Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstf0 Structured version   Visualization version   GIF version

Theorem signstf0 32547
Description: Sign of a single letter word. (Contributed by Thierry Arnoux, 8-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signstf0 (𝐾 ∈ ℝ → (𝑇‘⟨“𝐾”⟩) = ⟨“(sgn‘𝐾)”⟩)
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝑊   𝑓,𝐾,𝑖,𝑛
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐾(𝑗,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signstf0
StepHypRef Expression
1 s1len 14311 . . . . . 6 (♯‘⟨“𝐾”⟩) = 1
21oveq2i 7286 . . . . 5 (0..^(♯‘⟨“𝐾”⟩)) = (0..^1)
3 fzo01 13469 . . . . 5 (0..^1) = {0}
42, 3eqtri 2766 . . . 4 (0..^(♯‘⟨“𝐾”⟩)) = {0}
54a1i 11 . . 3 (𝐾 ∈ ℝ → (0..^(♯‘⟨“𝐾”⟩)) = {0})
6 simpr 485 . . . . . 6 ((𝐾 ∈ ℝ ∧ 𝑛 ∈ (0..^(♯‘⟨“𝐾”⟩))) → 𝑛 ∈ (0..^(♯‘⟨“𝐾”⟩)))
76, 4eleqtrdi 2849 . . . . 5 ((𝐾 ∈ ℝ ∧ 𝑛 ∈ (0..^(♯‘⟨“𝐾”⟩))) → 𝑛 ∈ {0})
8 velsn 4577 . . . . 5 (𝑛 ∈ {0} ↔ 𝑛 = 0)
97, 8sylib 217 . . . 4 ((𝐾 ∈ ℝ ∧ 𝑛 ∈ (0..^(♯‘⟨“𝐾”⟩))) → 𝑛 = 0)
10 oveq2 7283 . . . . . . . . 9 (𝑛 = 0 → (0...𝑛) = (0...0))
11 0z 12330 . . . . . . . . . 10 0 ∈ ℤ
12 fzsn 13298 . . . . . . . . . 10 (0 ∈ ℤ → (0...0) = {0})
1311, 12ax-mp 5 . . . . . . . . 9 (0...0) = {0}
1410, 13eqtrdi 2794 . . . . . . . 8 (𝑛 = 0 → (0...𝑛) = {0})
1514mpteq1d 5169 . . . . . . 7 (𝑛 = 0 → (𝑖 ∈ (0...𝑛) ↦ (sgn‘(⟨“𝐾”⟩‘𝑖))) = (𝑖 ∈ {0} ↦ (sgn‘(⟨“𝐾”⟩‘𝑖))))
1615oveq2d 7291 . . . . . 6 (𝑛 = 0 → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))) = (𝑊 Σg (𝑖 ∈ {0} ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))))
1716adantl 482 . . . . 5 ((𝐾 ∈ ℝ ∧ 𝑛 = 0) → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))) = (𝑊 Σg (𝑖 ∈ {0} ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))))
18 signsv.p . . . . . . . . 9 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
19 signsv.w . . . . . . . . 9 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
2018, 19signswmnd 32536 . . . . . . . 8 𝑊 ∈ Mnd
2120a1i 11 . . . . . . 7 (𝐾 ∈ ℝ → 𝑊 ∈ Mnd)
22 0re 10977 . . . . . . . 8 0 ∈ ℝ
2322a1i 11 . . . . . . 7 (𝐾 ∈ ℝ → 0 ∈ ℝ)
24 s1fv 14315 . . . . . . . . . 10 (𝐾 ∈ ℝ → (⟨“𝐾”⟩‘0) = 𝐾)
25 id 22 . . . . . . . . . 10 (𝐾 ∈ ℝ → 𝐾 ∈ ℝ)
2624, 25eqeltrd 2839 . . . . . . . . 9 (𝐾 ∈ ℝ → (⟨“𝐾”⟩‘0) ∈ ℝ)
2726rexrd 11025 . . . . . . . 8 (𝐾 ∈ ℝ → (⟨“𝐾”⟩‘0) ∈ ℝ*)
28 sgncl 32505 . . . . . . . 8 ((⟨“𝐾”⟩‘0) ∈ ℝ* → (sgn‘(⟨“𝐾”⟩‘0)) ∈ {-1, 0, 1})
2927, 28syl 17 . . . . . . 7 (𝐾 ∈ ℝ → (sgn‘(⟨“𝐾”⟩‘0)) ∈ {-1, 0, 1})
3018, 19signswbase 32533 . . . . . . . 8 {-1, 0, 1} = (Base‘𝑊)
31 2fveq3 6779 . . . . . . . 8 (𝑖 = 0 → (sgn‘(⟨“𝐾”⟩‘𝑖)) = (sgn‘(⟨“𝐾”⟩‘0)))
3230, 31gsumsn 19555 . . . . . . 7 ((𝑊 ∈ Mnd ∧ 0 ∈ ℝ ∧ (sgn‘(⟨“𝐾”⟩‘0)) ∈ {-1, 0, 1}) → (𝑊 Σg (𝑖 ∈ {0} ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))) = (sgn‘(⟨“𝐾”⟩‘0)))
3321, 23, 29, 32syl3anc 1370 . . . . . 6 (𝐾 ∈ ℝ → (𝑊 Σg (𝑖 ∈ {0} ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))) = (sgn‘(⟨“𝐾”⟩‘0)))
3433adantr 481 . . . . 5 ((𝐾 ∈ ℝ ∧ 𝑛 = 0) → (𝑊 Σg (𝑖 ∈ {0} ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))) = (sgn‘(⟨“𝐾”⟩‘0)))
3524fveq2d 6778 . . . . . 6 (𝐾 ∈ ℝ → (sgn‘(⟨“𝐾”⟩‘0)) = (sgn‘𝐾))
3635adantr 481 . . . . 5 ((𝐾 ∈ ℝ ∧ 𝑛 = 0) → (sgn‘(⟨“𝐾”⟩‘0)) = (sgn‘𝐾))
3717, 34, 363eqtrd 2782 . . . 4 ((𝐾 ∈ ℝ ∧ 𝑛 = 0) → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))) = (sgn‘𝐾))
389, 37syldan 591 . . 3 ((𝐾 ∈ ℝ ∧ 𝑛 ∈ (0..^(♯‘⟨“𝐾”⟩))) → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))) = (sgn‘𝐾))
395, 38mpteq12dva 5163 . 2 (𝐾 ∈ ℝ → (𝑛 ∈ (0..^(♯‘⟨“𝐾”⟩)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(⟨“𝐾”⟩‘𝑖))))) = (𝑛 ∈ {0} ↦ (sgn‘𝐾)))
40 s1cl 14307 . . 3 (𝐾 ∈ ℝ → ⟨“𝐾”⟩ ∈ Word ℝ)
41 signsv.t . . . 4 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
42 signsv.v . . . 4 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
4318, 19, 41, 42signstfv 32542 . . 3 (⟨“𝐾”⟩ ∈ Word ℝ → (𝑇‘⟨“𝐾”⟩) = (𝑛 ∈ (0..^(♯‘⟨“𝐾”⟩)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(⟨“𝐾”⟩‘𝑖))))))
4440, 43syl 17 . 2 (𝐾 ∈ ℝ → (𝑇‘⟨“𝐾”⟩) = (𝑛 ∈ (0..^(♯‘⟨“𝐾”⟩)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(⟨“𝐾”⟩‘𝑖))))))
45 sgnclre 32506 . . . 4 (𝐾 ∈ ℝ → (sgn‘𝐾) ∈ ℝ)
46 s1val 14303 . . . 4 ((sgn‘𝐾) ∈ ℝ → ⟨“(sgn‘𝐾)”⟩ = {⟨0, (sgn‘𝐾)⟩})
4745, 46syl 17 . . 3 (𝐾 ∈ ℝ → ⟨“(sgn‘𝐾)”⟩ = {⟨0, (sgn‘𝐾)⟩})
48 fmptsn 7039 . . . 4 ((0 ∈ ℝ ∧ (sgn‘𝐾) ∈ ℝ) → {⟨0, (sgn‘𝐾)⟩} = (𝑛 ∈ {0} ↦ (sgn‘𝐾)))
4922, 45, 48sylancr 587 . . 3 (𝐾 ∈ ℝ → {⟨0, (sgn‘𝐾)⟩} = (𝑛 ∈ {0} ↦ (sgn‘𝐾)))
5047, 49eqtrd 2778 . 2 (𝐾 ∈ ℝ → ⟨“(sgn‘𝐾)”⟩ = (𝑛 ∈ {0} ↦ (sgn‘𝐾)))
5139, 44, 503eqtr4d 2788 1 (𝐾 ∈ ℝ → (𝑇‘⟨“𝐾”⟩) = ⟨“(sgn‘𝐾)”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  ifcif 4459  {csn 4561  {cpr 4563  {ctp 4565  cop 4567  cmpt 5157  cfv 6433  (class class class)co 7275  cmpo 7277  cr 10870  0cc0 10871  1c1 10872  *cxr 11008  cmin 11205  -cneg 11206  cz 12319  ...cfz 13239  ..^cfzo 13382  chash 14044  Word cword 14217  ⟨“cs1 14300  sgncsgn 14797  Σcsu 15397  ndxcnx 16894  Basecbs 16912  +gcplusg 16962   Σg cgsu 17151  Mndcmnd 18385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-word 14218  df-s1 14301  df-sgn 14798  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-0g 17152  df-gsum 17153  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mulg 18701  df-cntz 18923
This theorem is referenced by:  signsvtn0  32549  signstfvneq0  32551
  Copyright terms: Public domain W3C validator