Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstf0 Structured version   Visualization version   GIF version

Theorem signstf0 34602
Description: Sign of a single letter word. (Contributed by Thierry Arnoux, 8-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signstf0 (𝐾 ∈ ℝ → (𝑇‘⟨“𝐾”⟩) = ⟨“(sgn‘𝐾)”⟩)
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝑊   𝑓,𝐾,𝑖,𝑛
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐾(𝑗,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signstf0
StepHypRef Expression
1 s1len 14516 . . . . . 6 (♯‘⟨“𝐾”⟩) = 1
21oveq2i 7363 . . . . 5 (0..^(♯‘⟨“𝐾”⟩)) = (0..^1)
3 fzo01 13649 . . . . 5 (0..^1) = {0}
42, 3eqtri 2756 . . . 4 (0..^(♯‘⟨“𝐾”⟩)) = {0}
54a1i 11 . . 3 (𝐾 ∈ ℝ → (0..^(♯‘⟨“𝐾”⟩)) = {0})
6 simpr 484 . . . . . 6 ((𝐾 ∈ ℝ ∧ 𝑛 ∈ (0..^(♯‘⟨“𝐾”⟩))) → 𝑛 ∈ (0..^(♯‘⟨“𝐾”⟩)))
76, 4eleqtrdi 2843 . . . . 5 ((𝐾 ∈ ℝ ∧ 𝑛 ∈ (0..^(♯‘⟨“𝐾”⟩))) → 𝑛 ∈ {0})
8 velsn 4591 . . . . 5 (𝑛 ∈ {0} ↔ 𝑛 = 0)
97, 8sylib 218 . . . 4 ((𝐾 ∈ ℝ ∧ 𝑛 ∈ (0..^(♯‘⟨“𝐾”⟩))) → 𝑛 = 0)
10 oveq2 7360 . . . . . . . . 9 (𝑛 = 0 → (0...𝑛) = (0...0))
11 0z 12486 . . . . . . . . . 10 0 ∈ ℤ
12 fzsn 13468 . . . . . . . . . 10 (0 ∈ ℤ → (0...0) = {0})
1311, 12ax-mp 5 . . . . . . . . 9 (0...0) = {0}
1410, 13eqtrdi 2784 . . . . . . . 8 (𝑛 = 0 → (0...𝑛) = {0})
1514mpteq1d 5183 . . . . . . 7 (𝑛 = 0 → (𝑖 ∈ (0...𝑛) ↦ (sgn‘(⟨“𝐾”⟩‘𝑖))) = (𝑖 ∈ {0} ↦ (sgn‘(⟨“𝐾”⟩‘𝑖))))
1615oveq2d 7368 . . . . . 6 (𝑛 = 0 → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))) = (𝑊 Σg (𝑖 ∈ {0} ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))))
1716adantl 481 . . . . 5 ((𝐾 ∈ ℝ ∧ 𝑛 = 0) → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))) = (𝑊 Σg (𝑖 ∈ {0} ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))))
18 signsv.p . . . . . . . . 9 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
19 signsv.w . . . . . . . . 9 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
2018, 19signswmnd 34591 . . . . . . . 8 𝑊 ∈ Mnd
2120a1i 11 . . . . . . 7 (𝐾 ∈ ℝ → 𝑊 ∈ Mnd)
22 0re 11121 . . . . . . . 8 0 ∈ ℝ
2322a1i 11 . . . . . . 7 (𝐾 ∈ ℝ → 0 ∈ ℝ)
24 s1fv 14520 . . . . . . . . . 10 (𝐾 ∈ ℝ → (⟨“𝐾”⟩‘0) = 𝐾)
25 id 22 . . . . . . . . . 10 (𝐾 ∈ ℝ → 𝐾 ∈ ℝ)
2624, 25eqeltrd 2833 . . . . . . . . 9 (𝐾 ∈ ℝ → (⟨“𝐾”⟩‘0) ∈ ℝ)
2726rexrd 11169 . . . . . . . 8 (𝐾 ∈ ℝ → (⟨“𝐾”⟩‘0) ∈ ℝ*)
28 sgncl 32819 . . . . . . . 8 ((⟨“𝐾”⟩‘0) ∈ ℝ* → (sgn‘(⟨“𝐾”⟩‘0)) ∈ {-1, 0, 1})
2927, 28syl 17 . . . . . . 7 (𝐾 ∈ ℝ → (sgn‘(⟨“𝐾”⟩‘0)) ∈ {-1, 0, 1})
3018, 19signswbase 34588 . . . . . . . 8 {-1, 0, 1} = (Base‘𝑊)
31 2fveq3 6833 . . . . . . . 8 (𝑖 = 0 → (sgn‘(⟨“𝐾”⟩‘𝑖)) = (sgn‘(⟨“𝐾”⟩‘0)))
3230, 31gsumsn 19868 . . . . . . 7 ((𝑊 ∈ Mnd ∧ 0 ∈ ℝ ∧ (sgn‘(⟨“𝐾”⟩‘0)) ∈ {-1, 0, 1}) → (𝑊 Σg (𝑖 ∈ {0} ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))) = (sgn‘(⟨“𝐾”⟩‘0)))
3321, 23, 29, 32syl3anc 1373 . . . . . 6 (𝐾 ∈ ℝ → (𝑊 Σg (𝑖 ∈ {0} ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))) = (sgn‘(⟨“𝐾”⟩‘0)))
3433adantr 480 . . . . 5 ((𝐾 ∈ ℝ ∧ 𝑛 = 0) → (𝑊 Σg (𝑖 ∈ {0} ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))) = (sgn‘(⟨“𝐾”⟩‘0)))
3524fveq2d 6832 . . . . . 6 (𝐾 ∈ ℝ → (sgn‘(⟨“𝐾”⟩‘0)) = (sgn‘𝐾))
3635adantr 480 . . . . 5 ((𝐾 ∈ ℝ ∧ 𝑛 = 0) → (sgn‘(⟨“𝐾”⟩‘0)) = (sgn‘𝐾))
3717, 34, 363eqtrd 2772 . . . 4 ((𝐾 ∈ ℝ ∧ 𝑛 = 0) → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))) = (sgn‘𝐾))
389, 37syldan 591 . . 3 ((𝐾 ∈ ℝ ∧ 𝑛 ∈ (0..^(♯‘⟨“𝐾”⟩))) → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))) = (sgn‘𝐾))
395, 38mpteq12dva 5179 . 2 (𝐾 ∈ ℝ → (𝑛 ∈ (0..^(♯‘⟨“𝐾”⟩)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(⟨“𝐾”⟩‘𝑖))))) = (𝑛 ∈ {0} ↦ (sgn‘𝐾)))
40 s1cl 14512 . . 3 (𝐾 ∈ ℝ → ⟨“𝐾”⟩ ∈ Word ℝ)
41 signsv.t . . . 4 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
42 signsv.v . . . 4 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
4318, 19, 41, 42signstfv 34597 . . 3 (⟨“𝐾”⟩ ∈ Word ℝ → (𝑇‘⟨“𝐾”⟩) = (𝑛 ∈ (0..^(♯‘⟨“𝐾”⟩)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(⟨“𝐾”⟩‘𝑖))))))
4440, 43syl 17 . 2 (𝐾 ∈ ℝ → (𝑇‘⟨“𝐾”⟩) = (𝑛 ∈ (0..^(♯‘⟨“𝐾”⟩)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(⟨“𝐾”⟩‘𝑖))))))
45 sgnclre 32820 . . . 4 (𝐾 ∈ ℝ → (sgn‘𝐾) ∈ ℝ)
46 s1val 14508 . . . 4 ((sgn‘𝐾) ∈ ℝ → ⟨“(sgn‘𝐾)”⟩ = {⟨0, (sgn‘𝐾)⟩})
4745, 46syl 17 . . 3 (𝐾 ∈ ℝ → ⟨“(sgn‘𝐾)”⟩ = {⟨0, (sgn‘𝐾)⟩})
48 fmptsn 7107 . . . 4 ((0 ∈ ℝ ∧ (sgn‘𝐾) ∈ ℝ) → {⟨0, (sgn‘𝐾)⟩} = (𝑛 ∈ {0} ↦ (sgn‘𝐾)))
4922, 45, 48sylancr 587 . . 3 (𝐾 ∈ ℝ → {⟨0, (sgn‘𝐾)⟩} = (𝑛 ∈ {0} ↦ (sgn‘𝐾)))
5047, 49eqtrd 2768 . 2 (𝐾 ∈ ℝ → ⟨“(sgn‘𝐾)”⟩ = (𝑛 ∈ {0} ↦ (sgn‘𝐾)))
5139, 44, 503eqtr4d 2778 1 (𝐾 ∈ ℝ → (𝑇‘⟨“𝐾”⟩) = ⟨“(sgn‘𝐾)”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  ifcif 4474  {csn 4575  {cpr 4577  {ctp 4579  cop 4581  cmpt 5174  cfv 6486  (class class class)co 7352  cmpo 7354  cr 11012  0cc0 11013  1c1 11014  *cxr 11152  cmin 11351  -cneg 11352  cz 12475  ...cfz 13409  ..^cfzo 13556  chash 14239  Word cword 14422  ⟨“cs1 14505  sgncsgn 14995  Σcsu 15595  ndxcnx 17106  Basecbs 17122  +gcplusg 17163   Σg cgsu 17346  Mndcmnd 18644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-fzo 13557  df-seq 13911  df-hash 14240  df-word 14423  df-s1 14506  df-sgn 14996  df-struct 17060  df-slot 17095  df-ndx 17107  df-base 17123  df-plusg 17176  df-0g 17347  df-gsum 17348  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mulg 18983  df-cntz 19231
This theorem is referenced by:  signsvtn0  34604  signstfvneq0  34606
  Copyright terms: Public domain W3C validator