐴 · 𝑦)) ∈ V
6665a1i 11 . . . . . . . . . 10 (𝑦 ∈ ℂ → -(sin‘(𝐴 · 𝑦)) ∈ V)
6759, 63, 64, 66fvmptd 6975 . . . . . . . . 9 (𝑦 ∈ ℂ → ((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) = -(sin‘(𝐴 · 𝑦)))
6867adantl 481 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) = -(sin‘(𝐴 · 𝑦)))
6928adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) = (𝑥 ∈ ℂ ↦ ((0 · 𝑥) + (1 · 𝐴))))
70 oveq2 7395 . . . . . . . . . . 11 (𝑥 = 𝑦 → (0 · 𝑥) = (0 · 𝑦))
7170oveq1d 7402 . . . . . . . . . 10 (𝑥 = 𝑦 → ((0 · 𝑥) + (1 · 𝐴)) = ((0 · 𝑦) + (1 · 𝐴)))
72 mul02 11352 . . . . . . . . . . . 12 (𝑦 ∈ ℂ → (0 · 𝑦) = 0)
73 mullid 11173 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
7472, 73oveqan12rd 7407 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((0 · 𝑦) + (1 · 𝐴)) = (0 + 𝐴))
75 addlid 11357 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴)
7675adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 + 𝐴) = 𝐴)
7774, 76eqtrd 2764 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((0 · 𝑦) + (1 · 𝐴)) = 𝐴)
7871, 77sylan9eqr 2786 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑥 = 𝑦) → ((0 · 𝑥) + (1 · 𝐴)) = 𝐴)
79 simpr 484 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
80 simpl 482 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝐴 ∈ ℂ)
8169, 78, 79, 80fvmptd 6975 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))‘𝑦) = 𝐴)
8268, 81oveq12d 7405 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) · ((ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))‘𝑦)) = (-(sin‘(𝐴 · 𝑦)) · 𝐴))
83 mulcl 11152 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴 · 𝑦) ∈ ℂ)
8483sincld 16098 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (sin‘(𝐴 · 𝑦)) ∈ ℂ)
8584negcld 11520 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → -(sin‘(𝐴 · 𝑦)) ∈ ℂ)
8685, 80mulcomd 11195 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (-(sin‘(𝐴 · 𝑦)) · 𝐴) = (𝐴 · -(sin‘(𝐴 · 𝑦))))
8782, 86eqtrd 2764 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) · ((ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))‘𝑦)) = (𝐴 · -(sin‘(𝐴 · 𝑦))))
8858, 87syldan 591 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))))) → (((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) · ((ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))‘𝑦)) = (𝐴 · -(sin‘(𝐴 · 𝑦))))
8955, 88mpteq12dva 5193 . . . 4 (𝐴 ∈ ℂ → (𝑦 ∈ (dom (𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥))) ∩ dom (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) ↦ (((𝑥 ∈ ℂ ↦ -(sin‘(𝐴 · 𝑥)))‘𝑦) · ((ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))‘𝑦))) = (𝑦 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑦)))))
9041, 47, 893eqtrd 2768 . . 3 (𝐴 ∈ ℂ → (((ℂ D cos) ∘ (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))) ∘f · (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)))) = (𝑦 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑦)))))
919, 35, 903eqtrd 2768 . 2 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ (cos‘(𝐴 · 𝑥)))) = (𝑦 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑦)))))
92 oveq2 7395 . . . . . 6 (𝑦 = 𝑥 → (𝐴 · 𝑦) = (𝐴 · 𝑥))
9392fveq2d 6862 . . . . 5 (𝑦 = 𝑥 → (sin‘(𝐴 · 𝑦)) = (sin‘(𝐴 · 𝑥)))
9493negeqd 11415 . . . 4 (𝑦 = 𝑥 → -(sin‘(𝐴 · 𝑦)) = -(sin‘(𝐴 · 𝑥)))
9594oveq2d 7403 . . 3 (𝑦 = 𝑥 → (𝐴 · -(sin‘(𝐴 · 𝑦))) = (𝐴 · -(sin‘(𝐴 · 𝑥))))
9695cbvmptv 5211 . 2 (𝑦 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑦)))) = (𝑥 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑥))))
9791, 96eqtrdi 2780 1 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ (cos‘(𝐴 · 𝑥)))) = (𝑥 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  cin 3913  {cpr 4591  cmpt 5188  dom cdm 5638  ccom 5642  wf 6507  cfv 6511  (class class class)co 7387  f cof 7651  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  -cneg 11406  sincsin 16029  cosccos 16030   D cdv 25764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768
This theorem is referenced by:  itgsincmulx  45972
  Copyright terms: Public domain W3C validator