Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pfxmpt | Structured version Visualization version GIF version |
Description: Value of the prefix extractor as a mapping. (Contributed by AV, 2-May-2020.) |
Ref | Expression |
---|---|
pfxmpt | ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 prefix 𝐿) = (𝑥 ∈ (0..^𝐿) ↦ (𝑆‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfznn0 13205 | . . 3 ⊢ (𝐿 ∈ (0...(♯‘𝑆)) → 𝐿 ∈ ℕ0) | |
2 | pfxval 14238 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) = (𝑆 substr 〈0, 𝐿〉)) | |
3 | 1, 2 | sylan2 596 | . 2 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 prefix 𝐿) = (𝑆 substr 〈0, 𝐿〉)) |
4 | simpl 486 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → 𝑆 ∈ Word 𝐴) | |
5 | 1 | adantl 485 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → 𝐿 ∈ ℕ0) |
6 | 0elfz 13209 | . . . 4 ⊢ (𝐿 ∈ ℕ0 → 0 ∈ (0...𝐿)) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → 0 ∈ (0...𝐿)) |
8 | simpr 488 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → 𝐿 ∈ (0...(♯‘𝑆))) | |
9 | swrdval2 14211 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 0 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr 〈0, 𝐿〉) = (𝑥 ∈ (0..^(𝐿 − 0)) ↦ (𝑆‘(𝑥 + 0)))) | |
10 | 4, 7, 8, 9 | syl3anc 1373 | . 2 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr 〈0, 𝐿〉) = (𝑥 ∈ (0..^(𝐿 − 0)) ↦ (𝑆‘(𝑥 + 0)))) |
11 | nn0cn 12100 | . . . . . . 7 ⊢ (𝐿 ∈ ℕ0 → 𝐿 ∈ ℂ) | |
12 | 11 | subid1d 11178 | . . . . . 6 ⊢ (𝐿 ∈ ℕ0 → (𝐿 − 0) = 𝐿) |
13 | 1, 12 | syl 17 | . . . . 5 ⊢ (𝐿 ∈ (0...(♯‘𝑆)) → (𝐿 − 0) = 𝐿) |
14 | 13 | oveq2d 7229 | . . . 4 ⊢ (𝐿 ∈ (0...(♯‘𝑆)) → (0..^(𝐿 − 0)) = (0..^𝐿)) |
15 | 14 | adantl 485 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (0..^(𝐿 − 0)) = (0..^𝐿)) |
16 | elfzonn0 13287 | . . . . . 6 ⊢ (𝑥 ∈ (0..^(𝐿 − 0)) → 𝑥 ∈ ℕ0) | |
17 | nn0cn 12100 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ0 → 𝑥 ∈ ℂ) | |
18 | 17 | addid1d 11032 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0 → (𝑥 + 0) = 𝑥) |
19 | 16, 18 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ (0..^(𝐿 − 0)) → (𝑥 + 0) = 𝑥) |
20 | 19 | fveq2d 6721 | . . . 4 ⊢ (𝑥 ∈ (0..^(𝐿 − 0)) → (𝑆‘(𝑥 + 0)) = (𝑆‘𝑥)) |
21 | 20 | adantl 485 | . . 3 ⊢ (((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) ∧ 𝑥 ∈ (0..^(𝐿 − 0))) → (𝑆‘(𝑥 + 0)) = (𝑆‘𝑥)) |
22 | 15, 21 | mpteq12dva 5139 | . 2 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑥 ∈ (0..^(𝐿 − 0)) ↦ (𝑆‘(𝑥 + 0))) = (𝑥 ∈ (0..^𝐿) ↦ (𝑆‘𝑥))) |
23 | 3, 10, 22 | 3eqtrd 2781 | 1 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 prefix 𝐿) = (𝑥 ∈ (0..^𝐿) ↦ (𝑆‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 〈cop 4547 ↦ cmpt 5135 ‘cfv 6380 (class class class)co 7213 0cc0 10729 + caddc 10732 − cmin 11062 ℕ0cn0 12090 ...cfz 13095 ..^cfzo 13238 ♯chash 13896 Word cword 14069 substr csubstr 14205 prefix cpfx 14235 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-n0 12091 df-z 12177 df-uz 12439 df-fz 13096 df-fzo 13239 df-hash 13897 df-word 14070 df-substr 14206 df-pfx 14236 |
This theorem is referenced by: pfxres 14244 pfxf 14245 psgnunilem5 18886 |
Copyright terms: Public domain | W3C validator |