Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstf0 Structured version   Visualization version   GIF version

Theorem signstf0 34559
Description: Sign of a single letter word. (Contributed by Thierry Arnoux, 8-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signstf0 (𝐾 ∈ ℝ → (𝑇‘⟨“𝐾”⟩) = ⟨“(sgn‘𝐾)”⟩)
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝑊   𝑓,𝐾,𝑖,𝑛
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐾(𝑗,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signstf0
StepHypRef Expression
1 s1len 14571 . . . . . 6 (♯‘⟨“𝐾”⟩) = 1
21oveq2i 7398 . . . . 5 (0..^(♯‘⟨“𝐾”⟩)) = (0..^1)
3 fzo01 13708 . . . . 5 (0..^1) = {0}
42, 3eqtri 2752 . . . 4 (0..^(♯‘⟨“𝐾”⟩)) = {0}
54a1i 11 . . 3 (𝐾 ∈ ℝ → (0..^(♯‘⟨“𝐾”⟩)) = {0})
6 simpr 484 . . . . . 6 ((𝐾 ∈ ℝ ∧ 𝑛 ∈ (0..^(♯‘⟨“𝐾”⟩))) → 𝑛 ∈ (0..^(♯‘⟨“𝐾”⟩)))
76, 4eleqtrdi 2838 . . . . 5 ((𝐾 ∈ ℝ ∧ 𝑛 ∈ (0..^(♯‘⟨“𝐾”⟩))) → 𝑛 ∈ {0})
8 velsn 4605 . . . . 5 (𝑛 ∈ {0} ↔ 𝑛 = 0)
97, 8sylib 218 . . . 4 ((𝐾 ∈ ℝ ∧ 𝑛 ∈ (0..^(♯‘⟨“𝐾”⟩))) → 𝑛 = 0)
10 oveq2 7395 . . . . . . . . 9 (𝑛 = 0 → (0...𝑛) = (0...0))
11 0z 12540 . . . . . . . . . 10 0 ∈ ℤ
12 fzsn 13527 . . . . . . . . . 10 (0 ∈ ℤ → (0...0) = {0})
1311, 12ax-mp 5 . . . . . . . . 9 (0...0) = {0}
1410, 13eqtrdi 2780 . . . . . . . 8 (𝑛 = 0 → (0...𝑛) = {0})
1514mpteq1d 5197 . . . . . . 7 (𝑛 = 0 → (𝑖 ∈ (0...𝑛) ↦ (sgn‘(⟨“𝐾”⟩‘𝑖))) = (𝑖 ∈ {0} ↦ (sgn‘(⟨“𝐾”⟩‘𝑖))))
1615oveq2d 7403 . . . . . 6 (𝑛 = 0 → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))) = (𝑊 Σg (𝑖 ∈ {0} ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))))
1716adantl 481 . . . . 5 ((𝐾 ∈ ℝ ∧ 𝑛 = 0) → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))) = (𝑊 Σg (𝑖 ∈ {0} ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))))
18 signsv.p . . . . . . . . 9 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
19 signsv.w . . . . . . . . 9 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
2018, 19signswmnd 34548 . . . . . . . 8 𝑊 ∈ Mnd
2120a1i 11 . . . . . . 7 (𝐾 ∈ ℝ → 𝑊 ∈ Mnd)
22 0re 11176 . . . . . . . 8 0 ∈ ℝ
2322a1i 11 . . . . . . 7 (𝐾 ∈ ℝ → 0 ∈ ℝ)
24 s1fv 14575 . . . . . . . . . 10 (𝐾 ∈ ℝ → (⟨“𝐾”⟩‘0) = 𝐾)
25 id 22 . . . . . . . . . 10 (𝐾 ∈ ℝ → 𝐾 ∈ ℝ)
2624, 25eqeltrd 2828 . . . . . . . . 9 (𝐾 ∈ ℝ → (⟨“𝐾”⟩‘0) ∈ ℝ)
2726rexrd 11224 . . . . . . . 8 (𝐾 ∈ ℝ → (⟨“𝐾”⟩‘0) ∈ ℝ*)
28 sgncl 32756 . . . . . . . 8 ((⟨“𝐾”⟩‘0) ∈ ℝ* → (sgn‘(⟨“𝐾”⟩‘0)) ∈ {-1, 0, 1})
2927, 28syl 17 . . . . . . 7 (𝐾 ∈ ℝ → (sgn‘(⟨“𝐾”⟩‘0)) ∈ {-1, 0, 1})
3018, 19signswbase 34545 . . . . . . . 8 {-1, 0, 1} = (Base‘𝑊)
31 2fveq3 6863 . . . . . . . 8 (𝑖 = 0 → (sgn‘(⟨“𝐾”⟩‘𝑖)) = (sgn‘(⟨“𝐾”⟩‘0)))
3230, 31gsumsn 19884 . . . . . . 7 ((𝑊 ∈ Mnd ∧ 0 ∈ ℝ ∧ (sgn‘(⟨“𝐾”⟩‘0)) ∈ {-1, 0, 1}) → (𝑊 Σg (𝑖 ∈ {0} ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))) = (sgn‘(⟨“𝐾”⟩‘0)))
3321, 23, 29, 32syl3anc 1373 . . . . . 6 (𝐾 ∈ ℝ → (𝑊 Σg (𝑖 ∈ {0} ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))) = (sgn‘(⟨“𝐾”⟩‘0)))
3433adantr 480 . . . . 5 ((𝐾 ∈ ℝ ∧ 𝑛 = 0) → (𝑊 Σg (𝑖 ∈ {0} ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))) = (sgn‘(⟨“𝐾”⟩‘0)))
3524fveq2d 6862 . . . . . 6 (𝐾 ∈ ℝ → (sgn‘(⟨“𝐾”⟩‘0)) = (sgn‘𝐾))
3635adantr 480 . . . . 5 ((𝐾 ∈ ℝ ∧ 𝑛 = 0) → (sgn‘(⟨“𝐾”⟩‘0)) = (sgn‘𝐾))
3717, 34, 363eqtrd 2768 . . . 4 ((𝐾 ∈ ℝ ∧ 𝑛 = 0) → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))) = (sgn‘𝐾))
389, 37syldan 591 . . 3 ((𝐾 ∈ ℝ ∧ 𝑛 ∈ (0..^(♯‘⟨“𝐾”⟩))) → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))) = (sgn‘𝐾))
395, 38mpteq12dva 5193 . 2 (𝐾 ∈ ℝ → (𝑛 ∈ (0..^(♯‘⟨“𝐾”⟩)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(⟨“𝐾”⟩‘𝑖))))) = (𝑛 ∈ {0} ↦ (sgn‘𝐾)))
40 s1cl 14567 . . 3 (𝐾 ∈ ℝ → ⟨“𝐾”⟩ ∈ Word ℝ)
41 signsv.t . . . 4 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
42 signsv.v . . . 4 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
4318, 19, 41, 42signstfv 34554 . . 3 (⟨“𝐾”⟩ ∈ Word ℝ → (𝑇‘⟨“𝐾”⟩) = (𝑛 ∈ (0..^(♯‘⟨“𝐾”⟩)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(⟨“𝐾”⟩‘𝑖))))))
4440, 43syl 17 . 2 (𝐾 ∈ ℝ → (𝑇‘⟨“𝐾”⟩) = (𝑛 ∈ (0..^(♯‘⟨“𝐾”⟩)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(⟨“𝐾”⟩‘𝑖))))))
45 sgnclre 32757 . . . 4 (𝐾 ∈ ℝ → (sgn‘𝐾) ∈ ℝ)
46 s1val 14563 . . . 4 ((sgn‘𝐾) ∈ ℝ → ⟨“(sgn‘𝐾)”⟩ = {⟨0, (sgn‘𝐾)⟩})
4745, 46syl 17 . . 3 (𝐾 ∈ ℝ → ⟨“(sgn‘𝐾)”⟩ = {⟨0, (sgn‘𝐾)⟩})
48 fmptsn 7141 . . . 4 ((0 ∈ ℝ ∧ (sgn‘𝐾) ∈ ℝ) → {⟨0, (sgn‘𝐾)⟩} = (𝑛 ∈ {0} ↦ (sgn‘𝐾)))
4922, 45, 48sylancr 587 . . 3 (𝐾 ∈ ℝ → {⟨0, (sgn‘𝐾)⟩} = (𝑛 ∈ {0} ↦ (sgn‘𝐾)))
5047, 49eqtrd 2764 . 2 (𝐾 ∈ ℝ → ⟨“(sgn‘𝐾)”⟩ = (𝑛 ∈ {0} ↦ (sgn‘𝐾)))
5139, 44, 503eqtr4d 2774 1 (𝐾 ∈ ℝ → (𝑇‘⟨“𝐾”⟩) = ⟨“(sgn‘𝐾)”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  ifcif 4488  {csn 4589  {cpr 4591  {ctp 4593  cop 4595  cmpt 5188  cfv 6511  (class class class)co 7387  cmpo 7389  cr 11067  0cc0 11068  1c1 11069  *cxr 11207  cmin 11405  -cneg 11406  cz 12529  ...cfz 13468  ..^cfzo 13615  chash 14295  Word cword 14478  ⟨“cs1 14560  sgncsgn 15052  Σcsu 15652  ndxcnx 17163  Basecbs 17179  +gcplusg 17220   Σg cgsu 17403  Mndcmnd 18661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-word 14479  df-s1 14561  df-sgn 15053  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-0g 17404  df-gsum 17405  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mulg 19000  df-cntz 19249
This theorem is referenced by:  signsvtn0  34561  signstfvneq0  34563
  Copyright terms: Public domain W3C validator