MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonffthlem Structured version   Visualization version   GIF version

Theorem yonffthlem 17130
Description: Lemma for yonffth 17132. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y 𝑌 = (Yon‘𝐶)
yoneda.b 𝐵 = (Base‘𝐶)
yoneda.1 1 = (Id‘𝐶)
yoneda.o 𝑂 = (oppCat‘𝐶)
yoneda.s 𝑆 = (SetCat‘𝑈)
yoneda.t 𝑇 = (SetCat‘𝑉)
yoneda.q 𝑄 = (𝑂 FuncCat 𝑆)
yoneda.h 𝐻 = (HomF𝑄)
yoneda.r 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
yoneda.e 𝐸 = (𝑂 evalF 𝑆)
yoneda.z 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
yoneda.c (𝜑𝐶 ∈ Cat)
yoneda.w (𝜑𝑉𝑊)
yoneda.u (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
yoneda.v (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
yoneda.m 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥))))
yonedainv.i 𝐼 = (Inv‘𝑅)
yonedainv.n 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))))
Assertion
Ref Expression
yonffthlem (𝜑𝑌 ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄)))
Distinct variable groups:   𝑓,𝑎,𝑔,𝑥,𝑦, 1   𝑢,𝑎,𝑔,𝑦,𝐶,𝑓,𝑥   𝐸,𝑎,𝑓,𝑔,𝑢,𝑦   𝐵,𝑎,𝑓,𝑔,𝑢,𝑥,𝑦   𝑁,𝑎   𝑂,𝑎,𝑓,𝑔,𝑢,𝑥,𝑦   𝑆,𝑎,𝑓,𝑔,𝑢,𝑥,𝑦   𝑔,𝑀,𝑢,𝑦   𝑄,𝑎,𝑓,𝑔,𝑢,𝑥   𝑇,𝑓,𝑔,𝑢,𝑦   𝜑,𝑎,𝑓,𝑔,𝑢,𝑥,𝑦   𝑢,𝑅   𝑌,𝑎,𝑓,𝑔,𝑢,𝑥,𝑦   𝑍,𝑎,𝑓,𝑔,𝑢,𝑥,𝑦
Allowed substitution hints:   𝑄(𝑦)   𝑅(𝑥,𝑦,𝑓,𝑔,𝑎)   𝑇(𝑥,𝑎)   𝑈(𝑥,𝑦,𝑢,𝑓,𝑔,𝑎)   1 (𝑢)   𝐸(𝑥)   𝐻(𝑥,𝑦,𝑢,𝑓,𝑔,𝑎)   𝐼(𝑥,𝑦,𝑢,𝑓,𝑔,𝑎)   𝑀(𝑥,𝑓,𝑎)   𝑁(𝑥,𝑦,𝑢,𝑓,𝑔)   𝑉(𝑥,𝑦,𝑢,𝑓,𝑔,𝑎)   𝑊(𝑥,𝑦,𝑢,𝑓,𝑔,𝑎)

Proof of Theorem yonffthlem
Dummy variables 𝑤 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 16729 . . 3 Rel (𝐶 Func 𝑄)
2 yoneda.y . . . 4 𝑌 = (Yon‘𝐶)
3 yoneda.c . . . 4 (𝜑𝐶 ∈ Cat)
4 yoneda.o . . . 4 𝑂 = (oppCat‘𝐶)
5 yoneda.s . . . 4 𝑆 = (SetCat‘𝑈)
6 yoneda.q . . . 4 𝑄 = (𝑂 FuncCat 𝑆)
7 yoneda.w . . . . 5 (𝜑𝑉𝑊)
8 yoneda.v . . . . . 6 (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
98unssbd 3997 . . . . 5 (𝜑𝑈𝑉)
107, 9ssexd 5007 . . . 4 (𝜑𝑈 ∈ V)
11 yoneda.u . . . 4 (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
122, 3, 4, 5, 6, 10, 11yoncl 17110 . . 3 (𝜑𝑌 ∈ (𝐶 Func 𝑄))
13 1st2nd 7449 . . 3 ((Rel (𝐶 Func 𝑄) ∧ 𝑌 ∈ (𝐶 Func 𝑄)) → 𝑌 = ⟨(1st𝑌), (2nd𝑌)⟩)
141, 12, 13sylancr 577 . 2 (𝜑𝑌 = ⟨(1st𝑌), (2nd𝑌)⟩)
15 1st2ndbr 7452 . . . . 5 ((Rel (𝐶 Func 𝑄) ∧ 𝑌 ∈ (𝐶 Func 𝑄)) → (1st𝑌)(𝐶 Func 𝑄)(2nd𝑌))
161, 12, 15sylancr 577 . . . 4 (𝜑 → (1st𝑌)(𝐶 Func 𝑄)(2nd𝑌))
17 fveq2 6411 . . . . . . . . . . 11 (𝑣 = ⟨((1st𝑌)‘𝑤), 𝑧⟩ → (𝑁𝑣) = (𝑁‘⟨((1st𝑌)‘𝑤), 𝑧⟩))
18 df-ov 6880 . . . . . . . . . . 11 (((1st𝑌)‘𝑤)𝑁𝑧) = (𝑁‘⟨((1st𝑌)‘𝑤), 𝑧⟩)
1917, 18syl6eqr 2865 . . . . . . . . . 10 (𝑣 = ⟨((1st𝑌)‘𝑤), 𝑧⟩ → (𝑁𝑣) = (((1st𝑌)‘𝑤)𝑁𝑧))
20 fveq2 6411 . . . . . . . . . . . 12 (𝑣 = ⟨((1st𝑌)‘𝑤), 𝑧⟩ → ((1st𝐸)‘𝑣) = ((1st𝐸)‘⟨((1st𝑌)‘𝑤), 𝑧⟩))
21 df-ov 6880 . . . . . . . . . . . 12 (((1st𝑌)‘𝑤)(1st𝐸)𝑧) = ((1st𝐸)‘⟨((1st𝑌)‘𝑤), 𝑧⟩)
2220, 21syl6eqr 2865 . . . . . . . . . . 11 (𝑣 = ⟨((1st𝑌)‘𝑤), 𝑧⟩ → ((1st𝐸)‘𝑣) = (((1st𝑌)‘𝑤)(1st𝐸)𝑧))
23 fveq2 6411 . . . . . . . . . . . 12 (𝑣 = ⟨((1st𝑌)‘𝑤), 𝑧⟩ → ((1st𝑍)‘𝑣) = ((1st𝑍)‘⟨((1st𝑌)‘𝑤), 𝑧⟩))
24 df-ov 6880 . . . . . . . . . . . 12 (((1st𝑌)‘𝑤)(1st𝑍)𝑧) = ((1st𝑍)‘⟨((1st𝑌)‘𝑤), 𝑧⟩)
2523, 24syl6eqr 2865 . . . . . . . . . . 11 (𝑣 = ⟨((1st𝑌)‘𝑤), 𝑧⟩ → ((1st𝑍)‘𝑣) = (((1st𝑌)‘𝑤)(1st𝑍)𝑧))
2622, 25oveq12d 6895 . . . . . . . . . 10 (𝑣 = ⟨((1st𝑌)‘𝑤), 𝑧⟩ → (((1st𝐸)‘𝑣)(Iso‘𝑇)((1st𝑍)‘𝑣)) = ((((1st𝑌)‘𝑤)(1st𝐸)𝑧)(Iso‘𝑇)(((1st𝑌)‘𝑤)(1st𝑍)𝑧)))
2719, 26eleq12d 2886 . . . . . . . . 9 (𝑣 = ⟨((1st𝑌)‘𝑤), 𝑧⟩ → ((𝑁𝑣) ∈ (((1st𝐸)‘𝑣)(Iso‘𝑇)((1st𝑍)‘𝑣)) ↔ (((1st𝑌)‘𝑤)𝑁𝑧) ∈ ((((1st𝑌)‘𝑤)(1st𝐸)𝑧)(Iso‘𝑇)(((1st𝑌)‘𝑤)(1st𝑍)𝑧))))
28 yoneda.r . . . . . . . . . . . . . 14 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
2928fucbas 16827 . . . . . . . . . . . . 13 ((𝑄 ×c 𝑂) Func 𝑇) = (Base‘𝑅)
30 yonedainv.i . . . . . . . . . . . . 13 𝐼 = (Inv‘𝑅)
31 yoneda.b . . . . . . . . . . . . . . . . . 18 𝐵 = (Base‘𝐶)
32 yoneda.1 . . . . . . . . . . . . . . . . . 18 1 = (Id‘𝐶)
33 yoneda.t . . . . . . . . . . . . . . . . . 18 𝑇 = (SetCat‘𝑉)
34 yoneda.h . . . . . . . . . . . . . . . . . 18 𝐻 = (HomF𝑄)
35 yoneda.e . . . . . . . . . . . . . . . . . 18 𝐸 = (𝑂 evalF 𝑆)
36 yoneda.z . . . . . . . . . . . . . . . . . 18 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
372, 31, 32, 4, 5, 33, 6, 34, 28, 35, 36, 3, 7, 11, 8yonedalem1 17120 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇)))
3837simpld 484 . . . . . . . . . . . . . . . 16 (𝜑𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇))
39 funcrcl 16730 . . . . . . . . . . . . . . . 16 (𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇) → ((𝑄 ×c 𝑂) ∈ Cat ∧ 𝑇 ∈ Cat))
4038, 39syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑄 ×c 𝑂) ∈ Cat ∧ 𝑇 ∈ Cat))
4140simpld 484 . . . . . . . . . . . . . 14 (𝜑 → (𝑄 ×c 𝑂) ∈ Cat)
4240simprd 485 . . . . . . . . . . . . . 14 (𝜑𝑇 ∈ Cat)
4328, 41, 42fuccat 16837 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ Cat)
4437simprd 485 . . . . . . . . . . . . 13 (𝜑𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇))
45 eqid 2813 . . . . . . . . . . . . 13 (Iso‘𝑅) = (Iso‘𝑅)
46 yoneda.m . . . . . . . . . . . . . 14 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥))))
47 yonedainv.n . . . . . . . . . . . . . 14 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))))
482, 31, 32, 4, 5, 33, 6, 34, 28, 35, 36, 3, 7, 11, 8, 46, 30, 47yonedainv 17129 . . . . . . . . . . . . 13 (𝜑𝑀(𝑍𝐼𝐸)𝑁)
4929, 30, 43, 38, 44, 45, 48inviso2 16634 . . . . . . . . . . . 12 (𝜑𝑁 ∈ (𝐸(Iso‘𝑅)𝑍))
50 eqid 2813 . . . . . . . . . . . . . 14 (𝑄 ×c 𝑂) = (𝑄 ×c 𝑂)
516fucbas 16827 . . . . . . . . . . . . . 14 (𝑂 Func 𝑆) = (Base‘𝑄)
524, 31oppcbas 16585 . . . . . . . . . . . . . 14 𝐵 = (Base‘𝑂)
5350, 51, 52xpcbas 17026 . . . . . . . . . . . . 13 ((𝑂 Func 𝑆) × 𝐵) = (Base‘(𝑄 ×c 𝑂))
54 eqid 2813 . . . . . . . . . . . . 13 ((𝑄 ×c 𝑂) Nat 𝑇) = ((𝑄 ×c 𝑂) Nat 𝑇)
55 eqid 2813 . . . . . . . . . . . . 13 (Iso‘𝑇) = (Iso‘𝑇)
5628, 53, 54, 44, 38, 45, 55fuciso 16842 . . . . . . . . . . . 12 (𝜑 → (𝑁 ∈ (𝐸(Iso‘𝑅)𝑍) ↔ (𝑁 ∈ (𝐸((𝑄 ×c 𝑂) Nat 𝑇)𝑍) ∧ ∀𝑣 ∈ ((𝑂 Func 𝑆) × 𝐵)(𝑁𝑣) ∈ (((1st𝐸)‘𝑣)(Iso‘𝑇)((1st𝑍)‘𝑣)))))
5749, 56mpbid 223 . . . . . . . . . . 11 (𝜑 → (𝑁 ∈ (𝐸((𝑄 ×c 𝑂) Nat 𝑇)𝑍) ∧ ∀𝑣 ∈ ((𝑂 Func 𝑆) × 𝐵)(𝑁𝑣) ∈ (((1st𝐸)‘𝑣)(Iso‘𝑇)((1st𝑍)‘𝑣))))
5857simprd 485 . . . . . . . . . 10 (𝜑 → ∀𝑣 ∈ ((𝑂 Func 𝑆) × 𝐵)(𝑁𝑣) ∈ (((1st𝐸)‘𝑣)(Iso‘𝑇)((1st𝑍)‘𝑣)))
5958adantr 468 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ∀𝑣 ∈ ((𝑂 Func 𝑆) × 𝐵)(𝑁𝑣) ∈ (((1st𝐸)‘𝑣)(Iso‘𝑇)((1st𝑍)‘𝑣)))
6031, 51, 16funcf1 16733 . . . . . . . . . . . 12 (𝜑 → (1st𝑌):𝐵⟶(𝑂 Func 𝑆))
6160adantr 468 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (1st𝑌):𝐵⟶(𝑂 Func 𝑆))
62 simprr 780 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → 𝑤𝐵)
6361, 62ffvelrnd 6585 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ((1st𝑌)‘𝑤) ∈ (𝑂 Func 𝑆))
64 simprl 778 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → 𝑧𝐵)
65 opelxpi 5355 . . . . . . . . . 10 ((((1st𝑌)‘𝑤) ∈ (𝑂 Func 𝑆) ∧ 𝑧𝐵) → ⟨((1st𝑌)‘𝑤), 𝑧⟩ ∈ ((𝑂 Func 𝑆) × 𝐵))
6663, 64, 65syl2anc 575 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ⟨((1st𝑌)‘𝑤), 𝑧⟩ ∈ ((𝑂 Func 𝑆) × 𝐵))
6727, 59, 66rspcdva 3515 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑤)𝑁𝑧) ∈ ((((1st𝑌)‘𝑤)(1st𝐸)𝑧)(Iso‘𝑇)(((1st𝑌)‘𝑤)(1st𝑍)𝑧)))
684oppccat 16589 . . . . . . . . . . . . 13 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
693, 68syl 17 . . . . . . . . . . . 12 (𝜑𝑂 ∈ Cat)
7069adantr 468 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → 𝑂 ∈ Cat)
715setccat 16942 . . . . . . . . . . . . 13 (𝑈 ∈ V → 𝑆 ∈ Cat)
7210, 71syl 17 . . . . . . . . . . . 12 (𝜑𝑆 ∈ Cat)
7372adantr 468 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → 𝑆 ∈ Cat)
7435, 70, 73, 52, 63, 64evlf1 17068 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑤)(1st𝐸)𝑧) = ((1st ‘((1st𝑌)‘𝑤))‘𝑧))
753adantr 468 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → 𝐶 ∈ Cat)
76 eqid 2813 . . . . . . . . . . 11 (Hom ‘𝐶) = (Hom ‘𝐶)
772, 31, 75, 62, 76, 64yon11 17112 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ((1st ‘((1st𝑌)‘𝑤))‘𝑧) = (𝑧(Hom ‘𝐶)𝑤))
7874, 77eqtrd 2847 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑤)(1st𝐸)𝑧) = (𝑧(Hom ‘𝐶)𝑤))
797adantr 468 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → 𝑉𝑊)
8011adantr 468 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ran (Homf𝐶) ⊆ 𝑈)
818adantr 468 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
822, 31, 32, 4, 5, 33, 6, 34, 28, 35, 36, 75, 79, 80, 81, 63, 64yonedalem21 17121 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑤)(1st𝑍)𝑧) = (((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)))
8378, 82oveq12d 6895 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ((((1st𝑌)‘𝑤)(1st𝐸)𝑧)(Iso‘𝑇)(((1st𝑌)‘𝑤)(1st𝑍)𝑧)) = ((𝑧(Hom ‘𝐶)𝑤)(Iso‘𝑇)(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤))))
8467, 83eleqtrd 2894 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑤)𝑁𝑧) ∈ ((𝑧(Hom ‘𝐶)𝑤)(Iso‘𝑇)(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤))))
859adantr 468 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → 𝑈𝑉)
86 eqid 2813 . . . . . . . . . . . . 13 (Base‘𝑆) = (Base‘𝑆)
87 relfunc 16729 . . . . . . . . . . . . . 14 Rel (𝑂 Func 𝑆)
88 1st2ndbr 7452 . . . . . . . . . . . . . 14 ((Rel (𝑂 Func 𝑆) ∧ ((1st𝑌)‘𝑤) ∈ (𝑂 Func 𝑆)) → (1st ‘((1st𝑌)‘𝑤))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑤)))
8987, 63, 88sylancr 577 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (1st ‘((1st𝑌)‘𝑤))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑤)))
9052, 86, 89funcf1 16733 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (1st ‘((1st𝑌)‘𝑤)):𝐵⟶(Base‘𝑆))
9190, 64ffvelrnd 6585 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ((1st ‘((1st𝑌)‘𝑤))‘𝑧) ∈ (Base‘𝑆))
925, 10setcbas 16935 . . . . . . . . . . . 12 (𝜑𝑈 = (Base‘𝑆))
9392adantr 468 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → 𝑈 = (Base‘𝑆))
9491, 93eleqtrrd 2895 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ((1st ‘((1st𝑌)‘𝑤))‘𝑧) ∈ 𝑈)
9577, 94eqeltrrd 2893 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (𝑧(Hom ‘𝐶)𝑤) ∈ 𝑈)
9685, 95sseldd 3806 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (𝑧(Hom ‘𝐶)𝑤) ∈ 𝑉)
97 eqid 2813 . . . . . . . . . 10 (Homf𝑄) = (Homf𝑄)
98 eqid 2813 . . . . . . . . . . 11 (𝑂 Nat 𝑆) = (𝑂 Nat 𝑆)
996, 98fuchom 16828 . . . . . . . . . 10 (𝑂 Nat 𝑆) = (Hom ‘𝑄)
10061, 64ffvelrnd 6585 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ((1st𝑌)‘𝑧) ∈ (𝑂 Func 𝑆))
10197, 51, 99, 100, 63homfval 16559 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑧)(Homf𝑄)((1st𝑌)‘𝑤)) = (((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)))
1028unssad 3996 . . . . . . . . . . 11 (𝜑 → ran (Homf𝑄) ⊆ 𝑉)
103102adantr 468 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ran (Homf𝑄) ⊆ 𝑉)
10497, 51homffn 16560 . . . . . . . . . . . 12 (Homf𝑄) Fn ((𝑂 Func 𝑆) × (𝑂 Func 𝑆))
105104a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (Homf𝑄) Fn ((𝑂 Func 𝑆) × (𝑂 Func 𝑆)))
106 fnovrn 7042 . . . . . . . . . . 11 (((Homf𝑄) Fn ((𝑂 Func 𝑆) × (𝑂 Func 𝑆)) ∧ ((1st𝑌)‘𝑧) ∈ (𝑂 Func 𝑆) ∧ ((1st𝑌)‘𝑤) ∈ (𝑂 Func 𝑆)) → (((1st𝑌)‘𝑧)(Homf𝑄)((1st𝑌)‘𝑤)) ∈ ran (Homf𝑄))
107105, 100, 63, 106syl3anc 1483 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑧)(Homf𝑄)((1st𝑌)‘𝑤)) ∈ ran (Homf𝑄))
108103, 107sseldd 3806 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑧)(Homf𝑄)((1st𝑌)‘𝑤)) ∈ 𝑉)
109101, 108eqeltrrd 2893 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)) ∈ 𝑉)
11033, 79, 96, 109, 55setciso 16948 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ((((1st𝑌)‘𝑤)𝑁𝑧) ∈ ((𝑧(Hom ‘𝐶)𝑤)(Iso‘𝑇)(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤))) ↔ (((1st𝑌)‘𝑤)𝑁𝑧):(𝑧(Hom ‘𝐶)𝑤)–1-1-onto→(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤))))
11184, 110mpbid 223 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑤)𝑁𝑧):(𝑧(Hom ‘𝐶)𝑤)–1-1-onto→(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)))
11275adantr 468 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝐶 ∈ Cat)
113112adantr 468 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → 𝐶 ∈ Cat)
11464adantr 468 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑧𝐵)
115114adantr 468 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → 𝑧𝐵)
116 simpr 473 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → 𝑦𝐵)
1172, 31, 113, 115, 76, 116yon11 17112 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → ((1st ‘((1st𝑌)‘𝑧))‘𝑦) = (𝑦(Hom ‘𝐶)𝑧))
118117eqcomd 2819 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → (𝑦(Hom ‘𝐶)𝑧) = ((1st ‘((1st𝑌)‘𝑧))‘𝑦))
119113adantr 468 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → 𝐶 ∈ Cat)
12062ad3antrrr 712 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → 𝑤𝐵)
121115adantr 468 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → 𝑧𝐵)
122 eqid 2813 . . . . . . . . . . . . . . 15 (comp‘𝐶) = (comp‘𝐶)
123116adantr 468 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → 𝑦𝐵)
124 simpr 473 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))
125 simpllr 784 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → ∈ (𝑧(Hom ‘𝐶)𝑤))
1262, 31, 119, 120, 76, 121, 122, 123, 124, 125yon12 17113 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → (((𝑧(2nd ‘((1st𝑌)‘𝑤))𝑦)‘𝑔)‘) = ((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔))
1272, 31, 119, 121, 76, 120, 122, 123, 125, 124yon2 17114 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → ((((𝑧(2nd𝑌)𝑤)‘)‘𝑦)‘𝑔) = ((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔))
128126, 127eqtr4d 2850 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → (((𝑧(2nd ‘((1st𝑌)‘𝑤))𝑦)‘𝑔)‘) = ((((𝑧(2nd𝑌)𝑤)‘)‘𝑦)‘𝑔))
129118, 128mpteq12dva 4933 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ↦ (((𝑧(2nd ‘((1st𝑌)‘𝑤))𝑦)‘𝑔)‘)) = (𝑔 ∈ ((1st ‘((1st𝑌)‘𝑧))‘𝑦) ↦ ((((𝑧(2nd𝑌)𝑤)‘)‘𝑦)‘𝑔)))
13016adantr 468 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (1st𝑌)(𝐶 Func 𝑄)(2nd𝑌))
13131, 76, 99, 130, 64, 62funcf2 16735 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (𝑧(2nd𝑌)𝑤):(𝑧(Hom ‘𝐶)𝑤)⟶(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)))
132131ffvelrnda 6584 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑧(2nd𝑌)𝑤)‘) ∈ (((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)))
13398, 132nat1st2nd 16818 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑧(2nd𝑌)𝑤)‘) ∈ (⟨(1st ‘((1st𝑌)‘𝑧)), (2nd ‘((1st𝑌)‘𝑧))⟩(𝑂 Nat 𝑆)⟨(1st ‘((1st𝑌)‘𝑤)), (2nd ‘((1st𝑌)‘𝑤))⟩))
134133adantr 468 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → ((𝑧(2nd𝑌)𝑤)‘) ∈ (⟨(1st ‘((1st𝑌)‘𝑧)), (2nd ‘((1st𝑌)‘𝑧))⟩(𝑂 Nat 𝑆)⟨(1st ‘((1st𝑌)‘𝑤)), (2nd ‘((1st𝑌)‘𝑤))⟩))
135 eqid 2813 . . . . . . . . . . . . . . 15 (Hom ‘𝑆) = (Hom ‘𝑆)
13698, 134, 52, 135, 116natcl 16820 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → (((𝑧(2nd𝑌)𝑤)‘)‘𝑦) ∈ (((1st ‘((1st𝑌)‘𝑧))‘𝑦)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑤))‘𝑦)))
13710adantr 468 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → 𝑈 ∈ V)
138137ad2antrr 708 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → 𝑈 ∈ V)
13960ad2antrr 708 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → (1st𝑌):𝐵⟶(𝑂 Func 𝑆))
140139, 114ffvelrnd 6585 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((1st𝑌)‘𝑧) ∈ (𝑂 Func 𝑆))
141 1st2ndbr 7452 . . . . . . . . . . . . . . . . . . 19 ((Rel (𝑂 Func 𝑆) ∧ ((1st𝑌)‘𝑧) ∈ (𝑂 Func 𝑆)) → (1st ‘((1st𝑌)‘𝑧))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑧)))
14287, 140, 141sylancr 577 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → (1st ‘((1st𝑌)‘𝑧))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑧)))
14352, 86, 142funcf1 16733 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → (1st ‘((1st𝑌)‘𝑧)):𝐵⟶(Base‘𝑆))
144143ffvelrnda 6584 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → ((1st ‘((1st𝑌)‘𝑧))‘𝑦) ∈ (Base‘𝑆))
14593ad2antrr 708 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → 𝑈 = (Base‘𝑆))
146144, 145eleqtrrd 2895 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → ((1st ‘((1st𝑌)‘𝑧))‘𝑦) ∈ 𝑈)
14790adantr 468 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → (1st ‘((1st𝑌)‘𝑤)):𝐵⟶(Base‘𝑆))
148147ffvelrnda 6584 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → ((1st ‘((1st𝑌)‘𝑤))‘𝑦) ∈ (Base‘𝑆))
149148, 145eleqtrrd 2895 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → ((1st ‘((1st𝑌)‘𝑤))‘𝑦) ∈ 𝑈)
1505, 138, 135, 146, 149elsetchom 16938 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → ((((𝑧(2nd𝑌)𝑤)‘)‘𝑦) ∈ (((1st ‘((1st𝑌)‘𝑧))‘𝑦)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑤))‘𝑦)) ↔ (((𝑧(2nd𝑌)𝑤)‘)‘𝑦):((1st ‘((1st𝑌)‘𝑧))‘𝑦)⟶((1st ‘((1st𝑌)‘𝑤))‘𝑦)))
151136, 150mpbid 223 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → (((𝑧(2nd𝑌)𝑤)‘)‘𝑦):((1st ‘((1st𝑌)‘𝑧))‘𝑦)⟶((1st ‘((1st𝑌)‘𝑤))‘𝑦))
152151feqmptd 6473 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → (((𝑧(2nd𝑌)𝑤)‘)‘𝑦) = (𝑔 ∈ ((1st ‘((1st𝑌)‘𝑧))‘𝑦) ↦ ((((𝑧(2nd𝑌)𝑤)‘)‘𝑦)‘𝑔)))
153129, 152eqtr4d 2850 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ↦ (((𝑧(2nd ‘((1st𝑌)‘𝑤))𝑦)‘𝑔)‘)) = (((𝑧(2nd𝑌)𝑤)‘)‘𝑦))
154153mpteq2dva 4945 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ↦ (((𝑧(2nd ‘((1st𝑌)‘𝑤))𝑦)‘𝑔)‘))) = (𝑦𝐵 ↦ (((𝑧(2nd𝑌)𝑤)‘)‘𝑦)))
15579adantr 468 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑉𝑊)
15680adantr 468 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ran (Homf𝐶) ⊆ 𝑈)
15781adantr 468 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
15863adantr 468 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((1st𝑌)‘𝑤) ∈ (𝑂 Func 𝑆))
15977eleq2d 2878 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ( ∈ ((1st ‘((1st𝑌)‘𝑤))‘𝑧) ↔ ∈ (𝑧(Hom ‘𝐶)𝑤)))
160159biimpar 465 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ∈ ((1st ‘((1st𝑌)‘𝑤))‘𝑧))
1612, 31, 32, 4, 5, 33, 6, 34, 28, 35, 36, 112, 155, 156, 157, 158, 114, 47, 160yonedalem4a 17123 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((((1st𝑌)‘𝑤)𝑁𝑧)‘) = (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ↦ (((𝑧(2nd ‘((1st𝑌)‘𝑤))𝑦)‘𝑔)‘))))
16298, 133, 52natfn 16821 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑧(2nd𝑌)𝑤)‘) Fn 𝐵)
163 dffn5 6465 . . . . . . . . . . 11 (((𝑧(2nd𝑌)𝑤)‘) Fn 𝐵 ↔ ((𝑧(2nd𝑌)𝑤)‘) = (𝑦𝐵 ↦ (((𝑧(2nd𝑌)𝑤)‘)‘𝑦)))
164162, 163sylib 209 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑧(2nd𝑌)𝑤)‘) = (𝑦𝐵 ↦ (((𝑧(2nd𝑌)𝑤)‘)‘𝑦)))
165154, 161, 1643eqtr4d 2857 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((((1st𝑌)‘𝑤)𝑁𝑧)‘) = ((𝑧(2nd𝑌)𝑤)‘))
166165mpteq2dva 4945 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ( ∈ (𝑧(Hom ‘𝐶)𝑤) ↦ ((((1st𝑌)‘𝑤)𝑁𝑧)‘)) = ( ∈ (𝑧(Hom ‘𝐶)𝑤) ↦ ((𝑧(2nd𝑌)𝑤)‘)))
167 f1of 6356 . . . . . . . . . 10 ((((1st𝑌)‘𝑤)𝑁𝑧):(𝑧(Hom ‘𝐶)𝑤)–1-1-onto→(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)) → (((1st𝑌)‘𝑤)𝑁𝑧):(𝑧(Hom ‘𝐶)𝑤)⟶(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)))
168111, 167syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑤)𝑁𝑧):(𝑧(Hom ‘𝐶)𝑤)⟶(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)))
169168feqmptd 6473 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑤)𝑁𝑧) = ( ∈ (𝑧(Hom ‘𝐶)𝑤) ↦ ((((1st𝑌)‘𝑤)𝑁𝑧)‘)))
170131feqmptd 6473 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (𝑧(2nd𝑌)𝑤) = ( ∈ (𝑧(Hom ‘𝐶)𝑤) ↦ ((𝑧(2nd𝑌)𝑤)‘)))
171166, 169, 1703eqtr4d 2857 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑤)𝑁𝑧) = (𝑧(2nd𝑌)𝑤))
172 f1oeq1 6346 . . . . . . 7 ((((1st𝑌)‘𝑤)𝑁𝑧) = (𝑧(2nd𝑌)𝑤) → ((((1st𝑌)‘𝑤)𝑁𝑧):(𝑧(Hom ‘𝐶)𝑤)–1-1-onto→(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)) ↔ (𝑧(2nd𝑌)𝑤):(𝑧(Hom ‘𝐶)𝑤)–1-1-onto→(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤))))
173171, 172syl 17 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ((((1st𝑌)‘𝑤)𝑁𝑧):(𝑧(Hom ‘𝐶)𝑤)–1-1-onto→(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)) ↔ (𝑧(2nd𝑌)𝑤):(𝑧(Hom ‘𝐶)𝑤)–1-1-onto→(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤))))
174111, 173mpbid 223 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (𝑧(2nd𝑌)𝑤):(𝑧(Hom ‘𝐶)𝑤)–1-1-onto→(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)))
175174ralrimivva 3166 . . . 4 (𝜑 → ∀𝑧𝐵𝑤𝐵 (𝑧(2nd𝑌)𝑤):(𝑧(Hom ‘𝐶)𝑤)–1-1-onto→(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)))
17631, 76, 99isffth2 16783 . . . 4 ((1st𝑌)((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄))(2nd𝑌) ↔ ((1st𝑌)(𝐶 Func 𝑄)(2nd𝑌) ∧ ∀𝑧𝐵𝑤𝐵 (𝑧(2nd𝑌)𝑤):(𝑧(Hom ‘𝐶)𝑤)–1-1-onto→(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤))))
17716, 175, 176sylanbrc 574 . . 3 (𝜑 → (1st𝑌)((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄))(2nd𝑌))
178 df-br 4852 . . 3 ((1st𝑌)((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄))(2nd𝑌) ↔ ⟨(1st𝑌), (2nd𝑌)⟩ ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄)))
179177, 178sylib 209 . 2 (𝜑 → ⟨(1st𝑌), (2nd𝑌)⟩ ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄)))
18014, 179eqeltrd 2892 1 (𝜑𝑌 ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1637  wcel 2157  wral 3103  Vcvv 3398  cun 3774  cin 3775  wss 3776  cop 4383   class class class wbr 4851  cmpt 4930   × cxp 5316  ran crn 5319  Rel wrel 5323   Fn wfn 6099  wf 6100  1-1-ontowf1o 6103  cfv 6104  (class class class)co 6877  cmpt2 6879  1st c1st 7399  2nd c2nd 7400  tpos ctpos 7589  Basecbs 16071  Hom chom 16167  compcco 16168  Catccat 16532  Idccid 16533  Homf chomf 16534  oppCatcoppc 16578  Invcinv 16612  Isociso 16613   Func cfunc 16721  func ccofu 16723   Full cful 16769   Faith cfth 16770   Nat cnat 16808   FuncCat cfuc 16809  SetCatcsetc 16932   ×c cxpc 17016   1stF c1stf 17017   2ndF c2ndf 17018   ⟨,⟩F cprf 17019   evalF cevlf 17057  HomFchof 17096  Yoncyon 17097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2791  ax-rep 4971  ax-sep 4982  ax-nul 4990  ax-pow 5042  ax-pr 5103  ax-un 7182  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2638  df-clab 2800  df-cleq 2806  df-clel 2809  df-nfc 2944  df-ne 2986  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3400  df-sbc 3641  df-csb 3736  df-dif 3779  df-un 3781  df-in 3783  df-ss 3790  df-pss 3792  df-nul 4124  df-if 4287  df-pw 4360  df-sn 4378  df-pr 4380  df-tp 4382  df-op 4384  df-uni 4638  df-int 4677  df-iun 4721  df-br 4852  df-opab 4914  df-mpt 4931  df-tr 4954  df-id 5226  df-eprel 5231  df-po 5239  df-so 5240  df-fr 5277  df-we 5279  df-xp 5324  df-rel 5325  df-cnv 5326  df-co 5327  df-dm 5328  df-rn 5329  df-res 5330  df-ima 5331  df-pred 5900  df-ord 5946  df-on 5947  df-lim 5948  df-suc 5949  df-iota 6067  df-fun 6106  df-fn 6107  df-f 6108  df-f1 6109  df-fo 6110  df-f1o 6111  df-fv 6112  df-riota 6838  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-om 7299  df-1st 7401  df-2nd 7402  df-tpos 7590  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-map 8097  df-pm 8098  df-ixp 8149  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-pnf 10364  df-mnf 10365  df-xr 10366  df-ltxr 10367  df-le 10368  df-sub 10556  df-neg 10557  df-nn 11309  df-2 11367  df-3 11368  df-4 11369  df-5 11370  df-6 11371  df-7 11372  df-8 11373  df-9 11374  df-n0 11563  df-z 11647  df-dec 11763  df-uz 11908  df-fz 12553  df-struct 16073  df-ndx 16074  df-slot 16075  df-base 16077  df-sets 16078  df-ress 16079  df-hom 16180  df-cco 16181  df-cat 16536  df-cid 16537  df-homf 16538  df-comf 16539  df-oppc 16579  df-sect 16614  df-inv 16615  df-iso 16616  df-ssc 16677  df-resc 16678  df-subc 16679  df-func 16725  df-cofu 16727  df-full 16771  df-fth 16772  df-nat 16810  df-fuc 16811  df-setc 16933  df-xpc 17020  df-1stf 17021  df-2ndf 17022  df-prf 17023  df-evlf 17061  df-curf 17062  df-hof 17098  df-yon 17099
This theorem is referenced by:  yonffth  17132
  Copyright terms: Public domain W3C validator