MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxmpt Structured version   Visualization version   GIF version

Theorem pfxmpt 14632
Description: Value of the prefix extractor as a mapping. (Contributed by AV, 2-May-2020.)
Assertion
Ref Expression
pfxmpt ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 prefix 𝐿) = (𝑥 ∈ (0..^𝐿) ↦ (𝑆𝑥)))
Distinct variable groups:   𝑥,𝐿   𝑥,𝑆   𝑥,𝐴

Proof of Theorem pfxmpt
StepHypRef Expression
1 elfznn0 13597 . . 3 (𝐿 ∈ (0...(♯‘𝑆)) → 𝐿 ∈ ℕ0)
2 pfxval 14627 . . 3 ((𝑆 ∈ Word 𝐴𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) = (𝑆 substr ⟨0, 𝐿⟩))
31, 2sylan2 592 . 2 ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 prefix 𝐿) = (𝑆 substr ⟨0, 𝐿⟩))
4 simpl 482 . . 3 ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → 𝑆 ∈ Word 𝐴)
51adantl 481 . . . 4 ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → 𝐿 ∈ ℕ0)
6 0elfz 13601 . . . 4 (𝐿 ∈ ℕ0 → 0 ∈ (0...𝐿))
75, 6syl 17 . . 3 ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → 0 ∈ (0...𝐿))
8 simpr 484 . . 3 ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → 𝐿 ∈ (0...(♯‘𝑆)))
9 swrdval2 14600 . . 3 ((𝑆 ∈ Word 𝐴 ∧ 0 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr ⟨0, 𝐿⟩) = (𝑥 ∈ (0..^(𝐿 − 0)) ↦ (𝑆‘(𝑥 + 0))))
104, 7, 8, 9syl3anc 1368 . 2 ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr ⟨0, 𝐿⟩) = (𝑥 ∈ (0..^(𝐿 − 0)) ↦ (𝑆‘(𝑥 + 0))))
11 nn0cn 12483 . . . . . . 7 (𝐿 ∈ ℕ0𝐿 ∈ ℂ)
1211subid1d 11561 . . . . . 6 (𝐿 ∈ ℕ0 → (𝐿 − 0) = 𝐿)
131, 12syl 17 . . . . 5 (𝐿 ∈ (0...(♯‘𝑆)) → (𝐿 − 0) = 𝐿)
1413oveq2d 7420 . . . 4 (𝐿 ∈ (0...(♯‘𝑆)) → (0..^(𝐿 − 0)) = (0..^𝐿))
1514adantl 481 . . 3 ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → (0..^(𝐿 − 0)) = (0..^𝐿))
16 elfzonn0 13680 . . . . . 6 (𝑥 ∈ (0..^(𝐿 − 0)) → 𝑥 ∈ ℕ0)
17 nn0cn 12483 . . . . . . 7 (𝑥 ∈ ℕ0𝑥 ∈ ℂ)
1817addridd 11415 . . . . . 6 (𝑥 ∈ ℕ0 → (𝑥 + 0) = 𝑥)
1916, 18syl 17 . . . . 5 (𝑥 ∈ (0..^(𝐿 − 0)) → (𝑥 + 0) = 𝑥)
2019fveq2d 6888 . . . 4 (𝑥 ∈ (0..^(𝐿 − 0)) → (𝑆‘(𝑥 + 0)) = (𝑆𝑥))
2120adantl 481 . . 3 (((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) ∧ 𝑥 ∈ (0..^(𝐿 − 0))) → (𝑆‘(𝑥 + 0)) = (𝑆𝑥))
2215, 21mpteq12dva 5230 . 2 ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → (𝑥 ∈ (0..^(𝐿 − 0)) ↦ (𝑆‘(𝑥 + 0))) = (𝑥 ∈ (0..^𝐿) ↦ (𝑆𝑥)))
233, 10, 223eqtrd 2770 1 ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 prefix 𝐿) = (𝑥 ∈ (0..^𝐿) ↦ (𝑆𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  cop 4629  cmpt 5224  cfv 6536  (class class class)co 7404  0cc0 11109   + caddc 11112  cmin 11445  0cn0 12473  ...cfz 13487  ..^cfzo 13630  chash 14293  Word cword 14468   substr csubstr 14594   prefix cpfx 14624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-card 9933  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-n0 12474  df-z 12560  df-uz 12824  df-fz 13488  df-fzo 13631  df-hash 14294  df-word 14469  df-substr 14595  df-pfx 14625
This theorem is referenced by:  pfxres  14633  pfxf  14634  psgnunilem5  19412
  Copyright terms: Public domain W3C validator