MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonffthlem Structured version   Visualization version   GIF version

Theorem yonffthlem 18352
Description: Lemma for yonffth 18354. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y 𝑌 = (Yon‘𝐶)
yoneda.b 𝐵 = (Base‘𝐶)
yoneda.1 1 = (Id‘𝐶)
yoneda.o 𝑂 = (oppCat‘𝐶)
yoneda.s 𝑆 = (SetCat‘𝑈)
yoneda.t 𝑇 = (SetCat‘𝑉)
yoneda.q 𝑄 = (𝑂 FuncCat 𝑆)
yoneda.h 𝐻 = (HomF𝑄)
yoneda.r 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
yoneda.e 𝐸 = (𝑂 evalF 𝑆)
yoneda.z 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
yoneda.c (𝜑𝐶 ∈ Cat)
yoneda.w (𝜑𝑉𝑊)
yoneda.u (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
yoneda.v (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
yoneda.m 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥))))
yonedainv.i 𝐼 = (Inv‘𝑅)
yonedainv.n 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))))
Assertion
Ref Expression
yonffthlem (𝜑𝑌 ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄)))
Distinct variable groups:   𝑓,𝑎,𝑔,𝑥,𝑦, 1   𝑢,𝑎,𝑔,𝑦,𝐶,𝑓,𝑥   𝐸,𝑎,𝑓,𝑔,𝑢,𝑦   𝐵,𝑎,𝑓,𝑔,𝑢,𝑥,𝑦   𝑁,𝑎   𝑂,𝑎,𝑓,𝑔,𝑢,𝑥,𝑦   𝑆,𝑎,𝑓,𝑔,𝑢,𝑥,𝑦   𝑔,𝑀,𝑢,𝑦   𝑄,𝑎,𝑓,𝑔,𝑢,𝑥   𝑇,𝑓,𝑔,𝑢,𝑦   𝜑,𝑎,𝑓,𝑔,𝑢,𝑥,𝑦   𝑢,𝑅   𝑌,𝑎,𝑓,𝑔,𝑢,𝑥,𝑦   𝑍,𝑎,𝑓,𝑔,𝑢,𝑥,𝑦
Allowed substitution hints:   𝑄(𝑦)   𝑅(𝑥,𝑦,𝑓,𝑔,𝑎)   𝑇(𝑥,𝑎)   𝑈(𝑥,𝑦,𝑢,𝑓,𝑔,𝑎)   1 (𝑢)   𝐸(𝑥)   𝐻(𝑥,𝑦,𝑢,𝑓,𝑔,𝑎)   𝐼(𝑥,𝑦,𝑢,𝑓,𝑔,𝑎)   𝑀(𝑥,𝑓,𝑎)   𝑁(𝑥,𝑦,𝑢,𝑓,𝑔)   𝑉(𝑥,𝑦,𝑢,𝑓,𝑔,𝑎)   𝑊(𝑥,𝑦,𝑢,𝑓,𝑔,𝑎)

Proof of Theorem yonffthlem
Dummy variables 𝑤 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17926 . . 3 Rel (𝐶 Func 𝑄)
2 yoneda.y . . . 4 𝑌 = (Yon‘𝐶)
3 yoneda.c . . . 4 (𝜑𝐶 ∈ Cat)
4 yoneda.o . . . 4 𝑂 = (oppCat‘𝐶)
5 yoneda.s . . . 4 𝑆 = (SetCat‘𝑈)
6 yoneda.q . . . 4 𝑄 = (𝑂 FuncCat 𝑆)
7 yoneda.w . . . . 5 (𝜑𝑉𝑊)
8 yoneda.v . . . . . 6 (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
98unssbd 4217 . . . . 5 (𝜑𝑈𝑉)
107, 9ssexd 5342 . . . 4 (𝜑𝑈 ∈ V)
11 yoneda.u . . . 4 (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
122, 3, 4, 5, 6, 10, 11yoncl 18332 . . 3 (𝜑𝑌 ∈ (𝐶 Func 𝑄))
13 1st2nd 8080 . . 3 ((Rel (𝐶 Func 𝑄) ∧ 𝑌 ∈ (𝐶 Func 𝑄)) → 𝑌 = ⟨(1st𝑌), (2nd𝑌)⟩)
141, 12, 13sylancr 586 . 2 (𝜑𝑌 = ⟨(1st𝑌), (2nd𝑌)⟩)
15 1st2ndbr 8083 . . . . 5 ((Rel (𝐶 Func 𝑄) ∧ 𝑌 ∈ (𝐶 Func 𝑄)) → (1st𝑌)(𝐶 Func 𝑄)(2nd𝑌))
161, 12, 15sylancr 586 . . . 4 (𝜑 → (1st𝑌)(𝐶 Func 𝑄)(2nd𝑌))
17 fveq2 6920 . . . . . . . . . . 11 (𝑣 = ⟨((1st𝑌)‘𝑤), 𝑧⟩ → (𝑁𝑣) = (𝑁‘⟨((1st𝑌)‘𝑤), 𝑧⟩))
18 df-ov 7451 . . . . . . . . . . 11 (((1st𝑌)‘𝑤)𝑁𝑧) = (𝑁‘⟨((1st𝑌)‘𝑤), 𝑧⟩)
1917, 18eqtr4di 2798 . . . . . . . . . 10 (𝑣 = ⟨((1st𝑌)‘𝑤), 𝑧⟩ → (𝑁𝑣) = (((1st𝑌)‘𝑤)𝑁𝑧))
20 fveq2 6920 . . . . . . . . . . . 12 (𝑣 = ⟨((1st𝑌)‘𝑤), 𝑧⟩ → ((1st𝐸)‘𝑣) = ((1st𝐸)‘⟨((1st𝑌)‘𝑤), 𝑧⟩))
21 df-ov 7451 . . . . . . . . . . . 12 (((1st𝑌)‘𝑤)(1st𝐸)𝑧) = ((1st𝐸)‘⟨((1st𝑌)‘𝑤), 𝑧⟩)
2220, 21eqtr4di 2798 . . . . . . . . . . 11 (𝑣 = ⟨((1st𝑌)‘𝑤), 𝑧⟩ → ((1st𝐸)‘𝑣) = (((1st𝑌)‘𝑤)(1st𝐸)𝑧))
23 fveq2 6920 . . . . . . . . . . . 12 (𝑣 = ⟨((1st𝑌)‘𝑤), 𝑧⟩ → ((1st𝑍)‘𝑣) = ((1st𝑍)‘⟨((1st𝑌)‘𝑤), 𝑧⟩))
24 df-ov 7451 . . . . . . . . . . . 12 (((1st𝑌)‘𝑤)(1st𝑍)𝑧) = ((1st𝑍)‘⟨((1st𝑌)‘𝑤), 𝑧⟩)
2523, 24eqtr4di 2798 . . . . . . . . . . 11 (𝑣 = ⟨((1st𝑌)‘𝑤), 𝑧⟩ → ((1st𝑍)‘𝑣) = (((1st𝑌)‘𝑤)(1st𝑍)𝑧))
2622, 25oveq12d 7466 . . . . . . . . . 10 (𝑣 = ⟨((1st𝑌)‘𝑤), 𝑧⟩ → (((1st𝐸)‘𝑣)(Iso‘𝑇)((1st𝑍)‘𝑣)) = ((((1st𝑌)‘𝑤)(1st𝐸)𝑧)(Iso‘𝑇)(((1st𝑌)‘𝑤)(1st𝑍)𝑧)))
2719, 26eleq12d 2838 . . . . . . . . 9 (𝑣 = ⟨((1st𝑌)‘𝑤), 𝑧⟩ → ((𝑁𝑣) ∈ (((1st𝐸)‘𝑣)(Iso‘𝑇)((1st𝑍)‘𝑣)) ↔ (((1st𝑌)‘𝑤)𝑁𝑧) ∈ ((((1st𝑌)‘𝑤)(1st𝐸)𝑧)(Iso‘𝑇)(((1st𝑌)‘𝑤)(1st𝑍)𝑧))))
28 yoneda.r . . . . . . . . . . . . . 14 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
2928fucbas 18029 . . . . . . . . . . . . 13 ((𝑄 ×c 𝑂) Func 𝑇) = (Base‘𝑅)
30 yonedainv.i . . . . . . . . . . . . 13 𝐼 = (Inv‘𝑅)
31 yoneda.b . . . . . . . . . . . . . . . . . 18 𝐵 = (Base‘𝐶)
32 yoneda.1 . . . . . . . . . . . . . . . . . 18 1 = (Id‘𝐶)
33 yoneda.t . . . . . . . . . . . . . . . . . 18 𝑇 = (SetCat‘𝑉)
34 yoneda.h . . . . . . . . . . . . . . . . . 18 𝐻 = (HomF𝑄)
35 yoneda.e . . . . . . . . . . . . . . . . . 18 𝐸 = (𝑂 evalF 𝑆)
36 yoneda.z . . . . . . . . . . . . . . . . . 18 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
372, 31, 32, 4, 5, 33, 6, 34, 28, 35, 36, 3, 7, 11, 8yonedalem1 18342 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇)))
3837simpld 494 . . . . . . . . . . . . . . . 16 (𝜑𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇))
39 funcrcl 17927 . . . . . . . . . . . . . . . 16 (𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇) → ((𝑄 ×c 𝑂) ∈ Cat ∧ 𝑇 ∈ Cat))
4038, 39syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑄 ×c 𝑂) ∈ Cat ∧ 𝑇 ∈ Cat))
4140simpld 494 . . . . . . . . . . . . . 14 (𝜑 → (𝑄 ×c 𝑂) ∈ Cat)
4240simprd 495 . . . . . . . . . . . . . 14 (𝜑𝑇 ∈ Cat)
4328, 41, 42fuccat 18040 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ Cat)
4437simprd 495 . . . . . . . . . . . . 13 (𝜑𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇))
45 eqid 2740 . . . . . . . . . . . . 13 (Iso‘𝑅) = (Iso‘𝑅)
46 yoneda.m . . . . . . . . . . . . . 14 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥))))
47 yonedainv.n . . . . . . . . . . . . . 14 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))))
482, 31, 32, 4, 5, 33, 6, 34, 28, 35, 36, 3, 7, 11, 8, 46, 30, 47yonedainv 18351 . . . . . . . . . . . . 13 (𝜑𝑀(𝑍𝐼𝐸)𝑁)
4929, 30, 43, 38, 44, 45, 48inviso2 17828 . . . . . . . . . . . 12 (𝜑𝑁 ∈ (𝐸(Iso‘𝑅)𝑍))
50 eqid 2740 . . . . . . . . . . . . . 14 (𝑄 ×c 𝑂) = (𝑄 ×c 𝑂)
516fucbas 18029 . . . . . . . . . . . . . 14 (𝑂 Func 𝑆) = (Base‘𝑄)
524, 31oppcbas 17777 . . . . . . . . . . . . . 14 𝐵 = (Base‘𝑂)
5350, 51, 52xpcbas 18247 . . . . . . . . . . . . 13 ((𝑂 Func 𝑆) × 𝐵) = (Base‘(𝑄 ×c 𝑂))
54 eqid 2740 . . . . . . . . . . . . 13 ((𝑄 ×c 𝑂) Nat 𝑇) = ((𝑄 ×c 𝑂) Nat 𝑇)
55 eqid 2740 . . . . . . . . . . . . 13 (Iso‘𝑇) = (Iso‘𝑇)
5628, 53, 54, 44, 38, 45, 55fuciso 18045 . . . . . . . . . . . 12 (𝜑 → (𝑁 ∈ (𝐸(Iso‘𝑅)𝑍) ↔ (𝑁 ∈ (𝐸((𝑄 ×c 𝑂) Nat 𝑇)𝑍) ∧ ∀𝑣 ∈ ((𝑂 Func 𝑆) × 𝐵)(𝑁𝑣) ∈ (((1st𝐸)‘𝑣)(Iso‘𝑇)((1st𝑍)‘𝑣)))))
5749, 56mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝑁 ∈ (𝐸((𝑄 ×c 𝑂) Nat 𝑇)𝑍) ∧ ∀𝑣 ∈ ((𝑂 Func 𝑆) × 𝐵)(𝑁𝑣) ∈ (((1st𝐸)‘𝑣)(Iso‘𝑇)((1st𝑍)‘𝑣))))
5857simprd 495 . . . . . . . . . 10 (𝜑 → ∀𝑣 ∈ ((𝑂 Func 𝑆) × 𝐵)(𝑁𝑣) ∈ (((1st𝐸)‘𝑣)(Iso‘𝑇)((1st𝑍)‘𝑣)))
5958adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ∀𝑣 ∈ ((𝑂 Func 𝑆) × 𝐵)(𝑁𝑣) ∈ (((1st𝐸)‘𝑣)(Iso‘𝑇)((1st𝑍)‘𝑣)))
6031, 51, 16funcf1 17930 . . . . . . . . . . . 12 (𝜑 → (1st𝑌):𝐵⟶(𝑂 Func 𝑆))
6160adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (1st𝑌):𝐵⟶(𝑂 Func 𝑆))
62 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → 𝑤𝐵)
6361, 62ffvelcdmd 7119 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ((1st𝑌)‘𝑤) ∈ (𝑂 Func 𝑆))
64 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → 𝑧𝐵)
6563, 64opelxpd 5739 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ⟨((1st𝑌)‘𝑤), 𝑧⟩ ∈ ((𝑂 Func 𝑆) × 𝐵))
6627, 59, 65rspcdva 3636 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑤)𝑁𝑧) ∈ ((((1st𝑌)‘𝑤)(1st𝐸)𝑧)(Iso‘𝑇)(((1st𝑌)‘𝑤)(1st𝑍)𝑧)))
674oppccat 17782 . . . . . . . . . . . . 13 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
683, 67syl 17 . . . . . . . . . . . 12 (𝜑𝑂 ∈ Cat)
6968adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → 𝑂 ∈ Cat)
705setccat 18152 . . . . . . . . . . . . 13 (𝑈 ∈ V → 𝑆 ∈ Cat)
7110, 70syl 17 . . . . . . . . . . . 12 (𝜑𝑆 ∈ Cat)
7271adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → 𝑆 ∈ Cat)
7335, 69, 72, 52, 63, 64evlf1 18290 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑤)(1st𝐸)𝑧) = ((1st ‘((1st𝑌)‘𝑤))‘𝑧))
743adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → 𝐶 ∈ Cat)
75 eqid 2740 . . . . . . . . . . 11 (Hom ‘𝐶) = (Hom ‘𝐶)
762, 31, 74, 62, 75, 64yon11 18334 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ((1st ‘((1st𝑌)‘𝑤))‘𝑧) = (𝑧(Hom ‘𝐶)𝑤))
7773, 76eqtrd 2780 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑤)(1st𝐸)𝑧) = (𝑧(Hom ‘𝐶)𝑤))
787adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → 𝑉𝑊)
7911adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ran (Homf𝐶) ⊆ 𝑈)
808adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
812, 31, 32, 4, 5, 33, 6, 34, 28, 35, 36, 74, 78, 79, 80, 63, 64yonedalem21 18343 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑤)(1st𝑍)𝑧) = (((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)))
8277, 81oveq12d 7466 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ((((1st𝑌)‘𝑤)(1st𝐸)𝑧)(Iso‘𝑇)(((1st𝑌)‘𝑤)(1st𝑍)𝑧)) = ((𝑧(Hom ‘𝐶)𝑤)(Iso‘𝑇)(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤))))
8366, 82eleqtrd 2846 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑤)𝑁𝑧) ∈ ((𝑧(Hom ‘𝐶)𝑤)(Iso‘𝑇)(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤))))
849adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → 𝑈𝑉)
85 eqid 2740 . . . . . . . . . . . . 13 (Base‘𝑆) = (Base‘𝑆)
86 relfunc 17926 . . . . . . . . . . . . . 14 Rel (𝑂 Func 𝑆)
87 1st2ndbr 8083 . . . . . . . . . . . . . 14 ((Rel (𝑂 Func 𝑆) ∧ ((1st𝑌)‘𝑤) ∈ (𝑂 Func 𝑆)) → (1st ‘((1st𝑌)‘𝑤))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑤)))
8886, 63, 87sylancr 586 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (1st ‘((1st𝑌)‘𝑤))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑤)))
8952, 85, 88funcf1 17930 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (1st ‘((1st𝑌)‘𝑤)):𝐵⟶(Base‘𝑆))
9089, 64ffvelcdmd 7119 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ((1st ‘((1st𝑌)‘𝑤))‘𝑧) ∈ (Base‘𝑆))
915, 10setcbas 18145 . . . . . . . . . . . 12 (𝜑𝑈 = (Base‘𝑆))
9291adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → 𝑈 = (Base‘𝑆))
9390, 92eleqtrrd 2847 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ((1st ‘((1st𝑌)‘𝑤))‘𝑧) ∈ 𝑈)
9476, 93eqeltrrd 2845 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (𝑧(Hom ‘𝐶)𝑤) ∈ 𝑈)
9584, 94sseldd 4009 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (𝑧(Hom ‘𝐶)𝑤) ∈ 𝑉)
96 eqid 2740 . . . . . . . . . 10 (Homf𝑄) = (Homf𝑄)
97 eqid 2740 . . . . . . . . . . 11 (𝑂 Nat 𝑆) = (𝑂 Nat 𝑆)
986, 97fuchom 18030 . . . . . . . . . 10 (𝑂 Nat 𝑆) = (Hom ‘𝑄)
9961, 64ffvelcdmd 7119 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ((1st𝑌)‘𝑧) ∈ (𝑂 Func 𝑆))
10096, 51, 98, 99, 63homfval 17750 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑧)(Homf𝑄)((1st𝑌)‘𝑤)) = (((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)))
1018unssad 4216 . . . . . . . . . . 11 (𝜑 → ran (Homf𝑄) ⊆ 𝑉)
102101adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ran (Homf𝑄) ⊆ 𝑉)
10396, 51homffn 17751 . . . . . . . . . . 11 (Homf𝑄) Fn ((𝑂 Func 𝑆) × (𝑂 Func 𝑆))
104 fnovrn 7625 . . . . . . . . . . 11 (((Homf𝑄) Fn ((𝑂 Func 𝑆) × (𝑂 Func 𝑆)) ∧ ((1st𝑌)‘𝑧) ∈ (𝑂 Func 𝑆) ∧ ((1st𝑌)‘𝑤) ∈ (𝑂 Func 𝑆)) → (((1st𝑌)‘𝑧)(Homf𝑄)((1st𝑌)‘𝑤)) ∈ ran (Homf𝑄))
105103, 99, 63, 104mp3an2i 1466 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑧)(Homf𝑄)((1st𝑌)‘𝑤)) ∈ ran (Homf𝑄))
106102, 105sseldd 4009 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑧)(Homf𝑄)((1st𝑌)‘𝑤)) ∈ 𝑉)
107100, 106eqeltrrd 2845 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)) ∈ 𝑉)
10833, 78, 95, 107, 55setciso 18158 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ((((1st𝑌)‘𝑤)𝑁𝑧) ∈ ((𝑧(Hom ‘𝐶)𝑤)(Iso‘𝑇)(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤))) ↔ (((1st𝑌)‘𝑤)𝑁𝑧):(𝑧(Hom ‘𝐶)𝑤)–1-1-onto→(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤))))
10983, 108mpbid 232 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑤)𝑁𝑧):(𝑧(Hom ‘𝐶)𝑤)–1-1-onto→(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)))
11074adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝐶 ∈ Cat)
111110adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → 𝐶 ∈ Cat)
11264adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑧𝐵)
113112adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → 𝑧𝐵)
114 simpr 484 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → 𝑦𝐵)
1152, 31, 111, 113, 75, 114yon11 18334 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → ((1st ‘((1st𝑌)‘𝑧))‘𝑦) = (𝑦(Hom ‘𝐶)𝑧))
116115eqcomd 2746 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → (𝑦(Hom ‘𝐶)𝑧) = ((1st ‘((1st𝑌)‘𝑧))‘𝑦))
117111adantr 480 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → 𝐶 ∈ Cat)
11862ad3antrrr 729 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → 𝑤𝐵)
119113adantr 480 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → 𝑧𝐵)
120 eqid 2740 . . . . . . . . . . . . . . 15 (comp‘𝐶) = (comp‘𝐶)
121114adantr 480 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → 𝑦𝐵)
122 simpr 484 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))
123 simpllr 775 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → ∈ (𝑧(Hom ‘𝐶)𝑤))
1242, 31, 117, 118, 75, 119, 120, 121, 122, 123yon12 18335 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → (((𝑧(2nd ‘((1st𝑌)‘𝑤))𝑦)‘𝑔)‘) = ((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔))
1252, 31, 117, 119, 75, 118, 120, 121, 123, 122yon2 18336 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → ((((𝑧(2nd𝑌)𝑤)‘)‘𝑦)‘𝑔) = ((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔))
126124, 125eqtr4d 2783 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → (((𝑧(2nd ‘((1st𝑌)‘𝑤))𝑦)‘𝑔)‘) = ((((𝑧(2nd𝑌)𝑤)‘)‘𝑦)‘𝑔))
127116, 126mpteq12dva 5255 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ↦ (((𝑧(2nd ‘((1st𝑌)‘𝑤))𝑦)‘𝑔)‘)) = (𝑔 ∈ ((1st ‘((1st𝑌)‘𝑧))‘𝑦) ↦ ((((𝑧(2nd𝑌)𝑤)‘)‘𝑦)‘𝑔)))
12816adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (1st𝑌)(𝐶 Func 𝑄)(2nd𝑌))
12931, 75, 98, 128, 64, 62funcf2 17932 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (𝑧(2nd𝑌)𝑤):(𝑧(Hom ‘𝐶)𝑤)⟶(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)))
130129ffvelcdmda 7118 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑧(2nd𝑌)𝑤)‘) ∈ (((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)))
13197, 130nat1st2nd 18019 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑧(2nd𝑌)𝑤)‘) ∈ (⟨(1st ‘((1st𝑌)‘𝑧)), (2nd ‘((1st𝑌)‘𝑧))⟩(𝑂 Nat 𝑆)⟨(1st ‘((1st𝑌)‘𝑤)), (2nd ‘((1st𝑌)‘𝑤))⟩))
132131adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → ((𝑧(2nd𝑌)𝑤)‘) ∈ (⟨(1st ‘((1st𝑌)‘𝑧)), (2nd ‘((1st𝑌)‘𝑧))⟩(𝑂 Nat 𝑆)⟨(1st ‘((1st𝑌)‘𝑤)), (2nd ‘((1st𝑌)‘𝑤))⟩))
133 eqid 2740 . . . . . . . . . . . . . . 15 (Hom ‘𝑆) = (Hom ‘𝑆)
13497, 132, 52, 133, 114natcl 18021 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → (((𝑧(2nd𝑌)𝑤)‘)‘𝑦) ∈ (((1st ‘((1st𝑌)‘𝑧))‘𝑦)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑤))‘𝑦)))
13510adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → 𝑈 ∈ V)
136135ad2antrr 725 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → 𝑈 ∈ V)
13760ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → (1st𝑌):𝐵⟶(𝑂 Func 𝑆))
138137, 112ffvelcdmd 7119 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((1st𝑌)‘𝑧) ∈ (𝑂 Func 𝑆))
139 1st2ndbr 8083 . . . . . . . . . . . . . . . . . . 19 ((Rel (𝑂 Func 𝑆) ∧ ((1st𝑌)‘𝑧) ∈ (𝑂 Func 𝑆)) → (1st ‘((1st𝑌)‘𝑧))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑧)))
14086, 138, 139sylancr 586 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → (1st ‘((1st𝑌)‘𝑧))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑧)))
14152, 85, 140funcf1 17930 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → (1st ‘((1st𝑌)‘𝑧)):𝐵⟶(Base‘𝑆))
142141ffvelcdmda 7118 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → ((1st ‘((1st𝑌)‘𝑧))‘𝑦) ∈ (Base‘𝑆))
14392ad2antrr 725 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → 𝑈 = (Base‘𝑆))
144142, 143eleqtrrd 2847 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → ((1st ‘((1st𝑌)‘𝑧))‘𝑦) ∈ 𝑈)
14589adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → (1st ‘((1st𝑌)‘𝑤)):𝐵⟶(Base‘𝑆))
146145ffvelcdmda 7118 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → ((1st ‘((1st𝑌)‘𝑤))‘𝑦) ∈ (Base‘𝑆))
147146, 143eleqtrrd 2847 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → ((1st ‘((1st𝑌)‘𝑤))‘𝑦) ∈ 𝑈)
1485, 136, 133, 144, 147elsetchom 18148 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → ((((𝑧(2nd𝑌)𝑤)‘)‘𝑦) ∈ (((1st ‘((1st𝑌)‘𝑧))‘𝑦)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑤))‘𝑦)) ↔ (((𝑧(2nd𝑌)𝑤)‘)‘𝑦):((1st ‘((1st𝑌)‘𝑧))‘𝑦)⟶((1st ‘((1st𝑌)‘𝑤))‘𝑦)))
149134, 148mpbid 232 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → (((𝑧(2nd𝑌)𝑤)‘)‘𝑦):((1st ‘((1st𝑌)‘𝑧))‘𝑦)⟶((1st ‘((1st𝑌)‘𝑤))‘𝑦))
150149feqmptd 6990 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → (((𝑧(2nd𝑌)𝑤)‘)‘𝑦) = (𝑔 ∈ ((1st ‘((1st𝑌)‘𝑧))‘𝑦) ↦ ((((𝑧(2nd𝑌)𝑤)‘)‘𝑦)‘𝑔)))
151127, 150eqtr4d 2783 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ↦ (((𝑧(2nd ‘((1st𝑌)‘𝑤))𝑦)‘𝑔)‘)) = (((𝑧(2nd𝑌)𝑤)‘)‘𝑦))
152151mpteq2dva 5266 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ↦ (((𝑧(2nd ‘((1st𝑌)‘𝑤))𝑦)‘𝑔)‘))) = (𝑦𝐵 ↦ (((𝑧(2nd𝑌)𝑤)‘)‘𝑦)))
15378adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑉𝑊)
15479adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ran (Homf𝐶) ⊆ 𝑈)
15580adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
15663adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((1st𝑌)‘𝑤) ∈ (𝑂 Func 𝑆))
15776eleq2d 2830 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ( ∈ ((1st ‘((1st𝑌)‘𝑤))‘𝑧) ↔ ∈ (𝑧(Hom ‘𝐶)𝑤)))
158157biimpar 477 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ∈ ((1st ‘((1st𝑌)‘𝑤))‘𝑧))
1592, 31, 32, 4, 5, 33, 6, 34, 28, 35, 36, 110, 153, 154, 155, 156, 112, 47, 158yonedalem4a 18345 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((((1st𝑌)‘𝑤)𝑁𝑧)‘) = (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ↦ (((𝑧(2nd ‘((1st𝑌)‘𝑤))𝑦)‘𝑔)‘))))
16097, 131, 52natfn 18022 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑧(2nd𝑌)𝑤)‘) Fn 𝐵)
161 dffn5 6980 . . . . . . . . . . 11 (((𝑧(2nd𝑌)𝑤)‘) Fn 𝐵 ↔ ((𝑧(2nd𝑌)𝑤)‘) = (𝑦𝐵 ↦ (((𝑧(2nd𝑌)𝑤)‘)‘𝑦)))
162160, 161sylib 218 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑧(2nd𝑌)𝑤)‘) = (𝑦𝐵 ↦ (((𝑧(2nd𝑌)𝑤)‘)‘𝑦)))
163152, 159, 1623eqtr4d 2790 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((((1st𝑌)‘𝑤)𝑁𝑧)‘) = ((𝑧(2nd𝑌)𝑤)‘))
164163mpteq2dva 5266 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ( ∈ (𝑧(Hom ‘𝐶)𝑤) ↦ ((((1st𝑌)‘𝑤)𝑁𝑧)‘)) = ( ∈ (𝑧(Hom ‘𝐶)𝑤) ↦ ((𝑧(2nd𝑌)𝑤)‘)))
165 f1of 6862 . . . . . . . . . 10 ((((1st𝑌)‘𝑤)𝑁𝑧):(𝑧(Hom ‘𝐶)𝑤)–1-1-onto→(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)) → (((1st𝑌)‘𝑤)𝑁𝑧):(𝑧(Hom ‘𝐶)𝑤)⟶(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)))
166109, 165syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑤)𝑁𝑧):(𝑧(Hom ‘𝐶)𝑤)⟶(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)))
167166feqmptd 6990 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑤)𝑁𝑧) = ( ∈ (𝑧(Hom ‘𝐶)𝑤) ↦ ((((1st𝑌)‘𝑤)𝑁𝑧)‘)))
168129feqmptd 6990 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (𝑧(2nd𝑌)𝑤) = ( ∈ (𝑧(Hom ‘𝐶)𝑤) ↦ ((𝑧(2nd𝑌)𝑤)‘)))
169164, 167, 1683eqtr4d 2790 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑤)𝑁𝑧) = (𝑧(2nd𝑌)𝑤))
170169f1oeq1d 6857 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ((((1st𝑌)‘𝑤)𝑁𝑧):(𝑧(Hom ‘𝐶)𝑤)–1-1-onto→(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)) ↔ (𝑧(2nd𝑌)𝑤):(𝑧(Hom ‘𝐶)𝑤)–1-1-onto→(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤))))
171109, 170mpbid 232 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (𝑧(2nd𝑌)𝑤):(𝑧(Hom ‘𝐶)𝑤)–1-1-onto→(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)))
172171ralrimivva 3208 . . . 4 (𝜑 → ∀𝑧𝐵𝑤𝐵 (𝑧(2nd𝑌)𝑤):(𝑧(Hom ‘𝐶)𝑤)–1-1-onto→(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)))
17331, 75, 98isffth2 17983 . . . 4 ((1st𝑌)((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄))(2nd𝑌) ↔ ((1st𝑌)(𝐶 Func 𝑄)(2nd𝑌) ∧ ∀𝑧𝐵𝑤𝐵 (𝑧(2nd𝑌)𝑤):(𝑧(Hom ‘𝐶)𝑤)–1-1-onto→(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤))))
17416, 172, 173sylanbrc 582 . . 3 (𝜑 → (1st𝑌)((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄))(2nd𝑌))
175 df-br 5167 . . 3 ((1st𝑌)((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄))(2nd𝑌) ↔ ⟨(1st𝑌), (2nd𝑌)⟩ ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄)))
176174, 175sylib 218 . 2 (𝜑 → ⟨(1st𝑌), (2nd𝑌)⟩ ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄)))
17714, 176eqeltrd 2844 1 (𝜑𝑌 ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  cun 3974  cin 3975  wss 3976  cop 4654   class class class wbr 5166  cmpt 5249   × cxp 5698  ran crn 5701  Rel wrel 5705   Fn wfn 6568  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  cmpo 7450  1st c1st 8028  2nd c2nd 8029  tpos ctpos 8266  Basecbs 17258  Hom chom 17322  compcco 17323  Catccat 17722  Idccid 17723  Homf chomf 17724  oppCatcoppc 17769  Invcinv 17806  Isociso 17807   Func cfunc 17918  func ccofu 17920   Full cful 17969   Faith cfth 17970   Nat cnat 18009   FuncCat cfuc 18010  SetCatcsetc 18142   ×c cxpc 18237   1stF c1stf 18238   2ndF c2ndf 18239   ⟨,⟩F cprf 18240   evalF cevlf 18279  HomFchof 18318  Yoncyon 18319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-hom 17335  df-cco 17336  df-cat 17726  df-cid 17727  df-homf 17728  df-comf 17729  df-oppc 17770  df-sect 17808  df-inv 17809  df-iso 17810  df-ssc 17871  df-resc 17872  df-subc 17873  df-func 17922  df-cofu 17924  df-full 17971  df-fth 17972  df-nat 18011  df-fuc 18012  df-setc 18143  df-xpc 18241  df-1stf 18242  df-2ndf 18243  df-prf 18244  df-evlf 18283  df-curf 18284  df-hof 18320  df-yon 18321
This theorem is referenced by:  yonffth  18354
  Copyright terms: Public domain W3C validator