MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxmpt Structured version   Visualization version   GIF version

Theorem pfxmpt 14661
Description: Value of the prefix extractor as a mapping. (Contributed by AV, 2-May-2020.)
Assertion
Ref Expression
pfxmpt ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 prefix 𝐿) = (𝑥 ∈ (0..^𝐿) ↦ (𝑆𝑥)))
Distinct variable groups:   𝑥,𝐿   𝑥,𝑆   𝑥,𝐴

Proof of Theorem pfxmpt
StepHypRef Expression
1 elfznn0 13627 . . 3 (𝐿 ∈ (0...(♯‘𝑆)) → 𝐿 ∈ ℕ0)
2 pfxval 14656 . . 3 ((𝑆 ∈ Word 𝐴𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) = (𝑆 substr ⟨0, 𝐿⟩))
31, 2sylan2 592 . 2 ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 prefix 𝐿) = (𝑆 substr ⟨0, 𝐿⟩))
4 simpl 482 . . 3 ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → 𝑆 ∈ Word 𝐴)
51adantl 481 . . . 4 ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → 𝐿 ∈ ℕ0)
6 0elfz 13631 . . . 4 (𝐿 ∈ ℕ0 → 0 ∈ (0...𝐿))
75, 6syl 17 . . 3 ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → 0 ∈ (0...𝐿))
8 simpr 484 . . 3 ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → 𝐿 ∈ (0...(♯‘𝑆)))
9 swrdval2 14629 . . 3 ((𝑆 ∈ Word 𝐴 ∧ 0 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr ⟨0, 𝐿⟩) = (𝑥 ∈ (0..^(𝐿 − 0)) ↦ (𝑆‘(𝑥 + 0))))
104, 7, 8, 9syl3anc 1369 . 2 ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr ⟨0, 𝐿⟩) = (𝑥 ∈ (0..^(𝐿 − 0)) ↦ (𝑆‘(𝑥 + 0))))
11 nn0cn 12513 . . . . . . 7 (𝐿 ∈ ℕ0𝐿 ∈ ℂ)
1211subid1d 11591 . . . . . 6 (𝐿 ∈ ℕ0 → (𝐿 − 0) = 𝐿)
131, 12syl 17 . . . . 5 (𝐿 ∈ (0...(♯‘𝑆)) → (𝐿 − 0) = 𝐿)
1413oveq2d 7436 . . . 4 (𝐿 ∈ (0...(♯‘𝑆)) → (0..^(𝐿 − 0)) = (0..^𝐿))
1514adantl 481 . . 3 ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → (0..^(𝐿 − 0)) = (0..^𝐿))
16 elfzonn0 13710 . . . . . 6 (𝑥 ∈ (0..^(𝐿 − 0)) → 𝑥 ∈ ℕ0)
17 nn0cn 12513 . . . . . . 7 (𝑥 ∈ ℕ0𝑥 ∈ ℂ)
1817addridd 11445 . . . . . 6 (𝑥 ∈ ℕ0 → (𝑥 + 0) = 𝑥)
1916, 18syl 17 . . . . 5 (𝑥 ∈ (0..^(𝐿 − 0)) → (𝑥 + 0) = 𝑥)
2019fveq2d 6901 . . . 4 (𝑥 ∈ (0..^(𝐿 − 0)) → (𝑆‘(𝑥 + 0)) = (𝑆𝑥))
2120adantl 481 . . 3 (((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) ∧ 𝑥 ∈ (0..^(𝐿 − 0))) → (𝑆‘(𝑥 + 0)) = (𝑆𝑥))
2215, 21mpteq12dva 5237 . 2 ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → (𝑥 ∈ (0..^(𝐿 − 0)) ↦ (𝑆‘(𝑥 + 0))) = (𝑥 ∈ (0..^𝐿) ↦ (𝑆𝑥)))
233, 10, 223eqtrd 2772 1 ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 prefix 𝐿) = (𝑥 ∈ (0..^𝐿) ↦ (𝑆𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  cop 4635  cmpt 5231  cfv 6548  (class class class)co 7420  0cc0 11139   + caddc 11142  cmin 11475  0cn0 12503  ...cfz 13517  ..^cfzo 13660  chash 14322  Word cword 14497   substr csubstr 14623   prefix cpfx 14653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9963  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-n0 12504  df-z 12590  df-uz 12854  df-fz 13518  df-fzo 13661  df-hash 14323  df-word 14498  df-substr 14624  df-pfx 14654
This theorem is referenced by:  pfxres  14662  pfxf  14663  psgnunilem5  19449
  Copyright terms: Public domain W3C validator