MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonffthlem Structured version   Visualization version   GIF version

Theorem yonffthlem 18237
Description: Lemma for yonffth 18239. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y π‘Œ = (Yonβ€˜πΆ)
yoneda.b 𝐡 = (Baseβ€˜πΆ)
yoneda.1 1 = (Idβ€˜πΆ)
yoneda.o 𝑂 = (oppCatβ€˜πΆ)
yoneda.s 𝑆 = (SetCatβ€˜π‘ˆ)
yoneda.t 𝑇 = (SetCatβ€˜π‘‰)
yoneda.q 𝑄 = (𝑂 FuncCat 𝑆)
yoneda.h 𝐻 = (HomFβ€˜π‘„)
yoneda.r 𝑅 = ((𝑄 Γ—c 𝑂) FuncCat 𝑇)
yoneda.e 𝐸 = (𝑂 evalF 𝑆)
yoneda.z 𝑍 = (𝐻 ∘func ((⟨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
yoneda.c (πœ‘ β†’ 𝐢 ∈ Cat)
yoneda.w (πœ‘ β†’ 𝑉 ∈ π‘Š)
yoneda.u (πœ‘ β†’ ran (Homf β€˜πΆ) βŠ† π‘ˆ)
yoneda.v (πœ‘ β†’ (ran (Homf β€˜π‘„) βˆͺ π‘ˆ) βŠ† 𝑉)
yoneda.m 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), π‘₯ ∈ 𝐡 ↦ (π‘Ž ∈ (((1st β€˜π‘Œ)β€˜π‘₯)(𝑂 Nat 𝑆)𝑓) ↦ ((π‘Žβ€˜π‘₯)β€˜( 1 β€˜π‘₯))))
yonedainv.i 𝐼 = (Invβ€˜π‘…)
yonedainv.n 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), π‘₯ ∈ 𝐡 ↦ (𝑒 ∈ ((1st β€˜π‘“)β€˜π‘₯) ↦ (𝑦 ∈ 𝐡 ↦ (𝑔 ∈ (𝑦(Hom β€˜πΆ)π‘₯) ↦ (((π‘₯(2nd β€˜π‘“)𝑦)β€˜π‘”)β€˜π‘’)))))
Assertion
Ref Expression
yonffthlem (πœ‘ β†’ π‘Œ ∈ ((𝐢 Full 𝑄) ∩ (𝐢 Faith 𝑄)))
Distinct variable groups:   𝑓,π‘Ž,𝑔,π‘₯,𝑦, 1   𝑒,π‘Ž,𝑔,𝑦,𝐢,𝑓,π‘₯   𝐸,π‘Ž,𝑓,𝑔,𝑒,𝑦   𝐡,π‘Ž,𝑓,𝑔,𝑒,π‘₯,𝑦   𝑁,π‘Ž   𝑂,π‘Ž,𝑓,𝑔,𝑒,π‘₯,𝑦   𝑆,π‘Ž,𝑓,𝑔,𝑒,π‘₯,𝑦   𝑔,𝑀,𝑒,𝑦   𝑄,π‘Ž,𝑓,𝑔,𝑒,π‘₯   𝑇,𝑓,𝑔,𝑒,𝑦   πœ‘,π‘Ž,𝑓,𝑔,𝑒,π‘₯,𝑦   𝑒,𝑅   π‘Œ,π‘Ž,𝑓,𝑔,𝑒,π‘₯,𝑦   𝑍,π‘Ž,𝑓,𝑔,𝑒,π‘₯,𝑦
Allowed substitution hints:   𝑄(𝑦)   𝑅(π‘₯,𝑦,𝑓,𝑔,π‘Ž)   𝑇(π‘₯,π‘Ž)   π‘ˆ(π‘₯,𝑦,𝑒,𝑓,𝑔,π‘Ž)   1 (𝑒)   𝐸(π‘₯)   𝐻(π‘₯,𝑦,𝑒,𝑓,𝑔,π‘Ž)   𝐼(π‘₯,𝑦,𝑒,𝑓,𝑔,π‘Ž)   𝑀(π‘₯,𝑓,π‘Ž)   𝑁(π‘₯,𝑦,𝑒,𝑓,𝑔)   𝑉(π‘₯,𝑦,𝑒,𝑓,𝑔,π‘Ž)   π‘Š(π‘₯,𝑦,𝑒,𝑓,𝑔,π‘Ž)

Proof of Theorem yonffthlem
Dummy variables β„Ž 𝑀 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17811 . . 3 Rel (𝐢 Func 𝑄)
2 yoneda.y . . . 4 π‘Œ = (Yonβ€˜πΆ)
3 yoneda.c . . . 4 (πœ‘ β†’ 𝐢 ∈ Cat)
4 yoneda.o . . . 4 𝑂 = (oppCatβ€˜πΆ)
5 yoneda.s . . . 4 𝑆 = (SetCatβ€˜π‘ˆ)
6 yoneda.q . . . 4 𝑄 = (𝑂 FuncCat 𝑆)
7 yoneda.w . . . . 5 (πœ‘ β†’ 𝑉 ∈ π‘Š)
8 yoneda.v . . . . . 6 (πœ‘ β†’ (ran (Homf β€˜π‘„) βˆͺ π‘ˆ) βŠ† 𝑉)
98unssbd 4180 . . . . 5 (πœ‘ β†’ π‘ˆ βŠ† 𝑉)
107, 9ssexd 5314 . . . 4 (πœ‘ β†’ π‘ˆ ∈ V)
11 yoneda.u . . . 4 (πœ‘ β†’ ran (Homf β€˜πΆ) βŠ† π‘ˆ)
122, 3, 4, 5, 6, 10, 11yoncl 18217 . . 3 (πœ‘ β†’ π‘Œ ∈ (𝐢 Func 𝑄))
13 1st2nd 8018 . . 3 ((Rel (𝐢 Func 𝑄) ∧ π‘Œ ∈ (𝐢 Func 𝑄)) β†’ π‘Œ = ⟨(1st β€˜π‘Œ), (2nd β€˜π‘Œ)⟩)
141, 12, 13sylancr 586 . 2 (πœ‘ β†’ π‘Œ = ⟨(1st β€˜π‘Œ), (2nd β€˜π‘Œ)⟩)
15 1st2ndbr 8021 . . . . 5 ((Rel (𝐢 Func 𝑄) ∧ π‘Œ ∈ (𝐢 Func 𝑄)) β†’ (1st β€˜π‘Œ)(𝐢 Func 𝑄)(2nd β€˜π‘Œ))
161, 12, 15sylancr 586 . . . 4 (πœ‘ β†’ (1st β€˜π‘Œ)(𝐢 Func 𝑄)(2nd β€˜π‘Œ))
17 fveq2 6881 . . . . . . . . . . 11 (𝑣 = ⟨((1st β€˜π‘Œ)β€˜π‘€), π‘§βŸ© β†’ (π‘β€˜π‘£) = (π‘β€˜βŸ¨((1st β€˜π‘Œ)β€˜π‘€), π‘§βŸ©))
18 df-ov 7404 . . . . . . . . . . 11 (((1st β€˜π‘Œ)β€˜π‘€)𝑁𝑧) = (π‘β€˜βŸ¨((1st β€˜π‘Œ)β€˜π‘€), π‘§βŸ©)
1917, 18eqtr4di 2782 . . . . . . . . . 10 (𝑣 = ⟨((1st β€˜π‘Œ)β€˜π‘€), π‘§βŸ© β†’ (π‘β€˜π‘£) = (((1st β€˜π‘Œ)β€˜π‘€)𝑁𝑧))
20 fveq2 6881 . . . . . . . . . . . 12 (𝑣 = ⟨((1st β€˜π‘Œ)β€˜π‘€), π‘§βŸ© β†’ ((1st β€˜πΈ)β€˜π‘£) = ((1st β€˜πΈ)β€˜βŸ¨((1st β€˜π‘Œ)β€˜π‘€), π‘§βŸ©))
21 df-ov 7404 . . . . . . . . . . . 12 (((1st β€˜π‘Œ)β€˜π‘€)(1st β€˜πΈ)𝑧) = ((1st β€˜πΈ)β€˜βŸ¨((1st β€˜π‘Œ)β€˜π‘€), π‘§βŸ©)
2220, 21eqtr4di 2782 . . . . . . . . . . 11 (𝑣 = ⟨((1st β€˜π‘Œ)β€˜π‘€), π‘§βŸ© β†’ ((1st β€˜πΈ)β€˜π‘£) = (((1st β€˜π‘Œ)β€˜π‘€)(1st β€˜πΈ)𝑧))
23 fveq2 6881 . . . . . . . . . . . 12 (𝑣 = ⟨((1st β€˜π‘Œ)β€˜π‘€), π‘§βŸ© β†’ ((1st β€˜π‘)β€˜π‘£) = ((1st β€˜π‘)β€˜βŸ¨((1st β€˜π‘Œ)β€˜π‘€), π‘§βŸ©))
24 df-ov 7404 . . . . . . . . . . . 12 (((1st β€˜π‘Œ)β€˜π‘€)(1st β€˜π‘)𝑧) = ((1st β€˜π‘)β€˜βŸ¨((1st β€˜π‘Œ)β€˜π‘€), π‘§βŸ©)
2523, 24eqtr4di 2782 . . . . . . . . . . 11 (𝑣 = ⟨((1st β€˜π‘Œ)β€˜π‘€), π‘§βŸ© β†’ ((1st β€˜π‘)β€˜π‘£) = (((1st β€˜π‘Œ)β€˜π‘€)(1st β€˜π‘)𝑧))
2622, 25oveq12d 7419 . . . . . . . . . 10 (𝑣 = ⟨((1st β€˜π‘Œ)β€˜π‘€), π‘§βŸ© β†’ (((1st β€˜πΈ)β€˜π‘£)(Isoβ€˜π‘‡)((1st β€˜π‘)β€˜π‘£)) = ((((1st β€˜π‘Œ)β€˜π‘€)(1st β€˜πΈ)𝑧)(Isoβ€˜π‘‡)(((1st β€˜π‘Œ)β€˜π‘€)(1st β€˜π‘)𝑧)))
2719, 26eleq12d 2819 . . . . . . . . 9 (𝑣 = ⟨((1st β€˜π‘Œ)β€˜π‘€), π‘§βŸ© β†’ ((π‘β€˜π‘£) ∈ (((1st β€˜πΈ)β€˜π‘£)(Isoβ€˜π‘‡)((1st β€˜π‘)β€˜π‘£)) ↔ (((1st β€˜π‘Œ)β€˜π‘€)𝑁𝑧) ∈ ((((1st β€˜π‘Œ)β€˜π‘€)(1st β€˜πΈ)𝑧)(Isoβ€˜π‘‡)(((1st β€˜π‘Œ)β€˜π‘€)(1st β€˜π‘)𝑧))))
28 yoneda.r . . . . . . . . . . . . . 14 𝑅 = ((𝑄 Γ—c 𝑂) FuncCat 𝑇)
2928fucbas 17914 . . . . . . . . . . . . 13 ((𝑄 Γ—c 𝑂) Func 𝑇) = (Baseβ€˜π‘…)
30 yonedainv.i . . . . . . . . . . . . 13 𝐼 = (Invβ€˜π‘…)
31 yoneda.b . . . . . . . . . . . . . . . . . 18 𝐡 = (Baseβ€˜πΆ)
32 yoneda.1 . . . . . . . . . . . . . . . . . 18 1 = (Idβ€˜πΆ)
33 yoneda.t . . . . . . . . . . . . . . . . . 18 𝑇 = (SetCatβ€˜π‘‰)
34 yoneda.h . . . . . . . . . . . . . . . . . 18 𝐻 = (HomFβ€˜π‘„)
35 yoneda.e . . . . . . . . . . . . . . . . . 18 𝐸 = (𝑂 evalF 𝑆)
36 yoneda.z . . . . . . . . . . . . . . . . . 18 𝑍 = (𝐻 ∘func ((⟨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
372, 31, 32, 4, 5, 33, 6, 34, 28, 35, 36, 3, 7, 11, 8yonedalem1 18227 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ (𝑍 ∈ ((𝑄 Γ—c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 Γ—c 𝑂) Func 𝑇)))
3837simpld 494 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ 𝑍 ∈ ((𝑄 Γ—c 𝑂) Func 𝑇))
39 funcrcl 17812 . . . . . . . . . . . . . . . 16 (𝑍 ∈ ((𝑄 Γ—c 𝑂) Func 𝑇) β†’ ((𝑄 Γ—c 𝑂) ∈ Cat ∧ 𝑇 ∈ Cat))
4038, 39syl 17 . . . . . . . . . . . . . . 15 (πœ‘ β†’ ((𝑄 Γ—c 𝑂) ∈ Cat ∧ 𝑇 ∈ Cat))
4140simpld 494 . . . . . . . . . . . . . 14 (πœ‘ β†’ (𝑄 Γ—c 𝑂) ∈ Cat)
4240simprd 495 . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝑇 ∈ Cat)
4328, 41, 42fuccat 17925 . . . . . . . . . . . . 13 (πœ‘ β†’ 𝑅 ∈ Cat)
4437simprd 495 . . . . . . . . . . . . 13 (πœ‘ β†’ 𝐸 ∈ ((𝑄 Γ—c 𝑂) Func 𝑇))
45 eqid 2724 . . . . . . . . . . . . 13 (Isoβ€˜π‘…) = (Isoβ€˜π‘…)
46 yoneda.m . . . . . . . . . . . . . 14 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), π‘₯ ∈ 𝐡 ↦ (π‘Ž ∈ (((1st β€˜π‘Œ)β€˜π‘₯)(𝑂 Nat 𝑆)𝑓) ↦ ((π‘Žβ€˜π‘₯)β€˜( 1 β€˜π‘₯))))
47 yonedainv.n . . . . . . . . . . . . . 14 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), π‘₯ ∈ 𝐡 ↦ (𝑒 ∈ ((1st β€˜π‘“)β€˜π‘₯) ↦ (𝑦 ∈ 𝐡 ↦ (𝑔 ∈ (𝑦(Hom β€˜πΆ)π‘₯) ↦ (((π‘₯(2nd β€˜π‘“)𝑦)β€˜π‘”)β€˜π‘’)))))
482, 31, 32, 4, 5, 33, 6, 34, 28, 35, 36, 3, 7, 11, 8, 46, 30, 47yonedainv 18236 . . . . . . . . . . . . 13 (πœ‘ β†’ 𝑀(𝑍𝐼𝐸)𝑁)
4929, 30, 43, 38, 44, 45, 48inviso2 17713 . . . . . . . . . . . 12 (πœ‘ β†’ 𝑁 ∈ (𝐸(Isoβ€˜π‘…)𝑍))
50 eqid 2724 . . . . . . . . . . . . . 14 (𝑄 Γ—c 𝑂) = (𝑄 Γ—c 𝑂)
516fucbas 17914 . . . . . . . . . . . . . 14 (𝑂 Func 𝑆) = (Baseβ€˜π‘„)
524, 31oppcbas 17662 . . . . . . . . . . . . . 14 𝐡 = (Baseβ€˜π‘‚)
5350, 51, 52xpcbas 18132 . . . . . . . . . . . . 13 ((𝑂 Func 𝑆) Γ— 𝐡) = (Baseβ€˜(𝑄 Γ—c 𝑂))
54 eqid 2724 . . . . . . . . . . . . 13 ((𝑄 Γ—c 𝑂) Nat 𝑇) = ((𝑄 Γ—c 𝑂) Nat 𝑇)
55 eqid 2724 . . . . . . . . . . . . 13 (Isoβ€˜π‘‡) = (Isoβ€˜π‘‡)
5628, 53, 54, 44, 38, 45, 55fuciso 17930 . . . . . . . . . . . 12 (πœ‘ β†’ (𝑁 ∈ (𝐸(Isoβ€˜π‘…)𝑍) ↔ (𝑁 ∈ (𝐸((𝑄 Γ—c 𝑂) Nat 𝑇)𝑍) ∧ βˆ€π‘£ ∈ ((𝑂 Func 𝑆) Γ— 𝐡)(π‘β€˜π‘£) ∈ (((1st β€˜πΈ)β€˜π‘£)(Isoβ€˜π‘‡)((1st β€˜π‘)β€˜π‘£)))))
5749, 56mpbid 231 . . . . . . . . . . 11 (πœ‘ β†’ (𝑁 ∈ (𝐸((𝑄 Γ—c 𝑂) Nat 𝑇)𝑍) ∧ βˆ€π‘£ ∈ ((𝑂 Func 𝑆) Γ— 𝐡)(π‘β€˜π‘£) ∈ (((1st β€˜πΈ)β€˜π‘£)(Isoβ€˜π‘‡)((1st β€˜π‘)β€˜π‘£))))
5857simprd 495 . . . . . . . . . 10 (πœ‘ β†’ βˆ€π‘£ ∈ ((𝑂 Func 𝑆) Γ— 𝐡)(π‘β€˜π‘£) ∈ (((1st β€˜πΈ)β€˜π‘£)(Isoβ€˜π‘‡)((1st β€˜π‘)β€˜π‘£)))
5958adantr 480 . . . . . . . . 9 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ βˆ€π‘£ ∈ ((𝑂 Func 𝑆) Γ— 𝐡)(π‘β€˜π‘£) ∈ (((1st β€˜πΈ)β€˜π‘£)(Isoβ€˜π‘‡)((1st β€˜π‘)β€˜π‘£)))
6031, 51, 16funcf1 17815 . . . . . . . . . . . 12 (πœ‘ β†’ (1st β€˜π‘Œ):𝐡⟢(𝑂 Func 𝑆))
6160adantr 480 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ (1st β€˜π‘Œ):𝐡⟢(𝑂 Func 𝑆))
62 simprr 770 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ 𝑀 ∈ 𝐡)
6361, 62ffvelcdmd 7077 . . . . . . . . . 10 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ ((1st β€˜π‘Œ)β€˜π‘€) ∈ (𝑂 Func 𝑆))
64 simprl 768 . . . . . . . . . 10 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ 𝑧 ∈ 𝐡)
6563, 64opelxpd 5705 . . . . . . . . 9 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ ⟨((1st β€˜π‘Œ)β€˜π‘€), π‘§βŸ© ∈ ((𝑂 Func 𝑆) Γ— 𝐡))
6627, 59, 65rspcdva 3605 . . . . . . . 8 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ (((1st β€˜π‘Œ)β€˜π‘€)𝑁𝑧) ∈ ((((1st β€˜π‘Œ)β€˜π‘€)(1st β€˜πΈ)𝑧)(Isoβ€˜π‘‡)(((1st β€˜π‘Œ)β€˜π‘€)(1st β€˜π‘)𝑧)))
674oppccat 17667 . . . . . . . . . . . . 13 (𝐢 ∈ Cat β†’ 𝑂 ∈ Cat)
683, 67syl 17 . . . . . . . . . . . 12 (πœ‘ β†’ 𝑂 ∈ Cat)
6968adantr 480 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ 𝑂 ∈ Cat)
705setccat 18037 . . . . . . . . . . . . 13 (π‘ˆ ∈ V β†’ 𝑆 ∈ Cat)
7110, 70syl 17 . . . . . . . . . . . 12 (πœ‘ β†’ 𝑆 ∈ Cat)
7271adantr 480 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ 𝑆 ∈ Cat)
7335, 69, 72, 52, 63, 64evlf1 18175 . . . . . . . . . 10 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ (((1st β€˜π‘Œ)β€˜π‘€)(1st β€˜πΈ)𝑧) = ((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘§))
743adantr 480 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ 𝐢 ∈ Cat)
75 eqid 2724 . . . . . . . . . . 11 (Hom β€˜πΆ) = (Hom β€˜πΆ)
762, 31, 74, 62, 75, 64yon11 18219 . . . . . . . . . 10 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘§) = (𝑧(Hom β€˜πΆ)𝑀))
7773, 76eqtrd 2764 . . . . . . . . 9 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ (((1st β€˜π‘Œ)β€˜π‘€)(1st β€˜πΈ)𝑧) = (𝑧(Hom β€˜πΆ)𝑀))
787adantr 480 . . . . . . . . . 10 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ 𝑉 ∈ π‘Š)
7911adantr 480 . . . . . . . . . 10 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ ran (Homf β€˜πΆ) βŠ† π‘ˆ)
808adantr 480 . . . . . . . . . 10 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ (ran (Homf β€˜π‘„) βˆͺ π‘ˆ) βŠ† 𝑉)
812, 31, 32, 4, 5, 33, 6, 34, 28, 35, 36, 74, 78, 79, 80, 63, 64yonedalem21 18228 . . . . . . . . 9 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ (((1st β€˜π‘Œ)β€˜π‘€)(1st β€˜π‘)𝑧) = (((1st β€˜π‘Œ)β€˜π‘§)(𝑂 Nat 𝑆)((1st β€˜π‘Œ)β€˜π‘€)))
8277, 81oveq12d 7419 . . . . . . . 8 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ ((((1st β€˜π‘Œ)β€˜π‘€)(1st β€˜πΈ)𝑧)(Isoβ€˜π‘‡)(((1st β€˜π‘Œ)β€˜π‘€)(1st β€˜π‘)𝑧)) = ((𝑧(Hom β€˜πΆ)𝑀)(Isoβ€˜π‘‡)(((1st β€˜π‘Œ)β€˜π‘§)(𝑂 Nat 𝑆)((1st β€˜π‘Œ)β€˜π‘€))))
8366, 82eleqtrd 2827 . . . . . . 7 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ (((1st β€˜π‘Œ)β€˜π‘€)𝑁𝑧) ∈ ((𝑧(Hom β€˜πΆ)𝑀)(Isoβ€˜π‘‡)(((1st β€˜π‘Œ)β€˜π‘§)(𝑂 Nat 𝑆)((1st β€˜π‘Œ)β€˜π‘€))))
849adantr 480 . . . . . . . . 9 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ π‘ˆ βŠ† 𝑉)
85 eqid 2724 . . . . . . . . . . . . 13 (Baseβ€˜π‘†) = (Baseβ€˜π‘†)
86 relfunc 17811 . . . . . . . . . . . . . 14 Rel (𝑂 Func 𝑆)
87 1st2ndbr 8021 . . . . . . . . . . . . . 14 ((Rel (𝑂 Func 𝑆) ∧ ((1st β€˜π‘Œ)β€˜π‘€) ∈ (𝑂 Func 𝑆)) β†’ (1st β€˜((1st β€˜π‘Œ)β€˜π‘€))(𝑂 Func 𝑆)(2nd β€˜((1st β€˜π‘Œ)β€˜π‘€)))
8886, 63, 87sylancr 586 . . . . . . . . . . . . 13 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ (1st β€˜((1st β€˜π‘Œ)β€˜π‘€))(𝑂 Func 𝑆)(2nd β€˜((1st β€˜π‘Œ)β€˜π‘€)))
8952, 85, 88funcf1 17815 . . . . . . . . . . . 12 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ (1st β€˜((1st β€˜π‘Œ)β€˜π‘€)):𝐡⟢(Baseβ€˜π‘†))
9089, 64ffvelcdmd 7077 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘§) ∈ (Baseβ€˜π‘†))
915, 10setcbas 18030 . . . . . . . . . . . 12 (πœ‘ β†’ π‘ˆ = (Baseβ€˜π‘†))
9291adantr 480 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ π‘ˆ = (Baseβ€˜π‘†))
9390, 92eleqtrrd 2828 . . . . . . . . . 10 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘§) ∈ π‘ˆ)
9476, 93eqeltrrd 2826 . . . . . . . . 9 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ (𝑧(Hom β€˜πΆ)𝑀) ∈ π‘ˆ)
9584, 94sseldd 3975 . . . . . . . 8 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ (𝑧(Hom β€˜πΆ)𝑀) ∈ 𝑉)
96 eqid 2724 . . . . . . . . . 10 (Homf β€˜π‘„) = (Homf β€˜π‘„)
97 eqid 2724 . . . . . . . . . . 11 (𝑂 Nat 𝑆) = (𝑂 Nat 𝑆)
986, 97fuchom 17915 . . . . . . . . . 10 (𝑂 Nat 𝑆) = (Hom β€˜π‘„)
9961, 64ffvelcdmd 7077 . . . . . . . . . 10 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ ((1st β€˜π‘Œ)β€˜π‘§) ∈ (𝑂 Func 𝑆))
10096, 51, 98, 99, 63homfval 17635 . . . . . . . . 9 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ (((1st β€˜π‘Œ)β€˜π‘§)(Homf β€˜π‘„)((1st β€˜π‘Œ)β€˜π‘€)) = (((1st β€˜π‘Œ)β€˜π‘§)(𝑂 Nat 𝑆)((1st β€˜π‘Œ)β€˜π‘€)))
1018unssad 4179 . . . . . . . . . . 11 (πœ‘ β†’ ran (Homf β€˜π‘„) βŠ† 𝑉)
102101adantr 480 . . . . . . . . . 10 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ ran (Homf β€˜π‘„) βŠ† 𝑉)
10396, 51homffn 17636 . . . . . . . . . . 11 (Homf β€˜π‘„) Fn ((𝑂 Func 𝑆) Γ— (𝑂 Func 𝑆))
104 fnovrn 7575 . . . . . . . . . . 11 (((Homf β€˜π‘„) Fn ((𝑂 Func 𝑆) Γ— (𝑂 Func 𝑆)) ∧ ((1st β€˜π‘Œ)β€˜π‘§) ∈ (𝑂 Func 𝑆) ∧ ((1st β€˜π‘Œ)β€˜π‘€) ∈ (𝑂 Func 𝑆)) β†’ (((1st β€˜π‘Œ)β€˜π‘§)(Homf β€˜π‘„)((1st β€˜π‘Œ)β€˜π‘€)) ∈ ran (Homf β€˜π‘„))
105103, 99, 63, 104mp3an2i 1462 . . . . . . . . . 10 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ (((1st β€˜π‘Œ)β€˜π‘§)(Homf β€˜π‘„)((1st β€˜π‘Œ)β€˜π‘€)) ∈ ran (Homf β€˜π‘„))
106102, 105sseldd 3975 . . . . . . . . 9 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ (((1st β€˜π‘Œ)β€˜π‘§)(Homf β€˜π‘„)((1st β€˜π‘Œ)β€˜π‘€)) ∈ 𝑉)
107100, 106eqeltrrd 2826 . . . . . . . 8 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ (((1st β€˜π‘Œ)β€˜π‘§)(𝑂 Nat 𝑆)((1st β€˜π‘Œ)β€˜π‘€)) ∈ 𝑉)
10833, 78, 95, 107, 55setciso 18043 . . . . . . 7 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ ((((1st β€˜π‘Œ)β€˜π‘€)𝑁𝑧) ∈ ((𝑧(Hom β€˜πΆ)𝑀)(Isoβ€˜π‘‡)(((1st β€˜π‘Œ)β€˜π‘§)(𝑂 Nat 𝑆)((1st β€˜π‘Œ)β€˜π‘€))) ↔ (((1st β€˜π‘Œ)β€˜π‘€)𝑁𝑧):(𝑧(Hom β€˜πΆ)𝑀)–1-1-ontoβ†’(((1st β€˜π‘Œ)β€˜π‘§)(𝑂 Nat 𝑆)((1st β€˜π‘Œ)β€˜π‘€))))
10983, 108mpbid 231 . . . . . 6 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ (((1st β€˜π‘Œ)β€˜π‘€)𝑁𝑧):(𝑧(Hom β€˜πΆ)𝑀)–1-1-ontoβ†’(((1st β€˜π‘Œ)β€˜π‘§)(𝑂 Nat 𝑆)((1st β€˜π‘Œ)β€˜π‘€)))
11074adantr 480 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ 𝐢 ∈ Cat)
111110adantr 480 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) ∧ 𝑦 ∈ 𝐡) β†’ 𝐢 ∈ Cat)
11264adantr 480 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ 𝑧 ∈ 𝐡)
113112adantr 480 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) ∧ 𝑦 ∈ 𝐡) β†’ 𝑧 ∈ 𝐡)
114 simpr 484 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) ∧ 𝑦 ∈ 𝐡) β†’ 𝑦 ∈ 𝐡)
1152, 31, 111, 113, 75, 114yon11 18219 . . . . . . . . . . . . . 14 ((((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) ∧ 𝑦 ∈ 𝐡) β†’ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘§))β€˜π‘¦) = (𝑦(Hom β€˜πΆ)𝑧))
116115eqcomd 2730 . . . . . . . . . . . . 13 ((((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) ∧ 𝑦 ∈ 𝐡) β†’ (𝑦(Hom β€˜πΆ)𝑧) = ((1st β€˜((1st β€˜π‘Œ)β€˜π‘§))β€˜π‘¦))
117111adantr 480 . . . . . . . . . . . . . . 15 (((((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) ∧ 𝑦 ∈ 𝐡) ∧ 𝑔 ∈ (𝑦(Hom β€˜πΆ)𝑧)) β†’ 𝐢 ∈ Cat)
11862ad3antrrr 727 . . . . . . . . . . . . . . 15 (((((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) ∧ 𝑦 ∈ 𝐡) ∧ 𝑔 ∈ (𝑦(Hom β€˜πΆ)𝑧)) β†’ 𝑀 ∈ 𝐡)
119113adantr 480 . . . . . . . . . . . . . . 15 (((((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) ∧ 𝑦 ∈ 𝐡) ∧ 𝑔 ∈ (𝑦(Hom β€˜πΆ)𝑧)) β†’ 𝑧 ∈ 𝐡)
120 eqid 2724 . . . . . . . . . . . . . . 15 (compβ€˜πΆ) = (compβ€˜πΆ)
121114adantr 480 . . . . . . . . . . . . . . 15 (((((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) ∧ 𝑦 ∈ 𝐡) ∧ 𝑔 ∈ (𝑦(Hom β€˜πΆ)𝑧)) β†’ 𝑦 ∈ 𝐡)
122 simpr 484 . . . . . . . . . . . . . . 15 (((((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) ∧ 𝑦 ∈ 𝐡) ∧ 𝑔 ∈ (𝑦(Hom β€˜πΆ)𝑧)) β†’ 𝑔 ∈ (𝑦(Hom β€˜πΆ)𝑧))
123 simpllr 773 . . . . . . . . . . . . . . 15 (((((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) ∧ 𝑦 ∈ 𝐡) ∧ 𝑔 ∈ (𝑦(Hom β€˜πΆ)𝑧)) β†’ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀))
1242, 31, 117, 118, 75, 119, 120, 121, 122, 123yon12 18220 . . . . . . . . . . . . . 14 (((((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) ∧ 𝑦 ∈ 𝐡) ∧ 𝑔 ∈ (𝑦(Hom β€˜πΆ)𝑧)) β†’ (((𝑧(2nd β€˜((1st β€˜π‘Œ)β€˜π‘€))𝑦)β€˜π‘”)β€˜β„Ž) = (β„Ž(βŸ¨π‘¦, π‘§βŸ©(compβ€˜πΆ)𝑀)𝑔))
1252, 31, 117, 119, 75, 118, 120, 121, 123, 122yon2 18221 . . . . . . . . . . . . . 14 (((((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) ∧ 𝑦 ∈ 𝐡) ∧ 𝑔 ∈ (𝑦(Hom β€˜πΆ)𝑧)) β†’ ((((𝑧(2nd β€˜π‘Œ)𝑀)β€˜β„Ž)β€˜π‘¦)β€˜π‘”) = (β„Ž(βŸ¨π‘¦, π‘§βŸ©(compβ€˜πΆ)𝑀)𝑔))
126124, 125eqtr4d 2767 . . . . . . . . . . . . 13 (((((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) ∧ 𝑦 ∈ 𝐡) ∧ 𝑔 ∈ (𝑦(Hom β€˜πΆ)𝑧)) β†’ (((𝑧(2nd β€˜((1st β€˜π‘Œ)β€˜π‘€))𝑦)β€˜π‘”)β€˜β„Ž) = ((((𝑧(2nd β€˜π‘Œ)𝑀)β€˜β„Ž)β€˜π‘¦)β€˜π‘”))
127116, 126mpteq12dva 5227 . . . . . . . . . . . 12 ((((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) ∧ 𝑦 ∈ 𝐡) β†’ (𝑔 ∈ (𝑦(Hom β€˜πΆ)𝑧) ↦ (((𝑧(2nd β€˜((1st β€˜π‘Œ)β€˜π‘€))𝑦)β€˜π‘”)β€˜β„Ž)) = (𝑔 ∈ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘§))β€˜π‘¦) ↦ ((((𝑧(2nd β€˜π‘Œ)𝑀)β€˜β„Ž)β€˜π‘¦)β€˜π‘”)))
12816adantr 480 . . . . . . . . . . . . . . . . . . 19 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ (1st β€˜π‘Œ)(𝐢 Func 𝑄)(2nd β€˜π‘Œ))
12931, 75, 98, 128, 64, 62funcf2 17817 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ (𝑧(2nd β€˜π‘Œ)𝑀):(𝑧(Hom β€˜πΆ)𝑀)⟢(((1st β€˜π‘Œ)β€˜π‘§)(𝑂 Nat 𝑆)((1st β€˜π‘Œ)β€˜π‘€)))
130129ffvelcdmda 7076 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ ((𝑧(2nd β€˜π‘Œ)𝑀)β€˜β„Ž) ∈ (((1st β€˜π‘Œ)β€˜π‘§)(𝑂 Nat 𝑆)((1st β€˜π‘Œ)β€˜π‘€)))
13197, 130nat1st2nd 17904 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ ((𝑧(2nd β€˜π‘Œ)𝑀)β€˜β„Ž) ∈ (⟨(1st β€˜((1st β€˜π‘Œ)β€˜π‘§)), (2nd β€˜((1st β€˜π‘Œ)β€˜π‘§))⟩(𝑂 Nat 𝑆)⟨(1st β€˜((1st β€˜π‘Œ)β€˜π‘€)), (2nd β€˜((1st β€˜π‘Œ)β€˜π‘€))⟩))
132131adantr 480 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) ∧ 𝑦 ∈ 𝐡) β†’ ((𝑧(2nd β€˜π‘Œ)𝑀)β€˜β„Ž) ∈ (⟨(1st β€˜((1st β€˜π‘Œ)β€˜π‘§)), (2nd β€˜((1st β€˜π‘Œ)β€˜π‘§))⟩(𝑂 Nat 𝑆)⟨(1st β€˜((1st β€˜π‘Œ)β€˜π‘€)), (2nd β€˜((1st β€˜π‘Œ)β€˜π‘€))⟩))
133 eqid 2724 . . . . . . . . . . . . . . 15 (Hom β€˜π‘†) = (Hom β€˜π‘†)
13497, 132, 52, 133, 114natcl 17906 . . . . . . . . . . . . . 14 ((((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) ∧ 𝑦 ∈ 𝐡) β†’ (((𝑧(2nd β€˜π‘Œ)𝑀)β€˜β„Ž)β€˜π‘¦) ∈ (((1st β€˜((1st β€˜π‘Œ)β€˜π‘§))β€˜π‘¦)(Hom β€˜π‘†)((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘¦)))
13510adantr 480 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ π‘ˆ ∈ V)
136135ad2antrr 723 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) ∧ 𝑦 ∈ 𝐡) β†’ π‘ˆ ∈ V)
13760ad2antrr 723 . . . . . . . . . . . . . . . . . . . 20 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ (1st β€˜π‘Œ):𝐡⟢(𝑂 Func 𝑆))
138137, 112ffvelcdmd 7077 . . . . . . . . . . . . . . . . . . 19 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ ((1st β€˜π‘Œ)β€˜π‘§) ∈ (𝑂 Func 𝑆))
139 1st2ndbr 8021 . . . . . . . . . . . . . . . . . . 19 ((Rel (𝑂 Func 𝑆) ∧ ((1st β€˜π‘Œ)β€˜π‘§) ∈ (𝑂 Func 𝑆)) β†’ (1st β€˜((1st β€˜π‘Œ)β€˜π‘§))(𝑂 Func 𝑆)(2nd β€˜((1st β€˜π‘Œ)β€˜π‘§)))
14086, 138, 139sylancr 586 . . . . . . . . . . . . . . . . . 18 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ (1st β€˜((1st β€˜π‘Œ)β€˜π‘§))(𝑂 Func 𝑆)(2nd β€˜((1st β€˜π‘Œ)β€˜π‘§)))
14152, 85, 140funcf1 17815 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ (1st β€˜((1st β€˜π‘Œ)β€˜π‘§)):𝐡⟢(Baseβ€˜π‘†))
142141ffvelcdmda 7076 . . . . . . . . . . . . . . . 16 ((((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) ∧ 𝑦 ∈ 𝐡) β†’ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘§))β€˜π‘¦) ∈ (Baseβ€˜π‘†))
14392ad2antrr 723 . . . . . . . . . . . . . . . 16 ((((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) ∧ 𝑦 ∈ 𝐡) β†’ π‘ˆ = (Baseβ€˜π‘†))
144142, 143eleqtrrd 2828 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) ∧ 𝑦 ∈ 𝐡) β†’ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘§))β€˜π‘¦) ∈ π‘ˆ)
14589adantr 480 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ (1st β€˜((1st β€˜π‘Œ)β€˜π‘€)):𝐡⟢(Baseβ€˜π‘†))
146145ffvelcdmda 7076 . . . . . . . . . . . . . . . 16 ((((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) ∧ 𝑦 ∈ 𝐡) β†’ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘¦) ∈ (Baseβ€˜π‘†))
147146, 143eleqtrrd 2828 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) ∧ 𝑦 ∈ 𝐡) β†’ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘¦) ∈ π‘ˆ)
1485, 136, 133, 144, 147elsetchom 18033 . . . . . . . . . . . . . 14 ((((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) ∧ 𝑦 ∈ 𝐡) β†’ ((((𝑧(2nd β€˜π‘Œ)𝑀)β€˜β„Ž)β€˜π‘¦) ∈ (((1st β€˜((1st β€˜π‘Œ)β€˜π‘§))β€˜π‘¦)(Hom β€˜π‘†)((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘¦)) ↔ (((𝑧(2nd β€˜π‘Œ)𝑀)β€˜β„Ž)β€˜π‘¦):((1st β€˜((1st β€˜π‘Œ)β€˜π‘§))β€˜π‘¦)⟢((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘¦)))
149134, 148mpbid 231 . . . . . . . . . . . . 13 ((((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) ∧ 𝑦 ∈ 𝐡) β†’ (((𝑧(2nd β€˜π‘Œ)𝑀)β€˜β„Ž)β€˜π‘¦):((1st β€˜((1st β€˜π‘Œ)β€˜π‘§))β€˜π‘¦)⟢((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘¦))
150149feqmptd 6950 . . . . . . . . . . . 12 ((((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) ∧ 𝑦 ∈ 𝐡) β†’ (((𝑧(2nd β€˜π‘Œ)𝑀)β€˜β„Ž)β€˜π‘¦) = (𝑔 ∈ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘§))β€˜π‘¦) ↦ ((((𝑧(2nd β€˜π‘Œ)𝑀)β€˜β„Ž)β€˜π‘¦)β€˜π‘”)))
151127, 150eqtr4d 2767 . . . . . . . . . . 11 ((((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) ∧ 𝑦 ∈ 𝐡) β†’ (𝑔 ∈ (𝑦(Hom β€˜πΆ)𝑧) ↦ (((𝑧(2nd β€˜((1st β€˜π‘Œ)β€˜π‘€))𝑦)β€˜π‘”)β€˜β„Ž)) = (((𝑧(2nd β€˜π‘Œ)𝑀)β€˜β„Ž)β€˜π‘¦))
152151mpteq2dva 5238 . . . . . . . . . 10 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ (𝑦 ∈ 𝐡 ↦ (𝑔 ∈ (𝑦(Hom β€˜πΆ)𝑧) ↦ (((𝑧(2nd β€˜((1st β€˜π‘Œ)β€˜π‘€))𝑦)β€˜π‘”)β€˜β„Ž))) = (𝑦 ∈ 𝐡 ↦ (((𝑧(2nd β€˜π‘Œ)𝑀)β€˜β„Ž)β€˜π‘¦)))
15378adantr 480 . . . . . . . . . . 11 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ 𝑉 ∈ π‘Š)
15479adantr 480 . . . . . . . . . . 11 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ ran (Homf β€˜πΆ) βŠ† π‘ˆ)
15580adantr 480 . . . . . . . . . . 11 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ (ran (Homf β€˜π‘„) βˆͺ π‘ˆ) βŠ† 𝑉)
15663adantr 480 . . . . . . . . . . 11 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ ((1st β€˜π‘Œ)β€˜π‘€) ∈ (𝑂 Func 𝑆))
15776eleq2d 2811 . . . . . . . . . . . 12 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ (β„Ž ∈ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘§) ↔ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)))
158157biimpar 477 . . . . . . . . . . 11 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ β„Ž ∈ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘§))
1592, 31, 32, 4, 5, 33, 6, 34, 28, 35, 36, 110, 153, 154, 155, 156, 112, 47, 158yonedalem4a 18230 . . . . . . . . . 10 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ ((((1st β€˜π‘Œ)β€˜π‘€)𝑁𝑧)β€˜β„Ž) = (𝑦 ∈ 𝐡 ↦ (𝑔 ∈ (𝑦(Hom β€˜πΆ)𝑧) ↦ (((𝑧(2nd β€˜((1st β€˜π‘Œ)β€˜π‘€))𝑦)β€˜π‘”)β€˜β„Ž))))
16097, 131, 52natfn 17907 . . . . . . . . . . 11 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ ((𝑧(2nd β€˜π‘Œ)𝑀)β€˜β„Ž) Fn 𝐡)
161 dffn5 6940 . . . . . . . . . . 11 (((𝑧(2nd β€˜π‘Œ)𝑀)β€˜β„Ž) Fn 𝐡 ↔ ((𝑧(2nd β€˜π‘Œ)𝑀)β€˜β„Ž) = (𝑦 ∈ 𝐡 ↦ (((𝑧(2nd β€˜π‘Œ)𝑀)β€˜β„Ž)β€˜π‘¦)))
162160, 161sylib 217 . . . . . . . . . 10 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ ((𝑧(2nd β€˜π‘Œ)𝑀)β€˜β„Ž) = (𝑦 ∈ 𝐡 ↦ (((𝑧(2nd β€˜π‘Œ)𝑀)β€˜β„Ž)β€˜π‘¦)))
163152, 159, 1623eqtr4d 2774 . . . . . . . . 9 (((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) ∧ β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ ((((1st β€˜π‘Œ)β€˜π‘€)𝑁𝑧)β€˜β„Ž) = ((𝑧(2nd β€˜π‘Œ)𝑀)β€˜β„Ž))
164163mpteq2dva 5238 . . . . . . . 8 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ (β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀) ↦ ((((1st β€˜π‘Œ)β€˜π‘€)𝑁𝑧)β€˜β„Ž)) = (β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀) ↦ ((𝑧(2nd β€˜π‘Œ)𝑀)β€˜β„Ž)))
165 f1of 6823 . . . . . . . . . 10 ((((1st β€˜π‘Œ)β€˜π‘€)𝑁𝑧):(𝑧(Hom β€˜πΆ)𝑀)–1-1-ontoβ†’(((1st β€˜π‘Œ)β€˜π‘§)(𝑂 Nat 𝑆)((1st β€˜π‘Œ)β€˜π‘€)) β†’ (((1st β€˜π‘Œ)β€˜π‘€)𝑁𝑧):(𝑧(Hom β€˜πΆ)𝑀)⟢(((1st β€˜π‘Œ)β€˜π‘§)(𝑂 Nat 𝑆)((1st β€˜π‘Œ)β€˜π‘€)))
166109, 165syl 17 . . . . . . . . 9 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ (((1st β€˜π‘Œ)β€˜π‘€)𝑁𝑧):(𝑧(Hom β€˜πΆ)𝑀)⟢(((1st β€˜π‘Œ)β€˜π‘§)(𝑂 Nat 𝑆)((1st β€˜π‘Œ)β€˜π‘€)))
167166feqmptd 6950 . . . . . . . 8 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ (((1st β€˜π‘Œ)β€˜π‘€)𝑁𝑧) = (β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀) ↦ ((((1st β€˜π‘Œ)β€˜π‘€)𝑁𝑧)β€˜β„Ž)))
168129feqmptd 6950 . . . . . . . 8 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ (𝑧(2nd β€˜π‘Œ)𝑀) = (β„Ž ∈ (𝑧(Hom β€˜πΆ)𝑀) ↦ ((𝑧(2nd β€˜π‘Œ)𝑀)β€˜β„Ž)))
169164, 167, 1683eqtr4d 2774 . . . . . . 7 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ (((1st β€˜π‘Œ)β€˜π‘€)𝑁𝑧) = (𝑧(2nd β€˜π‘Œ)𝑀))
170169f1oeq1d 6818 . . . . . 6 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ ((((1st β€˜π‘Œ)β€˜π‘€)𝑁𝑧):(𝑧(Hom β€˜πΆ)𝑀)–1-1-ontoβ†’(((1st β€˜π‘Œ)β€˜π‘§)(𝑂 Nat 𝑆)((1st β€˜π‘Œ)β€˜π‘€)) ↔ (𝑧(2nd β€˜π‘Œ)𝑀):(𝑧(Hom β€˜πΆ)𝑀)–1-1-ontoβ†’(((1st β€˜π‘Œ)β€˜π‘§)(𝑂 Nat 𝑆)((1st β€˜π‘Œ)β€˜π‘€))))
171109, 170mpbid 231 . . . . 5 ((πœ‘ ∧ (𝑧 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ (𝑧(2nd β€˜π‘Œ)𝑀):(𝑧(Hom β€˜πΆ)𝑀)–1-1-ontoβ†’(((1st β€˜π‘Œ)β€˜π‘§)(𝑂 Nat 𝑆)((1st β€˜π‘Œ)β€˜π‘€)))
172171ralrimivva 3192 . . . 4 (πœ‘ β†’ βˆ€π‘§ ∈ 𝐡 βˆ€π‘€ ∈ 𝐡 (𝑧(2nd β€˜π‘Œ)𝑀):(𝑧(Hom β€˜πΆ)𝑀)–1-1-ontoβ†’(((1st β€˜π‘Œ)β€˜π‘§)(𝑂 Nat 𝑆)((1st β€˜π‘Œ)β€˜π‘€)))
17331, 75, 98isffth2 17868 . . . 4 ((1st β€˜π‘Œ)((𝐢 Full 𝑄) ∩ (𝐢 Faith 𝑄))(2nd β€˜π‘Œ) ↔ ((1st β€˜π‘Œ)(𝐢 Func 𝑄)(2nd β€˜π‘Œ) ∧ βˆ€π‘§ ∈ 𝐡 βˆ€π‘€ ∈ 𝐡 (𝑧(2nd β€˜π‘Œ)𝑀):(𝑧(Hom β€˜πΆ)𝑀)–1-1-ontoβ†’(((1st β€˜π‘Œ)β€˜π‘§)(𝑂 Nat 𝑆)((1st β€˜π‘Œ)β€˜π‘€))))
17416, 172, 173sylanbrc 582 . . 3 (πœ‘ β†’ (1st β€˜π‘Œ)((𝐢 Full 𝑄) ∩ (𝐢 Faith 𝑄))(2nd β€˜π‘Œ))
175 df-br 5139 . . 3 ((1st β€˜π‘Œ)((𝐢 Full 𝑄) ∩ (𝐢 Faith 𝑄))(2nd β€˜π‘Œ) ↔ ⟨(1st β€˜π‘Œ), (2nd β€˜π‘Œ)⟩ ∈ ((𝐢 Full 𝑄) ∩ (𝐢 Faith 𝑄)))
176174, 175sylib 217 . 2 (πœ‘ β†’ ⟨(1st β€˜π‘Œ), (2nd β€˜π‘Œ)⟩ ∈ ((𝐢 Full 𝑄) ∩ (𝐢 Faith 𝑄)))
17714, 176eqeltrd 2825 1 (πœ‘ β†’ π‘Œ ∈ ((𝐢 Full 𝑄) ∩ (𝐢 Faith 𝑄)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098  βˆ€wral 3053  Vcvv 3466   βˆͺ cun 3938   ∩ cin 3939   βŠ† wss 3940  βŸ¨cop 4626   class class class wbr 5138   ↦ cmpt 5221   Γ— cxp 5664  ran crn 5667  Rel wrel 5671   Fn wfn 6528  βŸΆwf 6529  β€“1-1-ontoβ†’wf1o 6532  β€˜cfv 6533  (class class class)co 7401   ∈ cmpo 7403  1st c1st 7966  2nd c2nd 7967  tpos ctpos 8205  Basecbs 17143  Hom chom 17207  compcco 17208  Catccat 17607  Idccid 17608  Homf chomf 17609  oppCatcoppc 17654  Invcinv 17691  Isociso 17692   Func cfunc 17803   ∘func ccofu 17805   Full cful 17854   Faith cfth 17855   Nat cnat 17894   FuncCat cfuc 17895  SetCatcsetc 18027   Γ—c cxpc 18122   1stF c1stf 18123   2ndF c2ndf 18124   ⟨,⟩F cprf 18125   evalF cevlf 18164  HomFchof 18203  Yoncyon 18204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-tpos 8206  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-z 12556  df-dec 12675  df-uz 12820  df-fz 13482  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-hom 17220  df-cco 17221  df-cat 17611  df-cid 17612  df-homf 17613  df-comf 17614  df-oppc 17655  df-sect 17693  df-inv 17694  df-iso 17695  df-ssc 17756  df-resc 17757  df-subc 17758  df-func 17807  df-cofu 17809  df-full 17856  df-fth 17857  df-nat 17896  df-fuc 17897  df-setc 18028  df-xpc 18126  df-1stf 18127  df-2ndf 18128  df-prf 18129  df-evlf 18168  df-curf 18169  df-hof 18205  df-yon 18206
This theorem is referenced by:  yonffth  18239
  Copyright terms: Public domain W3C validator