Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstf0 Structured version   Visualization version   GIF version

Theorem signstf0 34584
Description: Sign of a single letter word. (Contributed by Thierry Arnoux, 8-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signstf0 (𝐾 ∈ ℝ → (𝑇‘⟨“𝐾”⟩) = ⟨“(sgn‘𝐾)”⟩)
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝑊   𝑓,𝐾,𝑖,𝑛
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐾(𝑗,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signstf0
StepHypRef Expression
1 s1len 14645 . . . . . 6 (♯‘⟨“𝐾”⟩) = 1
21oveq2i 7443 . . . . 5 (0..^(♯‘⟨“𝐾”⟩)) = (0..^1)
3 fzo01 13787 . . . . 5 (0..^1) = {0}
42, 3eqtri 2764 . . . 4 (0..^(♯‘⟨“𝐾”⟩)) = {0}
54a1i 11 . . 3 (𝐾 ∈ ℝ → (0..^(♯‘⟨“𝐾”⟩)) = {0})
6 simpr 484 . . . . . 6 ((𝐾 ∈ ℝ ∧ 𝑛 ∈ (0..^(♯‘⟨“𝐾”⟩))) → 𝑛 ∈ (0..^(♯‘⟨“𝐾”⟩)))
76, 4eleqtrdi 2850 . . . . 5 ((𝐾 ∈ ℝ ∧ 𝑛 ∈ (0..^(♯‘⟨“𝐾”⟩))) → 𝑛 ∈ {0})
8 velsn 4641 . . . . 5 (𝑛 ∈ {0} ↔ 𝑛 = 0)
97, 8sylib 218 . . . 4 ((𝐾 ∈ ℝ ∧ 𝑛 ∈ (0..^(♯‘⟨“𝐾”⟩))) → 𝑛 = 0)
10 oveq2 7440 . . . . . . . . 9 (𝑛 = 0 → (0...𝑛) = (0...0))
11 0z 12626 . . . . . . . . . 10 0 ∈ ℤ
12 fzsn 13607 . . . . . . . . . 10 (0 ∈ ℤ → (0...0) = {0})
1311, 12ax-mp 5 . . . . . . . . 9 (0...0) = {0}
1410, 13eqtrdi 2792 . . . . . . . 8 (𝑛 = 0 → (0...𝑛) = {0})
1514mpteq1d 5236 . . . . . . 7 (𝑛 = 0 → (𝑖 ∈ (0...𝑛) ↦ (sgn‘(⟨“𝐾”⟩‘𝑖))) = (𝑖 ∈ {0} ↦ (sgn‘(⟨“𝐾”⟩‘𝑖))))
1615oveq2d 7448 . . . . . 6 (𝑛 = 0 → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))) = (𝑊 Σg (𝑖 ∈ {0} ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))))
1716adantl 481 . . . . 5 ((𝐾 ∈ ℝ ∧ 𝑛 = 0) → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))) = (𝑊 Σg (𝑖 ∈ {0} ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))))
18 signsv.p . . . . . . . . 9 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
19 signsv.w . . . . . . . . 9 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
2018, 19signswmnd 34573 . . . . . . . 8 𝑊 ∈ Mnd
2120a1i 11 . . . . . . 7 (𝐾 ∈ ℝ → 𝑊 ∈ Mnd)
22 0re 11264 . . . . . . . 8 0 ∈ ℝ
2322a1i 11 . . . . . . 7 (𝐾 ∈ ℝ → 0 ∈ ℝ)
24 s1fv 14649 . . . . . . . . . 10 (𝐾 ∈ ℝ → (⟨“𝐾”⟩‘0) = 𝐾)
25 id 22 . . . . . . . . . 10 (𝐾 ∈ ℝ → 𝐾 ∈ ℝ)
2624, 25eqeltrd 2840 . . . . . . . . 9 (𝐾 ∈ ℝ → (⟨“𝐾”⟩‘0) ∈ ℝ)
2726rexrd 11312 . . . . . . . 8 (𝐾 ∈ ℝ → (⟨“𝐾”⟩‘0) ∈ ℝ*)
28 sgncl 34542 . . . . . . . 8 ((⟨“𝐾”⟩‘0) ∈ ℝ* → (sgn‘(⟨“𝐾”⟩‘0)) ∈ {-1, 0, 1})
2927, 28syl 17 . . . . . . 7 (𝐾 ∈ ℝ → (sgn‘(⟨“𝐾”⟩‘0)) ∈ {-1, 0, 1})
3018, 19signswbase 34570 . . . . . . . 8 {-1, 0, 1} = (Base‘𝑊)
31 2fveq3 6910 . . . . . . . 8 (𝑖 = 0 → (sgn‘(⟨“𝐾”⟩‘𝑖)) = (sgn‘(⟨“𝐾”⟩‘0)))
3230, 31gsumsn 19973 . . . . . . 7 ((𝑊 ∈ Mnd ∧ 0 ∈ ℝ ∧ (sgn‘(⟨“𝐾”⟩‘0)) ∈ {-1, 0, 1}) → (𝑊 Σg (𝑖 ∈ {0} ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))) = (sgn‘(⟨“𝐾”⟩‘0)))
3321, 23, 29, 32syl3anc 1372 . . . . . 6 (𝐾 ∈ ℝ → (𝑊 Σg (𝑖 ∈ {0} ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))) = (sgn‘(⟨“𝐾”⟩‘0)))
3433adantr 480 . . . . 5 ((𝐾 ∈ ℝ ∧ 𝑛 = 0) → (𝑊 Σg (𝑖 ∈ {0} ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))) = (sgn‘(⟨“𝐾”⟩‘0)))
3524fveq2d 6909 . . . . . 6 (𝐾 ∈ ℝ → (sgn‘(⟨“𝐾”⟩‘0)) = (sgn‘𝐾))
3635adantr 480 . . . . 5 ((𝐾 ∈ ℝ ∧ 𝑛 = 0) → (sgn‘(⟨“𝐾”⟩‘0)) = (sgn‘𝐾))
3717, 34, 363eqtrd 2780 . . . 4 ((𝐾 ∈ ℝ ∧ 𝑛 = 0) → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))) = (sgn‘𝐾))
389, 37syldan 591 . . 3 ((𝐾 ∈ ℝ ∧ 𝑛 ∈ (0..^(♯‘⟨“𝐾”⟩))) → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))) = (sgn‘𝐾))
395, 38mpteq12dva 5230 . 2 (𝐾 ∈ ℝ → (𝑛 ∈ (0..^(♯‘⟨“𝐾”⟩)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(⟨“𝐾”⟩‘𝑖))))) = (𝑛 ∈ {0} ↦ (sgn‘𝐾)))
40 s1cl 14641 . . 3 (𝐾 ∈ ℝ → ⟨“𝐾”⟩ ∈ Word ℝ)
41 signsv.t . . . 4 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
42 signsv.v . . . 4 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
4318, 19, 41, 42signstfv 34579 . . 3 (⟨“𝐾”⟩ ∈ Word ℝ → (𝑇‘⟨“𝐾”⟩) = (𝑛 ∈ (0..^(♯‘⟨“𝐾”⟩)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(⟨“𝐾”⟩‘𝑖))))))
4440, 43syl 17 . 2 (𝐾 ∈ ℝ → (𝑇‘⟨“𝐾”⟩) = (𝑛 ∈ (0..^(♯‘⟨“𝐾”⟩)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(⟨“𝐾”⟩‘𝑖))))))
45 sgnclre 34543 . . . 4 (𝐾 ∈ ℝ → (sgn‘𝐾) ∈ ℝ)
46 s1val 14637 . . . 4 ((sgn‘𝐾) ∈ ℝ → ⟨“(sgn‘𝐾)”⟩ = {⟨0, (sgn‘𝐾)⟩})
4745, 46syl 17 . . 3 (𝐾 ∈ ℝ → ⟨“(sgn‘𝐾)”⟩ = {⟨0, (sgn‘𝐾)⟩})
48 fmptsn 7188 . . . 4 ((0 ∈ ℝ ∧ (sgn‘𝐾) ∈ ℝ) → {⟨0, (sgn‘𝐾)⟩} = (𝑛 ∈ {0} ↦ (sgn‘𝐾)))
4922, 45, 48sylancr 587 . . 3 (𝐾 ∈ ℝ → {⟨0, (sgn‘𝐾)⟩} = (𝑛 ∈ {0} ↦ (sgn‘𝐾)))
5047, 49eqtrd 2776 . 2 (𝐾 ∈ ℝ → ⟨“(sgn‘𝐾)”⟩ = (𝑛 ∈ {0} ↦ (sgn‘𝐾)))
5139, 44, 503eqtr4d 2786 1 (𝐾 ∈ ℝ → (𝑇‘⟨“𝐾”⟩) = ⟨“(sgn‘𝐾)”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2939  ifcif 4524  {csn 4625  {cpr 4627  {ctp 4629  cop 4631  cmpt 5224  cfv 6560  (class class class)co 7432  cmpo 7434  cr 11155  0cc0 11156  1c1 11157  *cxr 11295  cmin 11493  -cneg 11494  cz 12615  ...cfz 13548  ..^cfzo 13695  chash 14370  Word cword 14553  ⟨“cs1 14634  sgncsgn 15126  Σcsu 15723  ndxcnx 17231  Basecbs 17248  +gcplusg 17298   Σg cgsu 17486  Mndcmnd 18748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-n0 12529  df-z 12616  df-uz 12880  df-fz 13549  df-fzo 13696  df-seq 14044  df-hash 14371  df-word 14554  df-s1 14635  df-sgn 15127  df-struct 17185  df-slot 17220  df-ndx 17232  df-base 17249  df-plusg 17311  df-0g 17487  df-gsum 17488  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mulg 19087  df-cntz 19336
This theorem is referenced by:  signsvtn0  34586  signstfvneq0  34588
  Copyright terms: Public domain W3C validator