MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxmpt Structured version   Visualization version   GIF version

Theorem pfxmpt 14713
Description: Value of the prefix extractor as a mapping. (Contributed by AV, 2-May-2020.)
Assertion
Ref Expression
pfxmpt ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 prefix 𝐿) = (𝑥 ∈ (0..^𝐿) ↦ (𝑆𝑥)))
Distinct variable groups:   𝑥,𝐿   𝑥,𝑆   𝑥,𝐴

Proof of Theorem pfxmpt
StepHypRef Expression
1 elfznn0 13657 . . 3 (𝐿 ∈ (0...(♯‘𝑆)) → 𝐿 ∈ ℕ0)
2 pfxval 14708 . . 3 ((𝑆 ∈ Word 𝐴𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) = (𝑆 substr ⟨0, 𝐿⟩))
31, 2sylan2 593 . 2 ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 prefix 𝐿) = (𝑆 substr ⟨0, 𝐿⟩))
4 simpl 482 . . 3 ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → 𝑆 ∈ Word 𝐴)
51adantl 481 . . . 4 ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → 𝐿 ∈ ℕ0)
6 0elfz 13661 . . . 4 (𝐿 ∈ ℕ0 → 0 ∈ (0...𝐿))
75, 6syl 17 . . 3 ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → 0 ∈ (0...𝐿))
8 simpr 484 . . 3 ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → 𝐿 ∈ (0...(♯‘𝑆)))
9 swrdval2 14681 . . 3 ((𝑆 ∈ Word 𝐴 ∧ 0 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr ⟨0, 𝐿⟩) = (𝑥 ∈ (0..^(𝐿 − 0)) ↦ (𝑆‘(𝑥 + 0))))
104, 7, 8, 9syl3anc 1370 . 2 ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr ⟨0, 𝐿⟩) = (𝑥 ∈ (0..^(𝐿 − 0)) ↦ (𝑆‘(𝑥 + 0))))
11 nn0cn 12534 . . . . . . 7 (𝐿 ∈ ℕ0𝐿 ∈ ℂ)
1211subid1d 11607 . . . . . 6 (𝐿 ∈ ℕ0 → (𝐿 − 0) = 𝐿)
131, 12syl 17 . . . . 5 (𝐿 ∈ (0...(♯‘𝑆)) → (𝐿 − 0) = 𝐿)
1413oveq2d 7447 . . . 4 (𝐿 ∈ (0...(♯‘𝑆)) → (0..^(𝐿 − 0)) = (0..^𝐿))
1514adantl 481 . . 3 ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → (0..^(𝐿 − 0)) = (0..^𝐿))
16 elfzonn0 13744 . . . . . 6 (𝑥 ∈ (0..^(𝐿 − 0)) → 𝑥 ∈ ℕ0)
17 nn0cn 12534 . . . . . . 7 (𝑥 ∈ ℕ0𝑥 ∈ ℂ)
1817addridd 11459 . . . . . 6 (𝑥 ∈ ℕ0 → (𝑥 + 0) = 𝑥)
1916, 18syl 17 . . . . 5 (𝑥 ∈ (0..^(𝐿 − 0)) → (𝑥 + 0) = 𝑥)
2019fveq2d 6911 . . . 4 (𝑥 ∈ (0..^(𝐿 − 0)) → (𝑆‘(𝑥 + 0)) = (𝑆𝑥))
2120adantl 481 . . 3 (((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) ∧ 𝑥 ∈ (0..^(𝐿 − 0))) → (𝑆‘(𝑥 + 0)) = (𝑆𝑥))
2215, 21mpteq12dva 5237 . 2 ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → (𝑥 ∈ (0..^(𝐿 − 0)) ↦ (𝑆‘(𝑥 + 0))) = (𝑥 ∈ (0..^𝐿) ↦ (𝑆𝑥)))
233, 10, 223eqtrd 2779 1 ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 prefix 𝐿) = (𝑥 ∈ (0..^𝐿) ↦ (𝑆𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  cop 4637  cmpt 5231  cfv 6563  (class class class)co 7431  0cc0 11153   + caddc 11156  cmin 11490  0cn0 12524  ...cfz 13544  ..^cfzo 13691  chash 14366  Word cword 14549   substr csubstr 14675   prefix cpfx 14705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-substr 14676  df-pfx 14706
This theorem is referenced by:  pfxres  14714  pfxf  14715  psgnunilem5  19527
  Copyright terms: Public domain W3C validator