MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxmpt Structured version   Visualization version   GIF version

Theorem pfxmpt 14040
Description: Value of the prefix extractor as a mapping. (Contributed by AV, 2-May-2020.)
Assertion
Ref Expression
pfxmpt ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 prefix 𝐿) = (𝑥 ∈ (0..^𝐿) ↦ (𝑆𝑥)))
Distinct variable groups:   𝑥,𝐿   𝑥,𝑆   𝑥,𝐴

Proof of Theorem pfxmpt
StepHypRef Expression
1 elfznn0 13001 . . 3 (𝐿 ∈ (0...(♯‘𝑆)) → 𝐿 ∈ ℕ0)
2 pfxval 14035 . . 3 ((𝑆 ∈ Word 𝐴𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) = (𝑆 substr ⟨0, 𝐿⟩))
31, 2sylan2 594 . 2 ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 prefix 𝐿) = (𝑆 substr ⟨0, 𝐿⟩))
4 simpl 485 . . 3 ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → 𝑆 ∈ Word 𝐴)
51adantl 484 . . . 4 ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → 𝐿 ∈ ℕ0)
6 0elfz 13005 . . . 4 (𝐿 ∈ ℕ0 → 0 ∈ (0...𝐿))
75, 6syl 17 . . 3 ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → 0 ∈ (0...𝐿))
8 simpr 487 . . 3 ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → 𝐿 ∈ (0...(♯‘𝑆)))
9 swrdval2 14008 . . 3 ((𝑆 ∈ Word 𝐴 ∧ 0 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr ⟨0, 𝐿⟩) = (𝑥 ∈ (0..^(𝐿 − 0)) ↦ (𝑆‘(𝑥 + 0))))
104, 7, 8, 9syl3anc 1367 . 2 ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr ⟨0, 𝐿⟩) = (𝑥 ∈ (0..^(𝐿 − 0)) ↦ (𝑆‘(𝑥 + 0))))
11 nn0cn 11908 . . . . . . 7 (𝐿 ∈ ℕ0𝐿 ∈ ℂ)
1211subid1d 10986 . . . . . 6 (𝐿 ∈ ℕ0 → (𝐿 − 0) = 𝐿)
131, 12syl 17 . . . . 5 (𝐿 ∈ (0...(♯‘𝑆)) → (𝐿 − 0) = 𝐿)
1413oveq2d 7172 . . . 4 (𝐿 ∈ (0...(♯‘𝑆)) → (0..^(𝐿 − 0)) = (0..^𝐿))
1514adantl 484 . . 3 ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → (0..^(𝐿 − 0)) = (0..^𝐿))
16 elfzonn0 13083 . . . . . 6 (𝑥 ∈ (0..^(𝐿 − 0)) → 𝑥 ∈ ℕ0)
17 nn0cn 11908 . . . . . . 7 (𝑥 ∈ ℕ0𝑥 ∈ ℂ)
1817addid1d 10840 . . . . . 6 (𝑥 ∈ ℕ0 → (𝑥 + 0) = 𝑥)
1916, 18syl 17 . . . . 5 (𝑥 ∈ (0..^(𝐿 − 0)) → (𝑥 + 0) = 𝑥)
2019fveq2d 6674 . . . 4 (𝑥 ∈ (0..^(𝐿 − 0)) → (𝑆‘(𝑥 + 0)) = (𝑆𝑥))
2120adantl 484 . . 3 (((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) ∧ 𝑥 ∈ (0..^(𝐿 − 0))) → (𝑆‘(𝑥 + 0)) = (𝑆𝑥))
2215, 21mpteq12dva 5150 . 2 ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → (𝑥 ∈ (0..^(𝐿 − 0)) ↦ (𝑆‘(𝑥 + 0))) = (𝑥 ∈ (0..^𝐿) ↦ (𝑆𝑥)))
233, 10, 223eqtrd 2860 1 ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 prefix 𝐿) = (𝑥 ∈ (0..^𝐿) ↦ (𝑆𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  cop 4573  cmpt 5146  cfv 6355  (class class class)co 7156  0cc0 10537   + caddc 10540  cmin 10870  0cn0 11898  ...cfz 12893  ..^cfzo 13034  chash 13691  Word cword 13862   substr csubstr 14002   prefix cpfx 14032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-hash 13692  df-word 13863  df-substr 14003  df-pfx 14033
This theorem is referenced by:  pfxres  14041  pfxf  14042  psgnunilem5  18622
  Copyright terms: Public domain W3C validator