MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonffthlem Structured version   Visualization version   GIF version

Theorem yonffthlem 18243
Description: Lemma for yonffth 18245. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y 𝑌 = (Yon‘𝐶)
yoneda.b 𝐵 = (Base‘𝐶)
yoneda.1 1 = (Id‘𝐶)
yoneda.o 𝑂 = (oppCat‘𝐶)
yoneda.s 𝑆 = (SetCat‘𝑈)
yoneda.t 𝑇 = (SetCat‘𝑉)
yoneda.q 𝑄 = (𝑂 FuncCat 𝑆)
yoneda.h 𝐻 = (HomF𝑄)
yoneda.r 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
yoneda.e 𝐸 = (𝑂 evalF 𝑆)
yoneda.z 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
yoneda.c (𝜑𝐶 ∈ Cat)
yoneda.w (𝜑𝑉𝑊)
yoneda.u (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
yoneda.v (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
yoneda.m 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥))))
yonedainv.i 𝐼 = (Inv‘𝑅)
yonedainv.n 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))))
Assertion
Ref Expression
yonffthlem (𝜑𝑌 ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄)))
Distinct variable groups:   𝑓,𝑎,𝑔,𝑥,𝑦, 1   𝑢,𝑎,𝑔,𝑦,𝐶,𝑓,𝑥   𝐸,𝑎,𝑓,𝑔,𝑢,𝑦   𝐵,𝑎,𝑓,𝑔,𝑢,𝑥,𝑦   𝑁,𝑎   𝑂,𝑎,𝑓,𝑔,𝑢,𝑥,𝑦   𝑆,𝑎,𝑓,𝑔,𝑢,𝑥,𝑦   𝑔,𝑀,𝑢,𝑦   𝑄,𝑎,𝑓,𝑔,𝑢,𝑥   𝑇,𝑓,𝑔,𝑢,𝑦   𝜑,𝑎,𝑓,𝑔,𝑢,𝑥,𝑦   𝑢,𝑅   𝑌,𝑎,𝑓,𝑔,𝑢,𝑥,𝑦   𝑍,𝑎,𝑓,𝑔,𝑢,𝑥,𝑦
Allowed substitution hints:   𝑄(𝑦)   𝑅(𝑥,𝑦,𝑓,𝑔,𝑎)   𝑇(𝑥,𝑎)   𝑈(𝑥,𝑦,𝑢,𝑓,𝑔,𝑎)   1 (𝑢)   𝐸(𝑥)   𝐻(𝑥,𝑦,𝑢,𝑓,𝑔,𝑎)   𝐼(𝑥,𝑦,𝑢,𝑓,𝑔,𝑎)   𝑀(𝑥,𝑓,𝑎)   𝑁(𝑥,𝑦,𝑢,𝑓,𝑔)   𝑉(𝑥,𝑦,𝑢,𝑓,𝑔,𝑎)   𝑊(𝑥,𝑦,𝑢,𝑓,𝑔,𝑎)

Proof of Theorem yonffthlem
Dummy variables 𝑤 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17824 . . 3 Rel (𝐶 Func 𝑄)
2 yoneda.y . . . 4 𝑌 = (Yon‘𝐶)
3 yoneda.c . . . 4 (𝜑𝐶 ∈ Cat)
4 yoneda.o . . . 4 𝑂 = (oppCat‘𝐶)
5 yoneda.s . . . 4 𝑆 = (SetCat‘𝑈)
6 yoneda.q . . . 4 𝑄 = (𝑂 FuncCat 𝑆)
7 yoneda.w . . . . 5 (𝜑𝑉𝑊)
8 yoneda.v . . . . . 6 (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
98unssbd 4157 . . . . 5 (𝜑𝑈𝑉)
107, 9ssexd 5279 . . . 4 (𝜑𝑈 ∈ V)
11 yoneda.u . . . 4 (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
122, 3, 4, 5, 6, 10, 11yoncl 18223 . . 3 (𝜑𝑌 ∈ (𝐶 Func 𝑄))
13 1st2nd 8018 . . 3 ((Rel (𝐶 Func 𝑄) ∧ 𝑌 ∈ (𝐶 Func 𝑄)) → 𝑌 = ⟨(1st𝑌), (2nd𝑌)⟩)
141, 12, 13sylancr 587 . 2 (𝜑𝑌 = ⟨(1st𝑌), (2nd𝑌)⟩)
15 1st2ndbr 8021 . . . . 5 ((Rel (𝐶 Func 𝑄) ∧ 𝑌 ∈ (𝐶 Func 𝑄)) → (1st𝑌)(𝐶 Func 𝑄)(2nd𝑌))
161, 12, 15sylancr 587 . . . 4 (𝜑 → (1st𝑌)(𝐶 Func 𝑄)(2nd𝑌))
17 fveq2 6858 . . . . . . . . . . 11 (𝑣 = ⟨((1st𝑌)‘𝑤), 𝑧⟩ → (𝑁𝑣) = (𝑁‘⟨((1st𝑌)‘𝑤), 𝑧⟩))
18 df-ov 7390 . . . . . . . . . . 11 (((1st𝑌)‘𝑤)𝑁𝑧) = (𝑁‘⟨((1st𝑌)‘𝑤), 𝑧⟩)
1917, 18eqtr4di 2782 . . . . . . . . . 10 (𝑣 = ⟨((1st𝑌)‘𝑤), 𝑧⟩ → (𝑁𝑣) = (((1st𝑌)‘𝑤)𝑁𝑧))
20 fveq2 6858 . . . . . . . . . . . 12 (𝑣 = ⟨((1st𝑌)‘𝑤), 𝑧⟩ → ((1st𝐸)‘𝑣) = ((1st𝐸)‘⟨((1st𝑌)‘𝑤), 𝑧⟩))
21 df-ov 7390 . . . . . . . . . . . 12 (((1st𝑌)‘𝑤)(1st𝐸)𝑧) = ((1st𝐸)‘⟨((1st𝑌)‘𝑤), 𝑧⟩)
2220, 21eqtr4di 2782 . . . . . . . . . . 11 (𝑣 = ⟨((1st𝑌)‘𝑤), 𝑧⟩ → ((1st𝐸)‘𝑣) = (((1st𝑌)‘𝑤)(1st𝐸)𝑧))
23 fveq2 6858 . . . . . . . . . . . 12 (𝑣 = ⟨((1st𝑌)‘𝑤), 𝑧⟩ → ((1st𝑍)‘𝑣) = ((1st𝑍)‘⟨((1st𝑌)‘𝑤), 𝑧⟩))
24 df-ov 7390 . . . . . . . . . . . 12 (((1st𝑌)‘𝑤)(1st𝑍)𝑧) = ((1st𝑍)‘⟨((1st𝑌)‘𝑤), 𝑧⟩)
2523, 24eqtr4di 2782 . . . . . . . . . . 11 (𝑣 = ⟨((1st𝑌)‘𝑤), 𝑧⟩ → ((1st𝑍)‘𝑣) = (((1st𝑌)‘𝑤)(1st𝑍)𝑧))
2622, 25oveq12d 7405 . . . . . . . . . 10 (𝑣 = ⟨((1st𝑌)‘𝑤), 𝑧⟩ → (((1st𝐸)‘𝑣)(Iso‘𝑇)((1st𝑍)‘𝑣)) = ((((1st𝑌)‘𝑤)(1st𝐸)𝑧)(Iso‘𝑇)(((1st𝑌)‘𝑤)(1st𝑍)𝑧)))
2719, 26eleq12d 2822 . . . . . . . . 9 (𝑣 = ⟨((1st𝑌)‘𝑤), 𝑧⟩ → ((𝑁𝑣) ∈ (((1st𝐸)‘𝑣)(Iso‘𝑇)((1st𝑍)‘𝑣)) ↔ (((1st𝑌)‘𝑤)𝑁𝑧) ∈ ((((1st𝑌)‘𝑤)(1st𝐸)𝑧)(Iso‘𝑇)(((1st𝑌)‘𝑤)(1st𝑍)𝑧))))
28 yoneda.r . . . . . . . . . . . . . 14 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
2928fucbas 17925 . . . . . . . . . . . . 13 ((𝑄 ×c 𝑂) Func 𝑇) = (Base‘𝑅)
30 yonedainv.i . . . . . . . . . . . . 13 𝐼 = (Inv‘𝑅)
31 yoneda.b . . . . . . . . . . . . . . . . . 18 𝐵 = (Base‘𝐶)
32 yoneda.1 . . . . . . . . . . . . . . . . . 18 1 = (Id‘𝐶)
33 yoneda.t . . . . . . . . . . . . . . . . . 18 𝑇 = (SetCat‘𝑉)
34 yoneda.h . . . . . . . . . . . . . . . . . 18 𝐻 = (HomF𝑄)
35 yoneda.e . . . . . . . . . . . . . . . . . 18 𝐸 = (𝑂 evalF 𝑆)
36 yoneda.z . . . . . . . . . . . . . . . . . 18 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
372, 31, 32, 4, 5, 33, 6, 34, 28, 35, 36, 3, 7, 11, 8yonedalem1 18233 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇)))
3837simpld 494 . . . . . . . . . . . . . . . 16 (𝜑𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇))
39 funcrcl 17825 . . . . . . . . . . . . . . . 16 (𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇) → ((𝑄 ×c 𝑂) ∈ Cat ∧ 𝑇 ∈ Cat))
4038, 39syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑄 ×c 𝑂) ∈ Cat ∧ 𝑇 ∈ Cat))
4140simpld 494 . . . . . . . . . . . . . 14 (𝜑 → (𝑄 ×c 𝑂) ∈ Cat)
4240simprd 495 . . . . . . . . . . . . . 14 (𝜑𝑇 ∈ Cat)
4328, 41, 42fuccat 17935 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ Cat)
4437simprd 495 . . . . . . . . . . . . 13 (𝜑𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇))
45 eqid 2729 . . . . . . . . . . . . 13 (Iso‘𝑅) = (Iso‘𝑅)
46 yoneda.m . . . . . . . . . . . . . 14 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥))))
47 yonedainv.n . . . . . . . . . . . . . 14 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))))
482, 31, 32, 4, 5, 33, 6, 34, 28, 35, 36, 3, 7, 11, 8, 46, 30, 47yonedainv 18242 . . . . . . . . . . . . 13 (𝜑𝑀(𝑍𝐼𝐸)𝑁)
4929, 30, 43, 38, 44, 45, 48inviso2 17729 . . . . . . . . . . . 12 (𝜑𝑁 ∈ (𝐸(Iso‘𝑅)𝑍))
50 eqid 2729 . . . . . . . . . . . . . 14 (𝑄 ×c 𝑂) = (𝑄 ×c 𝑂)
516fucbas 17925 . . . . . . . . . . . . . 14 (𝑂 Func 𝑆) = (Base‘𝑄)
524, 31oppcbas 17679 . . . . . . . . . . . . . 14 𝐵 = (Base‘𝑂)
5350, 51, 52xpcbas 18139 . . . . . . . . . . . . 13 ((𝑂 Func 𝑆) × 𝐵) = (Base‘(𝑄 ×c 𝑂))
54 eqid 2729 . . . . . . . . . . . . 13 ((𝑄 ×c 𝑂) Nat 𝑇) = ((𝑄 ×c 𝑂) Nat 𝑇)
55 eqid 2729 . . . . . . . . . . . . 13 (Iso‘𝑇) = (Iso‘𝑇)
5628, 53, 54, 44, 38, 45, 55fuciso 17940 . . . . . . . . . . . 12 (𝜑 → (𝑁 ∈ (𝐸(Iso‘𝑅)𝑍) ↔ (𝑁 ∈ (𝐸((𝑄 ×c 𝑂) Nat 𝑇)𝑍) ∧ ∀𝑣 ∈ ((𝑂 Func 𝑆) × 𝐵)(𝑁𝑣) ∈ (((1st𝐸)‘𝑣)(Iso‘𝑇)((1st𝑍)‘𝑣)))))
5749, 56mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝑁 ∈ (𝐸((𝑄 ×c 𝑂) Nat 𝑇)𝑍) ∧ ∀𝑣 ∈ ((𝑂 Func 𝑆) × 𝐵)(𝑁𝑣) ∈ (((1st𝐸)‘𝑣)(Iso‘𝑇)((1st𝑍)‘𝑣))))
5857simprd 495 . . . . . . . . . 10 (𝜑 → ∀𝑣 ∈ ((𝑂 Func 𝑆) × 𝐵)(𝑁𝑣) ∈ (((1st𝐸)‘𝑣)(Iso‘𝑇)((1st𝑍)‘𝑣)))
5958adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ∀𝑣 ∈ ((𝑂 Func 𝑆) × 𝐵)(𝑁𝑣) ∈ (((1st𝐸)‘𝑣)(Iso‘𝑇)((1st𝑍)‘𝑣)))
6031, 51, 16funcf1 17828 . . . . . . . . . . . 12 (𝜑 → (1st𝑌):𝐵⟶(𝑂 Func 𝑆))
6160adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (1st𝑌):𝐵⟶(𝑂 Func 𝑆))
62 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → 𝑤𝐵)
6361, 62ffvelcdmd 7057 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ((1st𝑌)‘𝑤) ∈ (𝑂 Func 𝑆))
64 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → 𝑧𝐵)
6563, 64opelxpd 5677 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ⟨((1st𝑌)‘𝑤), 𝑧⟩ ∈ ((𝑂 Func 𝑆) × 𝐵))
6627, 59, 65rspcdva 3589 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑤)𝑁𝑧) ∈ ((((1st𝑌)‘𝑤)(1st𝐸)𝑧)(Iso‘𝑇)(((1st𝑌)‘𝑤)(1st𝑍)𝑧)))
674oppccat 17683 . . . . . . . . . . . . 13 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
683, 67syl 17 . . . . . . . . . . . 12 (𝜑𝑂 ∈ Cat)
6968adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → 𝑂 ∈ Cat)
705setccat 18047 . . . . . . . . . . . . 13 (𝑈 ∈ V → 𝑆 ∈ Cat)
7110, 70syl 17 . . . . . . . . . . . 12 (𝜑𝑆 ∈ Cat)
7271adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → 𝑆 ∈ Cat)
7335, 69, 72, 52, 63, 64evlf1 18181 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑤)(1st𝐸)𝑧) = ((1st ‘((1st𝑌)‘𝑤))‘𝑧))
743adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → 𝐶 ∈ Cat)
75 eqid 2729 . . . . . . . . . . 11 (Hom ‘𝐶) = (Hom ‘𝐶)
762, 31, 74, 62, 75, 64yon11 18225 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ((1st ‘((1st𝑌)‘𝑤))‘𝑧) = (𝑧(Hom ‘𝐶)𝑤))
7773, 76eqtrd 2764 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑤)(1st𝐸)𝑧) = (𝑧(Hom ‘𝐶)𝑤))
787adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → 𝑉𝑊)
7911adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ran (Homf𝐶) ⊆ 𝑈)
808adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
812, 31, 32, 4, 5, 33, 6, 34, 28, 35, 36, 74, 78, 79, 80, 63, 64yonedalem21 18234 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑤)(1st𝑍)𝑧) = (((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)))
8277, 81oveq12d 7405 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ((((1st𝑌)‘𝑤)(1st𝐸)𝑧)(Iso‘𝑇)(((1st𝑌)‘𝑤)(1st𝑍)𝑧)) = ((𝑧(Hom ‘𝐶)𝑤)(Iso‘𝑇)(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤))))
8366, 82eleqtrd 2830 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑤)𝑁𝑧) ∈ ((𝑧(Hom ‘𝐶)𝑤)(Iso‘𝑇)(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤))))
849adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → 𝑈𝑉)
85 eqid 2729 . . . . . . . . . . . . 13 (Base‘𝑆) = (Base‘𝑆)
86 relfunc 17824 . . . . . . . . . . . . . 14 Rel (𝑂 Func 𝑆)
87 1st2ndbr 8021 . . . . . . . . . . . . . 14 ((Rel (𝑂 Func 𝑆) ∧ ((1st𝑌)‘𝑤) ∈ (𝑂 Func 𝑆)) → (1st ‘((1st𝑌)‘𝑤))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑤)))
8886, 63, 87sylancr 587 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (1st ‘((1st𝑌)‘𝑤))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑤)))
8952, 85, 88funcf1 17828 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (1st ‘((1st𝑌)‘𝑤)):𝐵⟶(Base‘𝑆))
9089, 64ffvelcdmd 7057 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ((1st ‘((1st𝑌)‘𝑤))‘𝑧) ∈ (Base‘𝑆))
915, 10setcbas 18040 . . . . . . . . . . . 12 (𝜑𝑈 = (Base‘𝑆))
9291adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → 𝑈 = (Base‘𝑆))
9390, 92eleqtrrd 2831 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ((1st ‘((1st𝑌)‘𝑤))‘𝑧) ∈ 𝑈)
9476, 93eqeltrrd 2829 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (𝑧(Hom ‘𝐶)𝑤) ∈ 𝑈)
9584, 94sseldd 3947 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (𝑧(Hom ‘𝐶)𝑤) ∈ 𝑉)
96 eqid 2729 . . . . . . . . . 10 (Homf𝑄) = (Homf𝑄)
97 eqid 2729 . . . . . . . . . . 11 (𝑂 Nat 𝑆) = (𝑂 Nat 𝑆)
986, 97fuchom 17926 . . . . . . . . . 10 (𝑂 Nat 𝑆) = (Hom ‘𝑄)
9961, 64ffvelcdmd 7057 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ((1st𝑌)‘𝑧) ∈ (𝑂 Func 𝑆))
10096, 51, 98, 99, 63homfval 17653 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑧)(Homf𝑄)((1st𝑌)‘𝑤)) = (((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)))
1018unssad 4156 . . . . . . . . . . 11 (𝜑 → ran (Homf𝑄) ⊆ 𝑉)
102101adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ran (Homf𝑄) ⊆ 𝑉)
10396, 51homffn 17654 . . . . . . . . . . 11 (Homf𝑄) Fn ((𝑂 Func 𝑆) × (𝑂 Func 𝑆))
104 fnovrn 7564 . . . . . . . . . . 11 (((Homf𝑄) Fn ((𝑂 Func 𝑆) × (𝑂 Func 𝑆)) ∧ ((1st𝑌)‘𝑧) ∈ (𝑂 Func 𝑆) ∧ ((1st𝑌)‘𝑤) ∈ (𝑂 Func 𝑆)) → (((1st𝑌)‘𝑧)(Homf𝑄)((1st𝑌)‘𝑤)) ∈ ran (Homf𝑄))
105103, 99, 63, 104mp3an2i 1468 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑧)(Homf𝑄)((1st𝑌)‘𝑤)) ∈ ran (Homf𝑄))
106102, 105sseldd 3947 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑧)(Homf𝑄)((1st𝑌)‘𝑤)) ∈ 𝑉)
107100, 106eqeltrrd 2829 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)) ∈ 𝑉)
10833, 78, 95, 107, 55setciso 18053 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ((((1st𝑌)‘𝑤)𝑁𝑧) ∈ ((𝑧(Hom ‘𝐶)𝑤)(Iso‘𝑇)(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤))) ↔ (((1st𝑌)‘𝑤)𝑁𝑧):(𝑧(Hom ‘𝐶)𝑤)–1-1-onto→(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤))))
10983, 108mpbid 232 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑤)𝑁𝑧):(𝑧(Hom ‘𝐶)𝑤)–1-1-onto→(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)))
11074adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝐶 ∈ Cat)
111110adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → 𝐶 ∈ Cat)
11264adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑧𝐵)
113112adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → 𝑧𝐵)
114 simpr 484 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → 𝑦𝐵)
1152, 31, 111, 113, 75, 114yon11 18225 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → ((1st ‘((1st𝑌)‘𝑧))‘𝑦) = (𝑦(Hom ‘𝐶)𝑧))
116115eqcomd 2735 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → (𝑦(Hom ‘𝐶)𝑧) = ((1st ‘((1st𝑌)‘𝑧))‘𝑦))
117111adantr 480 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → 𝐶 ∈ Cat)
11862ad3antrrr 730 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → 𝑤𝐵)
119113adantr 480 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → 𝑧𝐵)
120 eqid 2729 . . . . . . . . . . . . . . 15 (comp‘𝐶) = (comp‘𝐶)
121114adantr 480 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → 𝑦𝐵)
122 simpr 484 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))
123 simpllr 775 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → ∈ (𝑧(Hom ‘𝐶)𝑤))
1242, 31, 117, 118, 75, 119, 120, 121, 122, 123yon12 18226 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → (((𝑧(2nd ‘((1st𝑌)‘𝑤))𝑦)‘𝑔)‘) = ((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔))
1252, 31, 117, 119, 75, 118, 120, 121, 123, 122yon2 18227 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → ((((𝑧(2nd𝑌)𝑤)‘)‘𝑦)‘𝑔) = ((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔))
126124, 125eqtr4d 2767 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → (((𝑧(2nd ‘((1st𝑌)‘𝑤))𝑦)‘𝑔)‘) = ((((𝑧(2nd𝑌)𝑤)‘)‘𝑦)‘𝑔))
127116, 126mpteq12dva 5193 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ↦ (((𝑧(2nd ‘((1st𝑌)‘𝑤))𝑦)‘𝑔)‘)) = (𝑔 ∈ ((1st ‘((1st𝑌)‘𝑧))‘𝑦) ↦ ((((𝑧(2nd𝑌)𝑤)‘)‘𝑦)‘𝑔)))
12816adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (1st𝑌)(𝐶 Func 𝑄)(2nd𝑌))
12931, 75, 98, 128, 64, 62funcf2 17830 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (𝑧(2nd𝑌)𝑤):(𝑧(Hom ‘𝐶)𝑤)⟶(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)))
130129ffvelcdmda 7056 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑧(2nd𝑌)𝑤)‘) ∈ (((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)))
13197, 130nat1st2nd 17916 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑧(2nd𝑌)𝑤)‘) ∈ (⟨(1st ‘((1st𝑌)‘𝑧)), (2nd ‘((1st𝑌)‘𝑧))⟩(𝑂 Nat 𝑆)⟨(1st ‘((1st𝑌)‘𝑤)), (2nd ‘((1st𝑌)‘𝑤))⟩))
132131adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → ((𝑧(2nd𝑌)𝑤)‘) ∈ (⟨(1st ‘((1st𝑌)‘𝑧)), (2nd ‘((1st𝑌)‘𝑧))⟩(𝑂 Nat 𝑆)⟨(1st ‘((1st𝑌)‘𝑤)), (2nd ‘((1st𝑌)‘𝑤))⟩))
133 eqid 2729 . . . . . . . . . . . . . . 15 (Hom ‘𝑆) = (Hom ‘𝑆)
13497, 132, 52, 133, 114natcl 17918 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → (((𝑧(2nd𝑌)𝑤)‘)‘𝑦) ∈ (((1st ‘((1st𝑌)‘𝑧))‘𝑦)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑤))‘𝑦)))
13510adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → 𝑈 ∈ V)
136135ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → 𝑈 ∈ V)
13760ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → (1st𝑌):𝐵⟶(𝑂 Func 𝑆))
138137, 112ffvelcdmd 7057 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((1st𝑌)‘𝑧) ∈ (𝑂 Func 𝑆))
139 1st2ndbr 8021 . . . . . . . . . . . . . . . . . . 19 ((Rel (𝑂 Func 𝑆) ∧ ((1st𝑌)‘𝑧) ∈ (𝑂 Func 𝑆)) → (1st ‘((1st𝑌)‘𝑧))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑧)))
14086, 138, 139sylancr 587 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → (1st ‘((1st𝑌)‘𝑧))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑧)))
14152, 85, 140funcf1 17828 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → (1st ‘((1st𝑌)‘𝑧)):𝐵⟶(Base‘𝑆))
142141ffvelcdmda 7056 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → ((1st ‘((1st𝑌)‘𝑧))‘𝑦) ∈ (Base‘𝑆))
14392ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → 𝑈 = (Base‘𝑆))
144142, 143eleqtrrd 2831 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → ((1st ‘((1st𝑌)‘𝑧))‘𝑦) ∈ 𝑈)
14589adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → (1st ‘((1st𝑌)‘𝑤)):𝐵⟶(Base‘𝑆))
146145ffvelcdmda 7056 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → ((1st ‘((1st𝑌)‘𝑤))‘𝑦) ∈ (Base‘𝑆))
147146, 143eleqtrrd 2831 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → ((1st ‘((1st𝑌)‘𝑤))‘𝑦) ∈ 𝑈)
1485, 136, 133, 144, 147elsetchom 18043 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → ((((𝑧(2nd𝑌)𝑤)‘)‘𝑦) ∈ (((1st ‘((1st𝑌)‘𝑧))‘𝑦)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑤))‘𝑦)) ↔ (((𝑧(2nd𝑌)𝑤)‘)‘𝑦):((1st ‘((1st𝑌)‘𝑧))‘𝑦)⟶((1st ‘((1st𝑌)‘𝑤))‘𝑦)))
149134, 148mpbid 232 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → (((𝑧(2nd𝑌)𝑤)‘)‘𝑦):((1st ‘((1st𝑌)‘𝑧))‘𝑦)⟶((1st ‘((1st𝑌)‘𝑤))‘𝑦))
150149feqmptd 6929 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → (((𝑧(2nd𝑌)𝑤)‘)‘𝑦) = (𝑔 ∈ ((1st ‘((1st𝑌)‘𝑧))‘𝑦) ↦ ((((𝑧(2nd𝑌)𝑤)‘)‘𝑦)‘𝑔)))
151127, 150eqtr4d 2767 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ↦ (((𝑧(2nd ‘((1st𝑌)‘𝑤))𝑦)‘𝑔)‘)) = (((𝑧(2nd𝑌)𝑤)‘)‘𝑦))
152151mpteq2dva 5200 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ↦ (((𝑧(2nd ‘((1st𝑌)‘𝑤))𝑦)‘𝑔)‘))) = (𝑦𝐵 ↦ (((𝑧(2nd𝑌)𝑤)‘)‘𝑦)))
15378adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑉𝑊)
15479adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ran (Homf𝐶) ⊆ 𝑈)
15580adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
15663adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((1st𝑌)‘𝑤) ∈ (𝑂 Func 𝑆))
15776eleq2d 2814 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ( ∈ ((1st ‘((1st𝑌)‘𝑤))‘𝑧) ↔ ∈ (𝑧(Hom ‘𝐶)𝑤)))
158157biimpar 477 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ∈ ((1st ‘((1st𝑌)‘𝑤))‘𝑧))
1592, 31, 32, 4, 5, 33, 6, 34, 28, 35, 36, 110, 153, 154, 155, 156, 112, 47, 158yonedalem4a 18236 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((((1st𝑌)‘𝑤)𝑁𝑧)‘) = (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ↦ (((𝑧(2nd ‘((1st𝑌)‘𝑤))𝑦)‘𝑔)‘))))
16097, 131, 52natfn 17919 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑧(2nd𝑌)𝑤)‘) Fn 𝐵)
161 dffn5 6919 . . . . . . . . . . 11 (((𝑧(2nd𝑌)𝑤)‘) Fn 𝐵 ↔ ((𝑧(2nd𝑌)𝑤)‘) = (𝑦𝐵 ↦ (((𝑧(2nd𝑌)𝑤)‘)‘𝑦)))
162160, 161sylib 218 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑧(2nd𝑌)𝑤)‘) = (𝑦𝐵 ↦ (((𝑧(2nd𝑌)𝑤)‘)‘𝑦)))
163152, 159, 1623eqtr4d 2774 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((((1st𝑌)‘𝑤)𝑁𝑧)‘) = ((𝑧(2nd𝑌)𝑤)‘))
164163mpteq2dva 5200 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ( ∈ (𝑧(Hom ‘𝐶)𝑤) ↦ ((((1st𝑌)‘𝑤)𝑁𝑧)‘)) = ( ∈ (𝑧(Hom ‘𝐶)𝑤) ↦ ((𝑧(2nd𝑌)𝑤)‘)))
165 f1of 6800 . . . . . . . . . 10 ((((1st𝑌)‘𝑤)𝑁𝑧):(𝑧(Hom ‘𝐶)𝑤)–1-1-onto→(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)) → (((1st𝑌)‘𝑤)𝑁𝑧):(𝑧(Hom ‘𝐶)𝑤)⟶(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)))
166109, 165syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑤)𝑁𝑧):(𝑧(Hom ‘𝐶)𝑤)⟶(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)))
167166feqmptd 6929 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑤)𝑁𝑧) = ( ∈ (𝑧(Hom ‘𝐶)𝑤) ↦ ((((1st𝑌)‘𝑤)𝑁𝑧)‘)))
168129feqmptd 6929 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (𝑧(2nd𝑌)𝑤) = ( ∈ (𝑧(Hom ‘𝐶)𝑤) ↦ ((𝑧(2nd𝑌)𝑤)‘)))
169164, 167, 1683eqtr4d 2774 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑤)𝑁𝑧) = (𝑧(2nd𝑌)𝑤))
170169f1oeq1d 6795 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ((((1st𝑌)‘𝑤)𝑁𝑧):(𝑧(Hom ‘𝐶)𝑤)–1-1-onto→(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)) ↔ (𝑧(2nd𝑌)𝑤):(𝑧(Hom ‘𝐶)𝑤)–1-1-onto→(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤))))
171109, 170mpbid 232 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (𝑧(2nd𝑌)𝑤):(𝑧(Hom ‘𝐶)𝑤)–1-1-onto→(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)))
172171ralrimivva 3180 . . . 4 (𝜑 → ∀𝑧𝐵𝑤𝐵 (𝑧(2nd𝑌)𝑤):(𝑧(Hom ‘𝐶)𝑤)–1-1-onto→(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)))
17331, 75, 98isffth2 17880 . . . 4 ((1st𝑌)((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄))(2nd𝑌) ↔ ((1st𝑌)(𝐶 Func 𝑄)(2nd𝑌) ∧ ∀𝑧𝐵𝑤𝐵 (𝑧(2nd𝑌)𝑤):(𝑧(Hom ‘𝐶)𝑤)–1-1-onto→(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤))))
17416, 172, 173sylanbrc 583 . . 3 (𝜑 → (1st𝑌)((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄))(2nd𝑌))
175 df-br 5108 . . 3 ((1st𝑌)((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄))(2nd𝑌) ↔ ⟨(1st𝑌), (2nd𝑌)⟩ ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄)))
176174, 175sylib 218 . 2 (𝜑 → ⟨(1st𝑌), (2nd𝑌)⟩ ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄)))
17714, 176eqeltrd 2828 1 (𝜑𝑌 ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  cun 3912  cin 3913  wss 3914  cop 4595   class class class wbr 5107  cmpt 5188   × cxp 5636  ran crn 5639  Rel wrel 5643   Fn wfn 6506  wf 6507  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  cmpo 7389  1st c1st 7966  2nd c2nd 7967  tpos ctpos 8204  Basecbs 17179  Hom chom 17231  compcco 17232  Catccat 17625  Idccid 17626  Homf chomf 17627  oppCatcoppc 17672  Invcinv 17707  Isociso 17708   Func cfunc 17816  func ccofu 17818   Full cful 17866   Faith cfth 17867   Nat cnat 17906   FuncCat cfuc 17907  SetCatcsetc 18037   ×c cxpc 18129   1stF c1stf 18130   2ndF c2ndf 18131   ⟨,⟩F cprf 18132   evalF cevlf 18170  HomFchof 18209  Yoncyon 18210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-hom 17244  df-cco 17245  df-cat 17629  df-cid 17630  df-homf 17631  df-comf 17632  df-oppc 17673  df-sect 17709  df-inv 17710  df-iso 17711  df-ssc 17772  df-resc 17773  df-subc 17774  df-func 17820  df-cofu 17822  df-full 17868  df-fth 17869  df-nat 17908  df-fuc 17909  df-setc 18038  df-xpc 18133  df-1stf 18134  df-2ndf 18135  df-prf 18136  df-evlf 18174  df-curf 18175  df-hof 18211  df-yon 18212
This theorem is referenced by:  yonffth  18245
  Copyright terms: Public domain W3C validator