MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonffthlem Structured version   Visualization version   GIF version

Theorem yonffthlem 17534
Description: Lemma for yonffth 17536. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y 𝑌 = (Yon‘𝐶)
yoneda.b 𝐵 = (Base‘𝐶)
yoneda.1 1 = (Id‘𝐶)
yoneda.o 𝑂 = (oppCat‘𝐶)
yoneda.s 𝑆 = (SetCat‘𝑈)
yoneda.t 𝑇 = (SetCat‘𝑉)
yoneda.q 𝑄 = (𝑂 FuncCat 𝑆)
yoneda.h 𝐻 = (HomF𝑄)
yoneda.r 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
yoneda.e 𝐸 = (𝑂 evalF 𝑆)
yoneda.z 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
yoneda.c (𝜑𝐶 ∈ Cat)
yoneda.w (𝜑𝑉𝑊)
yoneda.u (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
yoneda.v (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
yoneda.m 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥))))
yonedainv.i 𝐼 = (Inv‘𝑅)
yonedainv.n 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))))
Assertion
Ref Expression
yonffthlem (𝜑𝑌 ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄)))
Distinct variable groups:   𝑓,𝑎,𝑔,𝑥,𝑦, 1   𝑢,𝑎,𝑔,𝑦,𝐶,𝑓,𝑥   𝐸,𝑎,𝑓,𝑔,𝑢,𝑦   𝐵,𝑎,𝑓,𝑔,𝑢,𝑥,𝑦   𝑁,𝑎   𝑂,𝑎,𝑓,𝑔,𝑢,𝑥,𝑦   𝑆,𝑎,𝑓,𝑔,𝑢,𝑥,𝑦   𝑔,𝑀,𝑢,𝑦   𝑄,𝑎,𝑓,𝑔,𝑢,𝑥   𝑇,𝑓,𝑔,𝑢,𝑦   𝜑,𝑎,𝑓,𝑔,𝑢,𝑥,𝑦   𝑢,𝑅   𝑌,𝑎,𝑓,𝑔,𝑢,𝑥,𝑦   𝑍,𝑎,𝑓,𝑔,𝑢,𝑥,𝑦
Allowed substitution hints:   𝑄(𝑦)   𝑅(𝑥,𝑦,𝑓,𝑔,𝑎)   𝑇(𝑥,𝑎)   𝑈(𝑥,𝑦,𝑢,𝑓,𝑔,𝑎)   1 (𝑢)   𝐸(𝑥)   𝐻(𝑥,𝑦,𝑢,𝑓,𝑔,𝑎)   𝐼(𝑥,𝑦,𝑢,𝑓,𝑔,𝑎)   𝑀(𝑥,𝑓,𝑎)   𝑁(𝑥,𝑦,𝑢,𝑓,𝑔)   𝑉(𝑥,𝑦,𝑢,𝑓,𝑔,𝑎)   𝑊(𝑥,𝑦,𝑢,𝑓,𝑔,𝑎)

Proof of Theorem yonffthlem
Dummy variables 𝑤 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17134 . . 3 Rel (𝐶 Func 𝑄)
2 yoneda.y . . . 4 𝑌 = (Yon‘𝐶)
3 yoneda.c . . . 4 (𝜑𝐶 ∈ Cat)
4 yoneda.o . . . 4 𝑂 = (oppCat‘𝐶)
5 yoneda.s . . . 4 𝑆 = (SetCat‘𝑈)
6 yoneda.q . . . 4 𝑄 = (𝑂 FuncCat 𝑆)
7 yoneda.w . . . . 5 (𝜑𝑉𝑊)
8 yoneda.v . . . . . 6 (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
98unssbd 4166 . . . . 5 (𝜑𝑈𝑉)
107, 9ssexd 5230 . . . 4 (𝜑𝑈 ∈ V)
11 yoneda.u . . . 4 (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
122, 3, 4, 5, 6, 10, 11yoncl 17514 . . 3 (𝜑𝑌 ∈ (𝐶 Func 𝑄))
13 1st2nd 7740 . . 3 ((Rel (𝐶 Func 𝑄) ∧ 𝑌 ∈ (𝐶 Func 𝑄)) → 𝑌 = ⟨(1st𝑌), (2nd𝑌)⟩)
141, 12, 13sylancr 589 . 2 (𝜑𝑌 = ⟨(1st𝑌), (2nd𝑌)⟩)
15 1st2ndbr 7743 . . . . 5 ((Rel (𝐶 Func 𝑄) ∧ 𝑌 ∈ (𝐶 Func 𝑄)) → (1st𝑌)(𝐶 Func 𝑄)(2nd𝑌))
161, 12, 15sylancr 589 . . . 4 (𝜑 → (1st𝑌)(𝐶 Func 𝑄)(2nd𝑌))
17 fveq2 6672 . . . . . . . . . . 11 (𝑣 = ⟨((1st𝑌)‘𝑤), 𝑧⟩ → (𝑁𝑣) = (𝑁‘⟨((1st𝑌)‘𝑤), 𝑧⟩))
18 df-ov 7161 . . . . . . . . . . 11 (((1st𝑌)‘𝑤)𝑁𝑧) = (𝑁‘⟨((1st𝑌)‘𝑤), 𝑧⟩)
1917, 18syl6eqr 2876 . . . . . . . . . 10 (𝑣 = ⟨((1st𝑌)‘𝑤), 𝑧⟩ → (𝑁𝑣) = (((1st𝑌)‘𝑤)𝑁𝑧))
20 fveq2 6672 . . . . . . . . . . . 12 (𝑣 = ⟨((1st𝑌)‘𝑤), 𝑧⟩ → ((1st𝐸)‘𝑣) = ((1st𝐸)‘⟨((1st𝑌)‘𝑤), 𝑧⟩))
21 df-ov 7161 . . . . . . . . . . . 12 (((1st𝑌)‘𝑤)(1st𝐸)𝑧) = ((1st𝐸)‘⟨((1st𝑌)‘𝑤), 𝑧⟩)
2220, 21syl6eqr 2876 . . . . . . . . . . 11 (𝑣 = ⟨((1st𝑌)‘𝑤), 𝑧⟩ → ((1st𝐸)‘𝑣) = (((1st𝑌)‘𝑤)(1st𝐸)𝑧))
23 fveq2 6672 . . . . . . . . . . . 12 (𝑣 = ⟨((1st𝑌)‘𝑤), 𝑧⟩ → ((1st𝑍)‘𝑣) = ((1st𝑍)‘⟨((1st𝑌)‘𝑤), 𝑧⟩))
24 df-ov 7161 . . . . . . . . . . . 12 (((1st𝑌)‘𝑤)(1st𝑍)𝑧) = ((1st𝑍)‘⟨((1st𝑌)‘𝑤), 𝑧⟩)
2523, 24syl6eqr 2876 . . . . . . . . . . 11 (𝑣 = ⟨((1st𝑌)‘𝑤), 𝑧⟩ → ((1st𝑍)‘𝑣) = (((1st𝑌)‘𝑤)(1st𝑍)𝑧))
2622, 25oveq12d 7176 . . . . . . . . . 10 (𝑣 = ⟨((1st𝑌)‘𝑤), 𝑧⟩ → (((1st𝐸)‘𝑣)(Iso‘𝑇)((1st𝑍)‘𝑣)) = ((((1st𝑌)‘𝑤)(1st𝐸)𝑧)(Iso‘𝑇)(((1st𝑌)‘𝑤)(1st𝑍)𝑧)))
2719, 26eleq12d 2909 . . . . . . . . 9 (𝑣 = ⟨((1st𝑌)‘𝑤), 𝑧⟩ → ((𝑁𝑣) ∈ (((1st𝐸)‘𝑣)(Iso‘𝑇)((1st𝑍)‘𝑣)) ↔ (((1st𝑌)‘𝑤)𝑁𝑧) ∈ ((((1st𝑌)‘𝑤)(1st𝐸)𝑧)(Iso‘𝑇)(((1st𝑌)‘𝑤)(1st𝑍)𝑧))))
28 yoneda.r . . . . . . . . . . . . . 14 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
2928fucbas 17232 . . . . . . . . . . . . 13 ((𝑄 ×c 𝑂) Func 𝑇) = (Base‘𝑅)
30 yonedainv.i . . . . . . . . . . . . 13 𝐼 = (Inv‘𝑅)
31 yoneda.b . . . . . . . . . . . . . . . . . 18 𝐵 = (Base‘𝐶)
32 yoneda.1 . . . . . . . . . . . . . . . . . 18 1 = (Id‘𝐶)
33 yoneda.t . . . . . . . . . . . . . . . . . 18 𝑇 = (SetCat‘𝑉)
34 yoneda.h . . . . . . . . . . . . . . . . . 18 𝐻 = (HomF𝑄)
35 yoneda.e . . . . . . . . . . . . . . . . . 18 𝐸 = (𝑂 evalF 𝑆)
36 yoneda.z . . . . . . . . . . . . . . . . . 18 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
372, 31, 32, 4, 5, 33, 6, 34, 28, 35, 36, 3, 7, 11, 8yonedalem1 17524 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇)))
3837simpld 497 . . . . . . . . . . . . . . . 16 (𝜑𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇))
39 funcrcl 17135 . . . . . . . . . . . . . . . 16 (𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇) → ((𝑄 ×c 𝑂) ∈ Cat ∧ 𝑇 ∈ Cat))
4038, 39syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑄 ×c 𝑂) ∈ Cat ∧ 𝑇 ∈ Cat))
4140simpld 497 . . . . . . . . . . . . . 14 (𝜑 → (𝑄 ×c 𝑂) ∈ Cat)
4240simprd 498 . . . . . . . . . . . . . 14 (𝜑𝑇 ∈ Cat)
4328, 41, 42fuccat 17242 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ Cat)
4437simprd 498 . . . . . . . . . . . . 13 (𝜑𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇))
45 eqid 2823 . . . . . . . . . . . . 13 (Iso‘𝑅) = (Iso‘𝑅)
46 yoneda.m . . . . . . . . . . . . . 14 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥))))
47 yonedainv.n . . . . . . . . . . . . . 14 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))))
482, 31, 32, 4, 5, 33, 6, 34, 28, 35, 36, 3, 7, 11, 8, 46, 30, 47yonedainv 17533 . . . . . . . . . . . . 13 (𝜑𝑀(𝑍𝐼𝐸)𝑁)
4929, 30, 43, 38, 44, 45, 48inviso2 17039 . . . . . . . . . . . 12 (𝜑𝑁 ∈ (𝐸(Iso‘𝑅)𝑍))
50 eqid 2823 . . . . . . . . . . . . . 14 (𝑄 ×c 𝑂) = (𝑄 ×c 𝑂)
516fucbas 17232 . . . . . . . . . . . . . 14 (𝑂 Func 𝑆) = (Base‘𝑄)
524, 31oppcbas 16990 . . . . . . . . . . . . . 14 𝐵 = (Base‘𝑂)
5350, 51, 52xpcbas 17430 . . . . . . . . . . . . 13 ((𝑂 Func 𝑆) × 𝐵) = (Base‘(𝑄 ×c 𝑂))
54 eqid 2823 . . . . . . . . . . . . 13 ((𝑄 ×c 𝑂) Nat 𝑇) = ((𝑄 ×c 𝑂) Nat 𝑇)
55 eqid 2823 . . . . . . . . . . . . 13 (Iso‘𝑇) = (Iso‘𝑇)
5628, 53, 54, 44, 38, 45, 55fuciso 17247 . . . . . . . . . . . 12 (𝜑 → (𝑁 ∈ (𝐸(Iso‘𝑅)𝑍) ↔ (𝑁 ∈ (𝐸((𝑄 ×c 𝑂) Nat 𝑇)𝑍) ∧ ∀𝑣 ∈ ((𝑂 Func 𝑆) × 𝐵)(𝑁𝑣) ∈ (((1st𝐸)‘𝑣)(Iso‘𝑇)((1st𝑍)‘𝑣)))))
5749, 56mpbid 234 . . . . . . . . . . 11 (𝜑 → (𝑁 ∈ (𝐸((𝑄 ×c 𝑂) Nat 𝑇)𝑍) ∧ ∀𝑣 ∈ ((𝑂 Func 𝑆) × 𝐵)(𝑁𝑣) ∈ (((1st𝐸)‘𝑣)(Iso‘𝑇)((1st𝑍)‘𝑣))))
5857simprd 498 . . . . . . . . . 10 (𝜑 → ∀𝑣 ∈ ((𝑂 Func 𝑆) × 𝐵)(𝑁𝑣) ∈ (((1st𝐸)‘𝑣)(Iso‘𝑇)((1st𝑍)‘𝑣)))
5958adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ∀𝑣 ∈ ((𝑂 Func 𝑆) × 𝐵)(𝑁𝑣) ∈ (((1st𝐸)‘𝑣)(Iso‘𝑇)((1st𝑍)‘𝑣)))
6031, 51, 16funcf1 17138 . . . . . . . . . . . 12 (𝜑 → (1st𝑌):𝐵⟶(𝑂 Func 𝑆))
6160adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (1st𝑌):𝐵⟶(𝑂 Func 𝑆))
62 simprr 771 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → 𝑤𝐵)
6361, 62ffvelrnd 6854 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ((1st𝑌)‘𝑤) ∈ (𝑂 Func 𝑆))
64 simprl 769 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → 𝑧𝐵)
6563, 64opelxpd 5595 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ⟨((1st𝑌)‘𝑤), 𝑧⟩ ∈ ((𝑂 Func 𝑆) × 𝐵))
6627, 59, 65rspcdva 3627 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑤)𝑁𝑧) ∈ ((((1st𝑌)‘𝑤)(1st𝐸)𝑧)(Iso‘𝑇)(((1st𝑌)‘𝑤)(1st𝑍)𝑧)))
674oppccat 16994 . . . . . . . . . . . . 13 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
683, 67syl 17 . . . . . . . . . . . 12 (𝜑𝑂 ∈ Cat)
6968adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → 𝑂 ∈ Cat)
705setccat 17347 . . . . . . . . . . . . 13 (𝑈 ∈ V → 𝑆 ∈ Cat)
7110, 70syl 17 . . . . . . . . . . . 12 (𝜑𝑆 ∈ Cat)
7271adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → 𝑆 ∈ Cat)
7335, 69, 72, 52, 63, 64evlf1 17472 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑤)(1st𝐸)𝑧) = ((1st ‘((1st𝑌)‘𝑤))‘𝑧))
743adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → 𝐶 ∈ Cat)
75 eqid 2823 . . . . . . . . . . 11 (Hom ‘𝐶) = (Hom ‘𝐶)
762, 31, 74, 62, 75, 64yon11 17516 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ((1st ‘((1st𝑌)‘𝑤))‘𝑧) = (𝑧(Hom ‘𝐶)𝑤))
7773, 76eqtrd 2858 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑤)(1st𝐸)𝑧) = (𝑧(Hom ‘𝐶)𝑤))
787adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → 𝑉𝑊)
7911adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ran (Homf𝐶) ⊆ 𝑈)
808adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
812, 31, 32, 4, 5, 33, 6, 34, 28, 35, 36, 74, 78, 79, 80, 63, 64yonedalem21 17525 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑤)(1st𝑍)𝑧) = (((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)))
8277, 81oveq12d 7176 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ((((1st𝑌)‘𝑤)(1st𝐸)𝑧)(Iso‘𝑇)(((1st𝑌)‘𝑤)(1st𝑍)𝑧)) = ((𝑧(Hom ‘𝐶)𝑤)(Iso‘𝑇)(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤))))
8366, 82eleqtrd 2917 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑤)𝑁𝑧) ∈ ((𝑧(Hom ‘𝐶)𝑤)(Iso‘𝑇)(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤))))
849adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → 𝑈𝑉)
85 eqid 2823 . . . . . . . . . . . . 13 (Base‘𝑆) = (Base‘𝑆)
86 relfunc 17134 . . . . . . . . . . . . . 14 Rel (𝑂 Func 𝑆)
87 1st2ndbr 7743 . . . . . . . . . . . . . 14 ((Rel (𝑂 Func 𝑆) ∧ ((1st𝑌)‘𝑤) ∈ (𝑂 Func 𝑆)) → (1st ‘((1st𝑌)‘𝑤))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑤)))
8886, 63, 87sylancr 589 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (1st ‘((1st𝑌)‘𝑤))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑤)))
8952, 85, 88funcf1 17138 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (1st ‘((1st𝑌)‘𝑤)):𝐵⟶(Base‘𝑆))
9089, 64ffvelrnd 6854 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ((1st ‘((1st𝑌)‘𝑤))‘𝑧) ∈ (Base‘𝑆))
915, 10setcbas 17340 . . . . . . . . . . . 12 (𝜑𝑈 = (Base‘𝑆))
9291adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → 𝑈 = (Base‘𝑆))
9390, 92eleqtrrd 2918 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ((1st ‘((1st𝑌)‘𝑤))‘𝑧) ∈ 𝑈)
9476, 93eqeltrrd 2916 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (𝑧(Hom ‘𝐶)𝑤) ∈ 𝑈)
9584, 94sseldd 3970 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (𝑧(Hom ‘𝐶)𝑤) ∈ 𝑉)
96 eqid 2823 . . . . . . . . . 10 (Homf𝑄) = (Homf𝑄)
97 eqid 2823 . . . . . . . . . . 11 (𝑂 Nat 𝑆) = (𝑂 Nat 𝑆)
986, 97fuchom 17233 . . . . . . . . . 10 (𝑂 Nat 𝑆) = (Hom ‘𝑄)
9961, 64ffvelrnd 6854 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ((1st𝑌)‘𝑧) ∈ (𝑂 Func 𝑆))
10096, 51, 98, 99, 63homfval 16964 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑧)(Homf𝑄)((1st𝑌)‘𝑤)) = (((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)))
1018unssad 4165 . . . . . . . . . . 11 (𝜑 → ran (Homf𝑄) ⊆ 𝑉)
102101adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ran (Homf𝑄) ⊆ 𝑉)
10396, 51homffn 16965 . . . . . . . . . . 11 (Homf𝑄) Fn ((𝑂 Func 𝑆) × (𝑂 Func 𝑆))
104 fnovrn 7325 . . . . . . . . . . 11 (((Homf𝑄) Fn ((𝑂 Func 𝑆) × (𝑂 Func 𝑆)) ∧ ((1st𝑌)‘𝑧) ∈ (𝑂 Func 𝑆) ∧ ((1st𝑌)‘𝑤) ∈ (𝑂 Func 𝑆)) → (((1st𝑌)‘𝑧)(Homf𝑄)((1st𝑌)‘𝑤)) ∈ ran (Homf𝑄))
105103, 99, 63, 104mp3an2i 1462 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑧)(Homf𝑄)((1st𝑌)‘𝑤)) ∈ ran (Homf𝑄))
106102, 105sseldd 3970 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑧)(Homf𝑄)((1st𝑌)‘𝑤)) ∈ 𝑉)
107100, 106eqeltrrd 2916 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)) ∈ 𝑉)
10833, 78, 95, 107, 55setciso 17353 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ((((1st𝑌)‘𝑤)𝑁𝑧) ∈ ((𝑧(Hom ‘𝐶)𝑤)(Iso‘𝑇)(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤))) ↔ (((1st𝑌)‘𝑤)𝑁𝑧):(𝑧(Hom ‘𝐶)𝑤)–1-1-onto→(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤))))
10983, 108mpbid 234 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑤)𝑁𝑧):(𝑧(Hom ‘𝐶)𝑤)–1-1-onto→(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)))
11074adantr 483 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝐶 ∈ Cat)
111110adantr 483 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → 𝐶 ∈ Cat)
11264adantr 483 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑧𝐵)
113112adantr 483 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → 𝑧𝐵)
114 simpr 487 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → 𝑦𝐵)
1152, 31, 111, 113, 75, 114yon11 17516 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → ((1st ‘((1st𝑌)‘𝑧))‘𝑦) = (𝑦(Hom ‘𝐶)𝑧))
116115eqcomd 2829 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → (𝑦(Hom ‘𝐶)𝑧) = ((1st ‘((1st𝑌)‘𝑧))‘𝑦))
117111adantr 483 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → 𝐶 ∈ Cat)
11862ad3antrrr 728 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → 𝑤𝐵)
119113adantr 483 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → 𝑧𝐵)
120 eqid 2823 . . . . . . . . . . . . . . 15 (comp‘𝐶) = (comp‘𝐶)
121114adantr 483 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → 𝑦𝐵)
122 simpr 487 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))
123 simpllr 774 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → ∈ (𝑧(Hom ‘𝐶)𝑤))
1242, 31, 117, 118, 75, 119, 120, 121, 122, 123yon12 17517 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → (((𝑧(2nd ‘((1st𝑌)‘𝑤))𝑦)‘𝑔)‘) = ((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔))
1252, 31, 117, 119, 75, 118, 120, 121, 123, 122yon2 17518 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → ((((𝑧(2nd𝑌)𝑤)‘)‘𝑦)‘𝑔) = ((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔))
126124, 125eqtr4d 2861 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → (((𝑧(2nd ‘((1st𝑌)‘𝑤))𝑦)‘𝑔)‘) = ((((𝑧(2nd𝑌)𝑤)‘)‘𝑦)‘𝑔))
127116, 126mpteq12dva 5152 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ↦ (((𝑧(2nd ‘((1st𝑌)‘𝑤))𝑦)‘𝑔)‘)) = (𝑔 ∈ ((1st ‘((1st𝑌)‘𝑧))‘𝑦) ↦ ((((𝑧(2nd𝑌)𝑤)‘)‘𝑦)‘𝑔)))
12816adantr 483 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (1st𝑌)(𝐶 Func 𝑄)(2nd𝑌))
12931, 75, 98, 128, 64, 62funcf2 17140 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (𝑧(2nd𝑌)𝑤):(𝑧(Hom ‘𝐶)𝑤)⟶(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)))
130129ffvelrnda 6853 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑧(2nd𝑌)𝑤)‘) ∈ (((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)))
13197, 130nat1st2nd 17223 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑧(2nd𝑌)𝑤)‘) ∈ (⟨(1st ‘((1st𝑌)‘𝑧)), (2nd ‘((1st𝑌)‘𝑧))⟩(𝑂 Nat 𝑆)⟨(1st ‘((1st𝑌)‘𝑤)), (2nd ‘((1st𝑌)‘𝑤))⟩))
132131adantr 483 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → ((𝑧(2nd𝑌)𝑤)‘) ∈ (⟨(1st ‘((1st𝑌)‘𝑧)), (2nd ‘((1st𝑌)‘𝑧))⟩(𝑂 Nat 𝑆)⟨(1st ‘((1st𝑌)‘𝑤)), (2nd ‘((1st𝑌)‘𝑤))⟩))
133 eqid 2823 . . . . . . . . . . . . . . 15 (Hom ‘𝑆) = (Hom ‘𝑆)
13497, 132, 52, 133, 114natcl 17225 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → (((𝑧(2nd𝑌)𝑤)‘)‘𝑦) ∈ (((1st ‘((1st𝑌)‘𝑧))‘𝑦)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑤))‘𝑦)))
13510adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → 𝑈 ∈ V)
136135ad2antrr 724 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → 𝑈 ∈ V)
13760ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → (1st𝑌):𝐵⟶(𝑂 Func 𝑆))
138137, 112ffvelrnd 6854 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((1st𝑌)‘𝑧) ∈ (𝑂 Func 𝑆))
139 1st2ndbr 7743 . . . . . . . . . . . . . . . . . . 19 ((Rel (𝑂 Func 𝑆) ∧ ((1st𝑌)‘𝑧) ∈ (𝑂 Func 𝑆)) → (1st ‘((1st𝑌)‘𝑧))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑧)))
14086, 138, 139sylancr 589 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → (1st ‘((1st𝑌)‘𝑧))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑧)))
14152, 85, 140funcf1 17138 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → (1st ‘((1st𝑌)‘𝑧)):𝐵⟶(Base‘𝑆))
142141ffvelrnda 6853 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → ((1st ‘((1st𝑌)‘𝑧))‘𝑦) ∈ (Base‘𝑆))
14392ad2antrr 724 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → 𝑈 = (Base‘𝑆))
144142, 143eleqtrrd 2918 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → ((1st ‘((1st𝑌)‘𝑧))‘𝑦) ∈ 𝑈)
14589adantr 483 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → (1st ‘((1st𝑌)‘𝑤)):𝐵⟶(Base‘𝑆))
146145ffvelrnda 6853 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → ((1st ‘((1st𝑌)‘𝑤))‘𝑦) ∈ (Base‘𝑆))
147146, 143eleqtrrd 2918 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → ((1st ‘((1st𝑌)‘𝑤))‘𝑦) ∈ 𝑈)
1485, 136, 133, 144, 147elsetchom 17343 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → ((((𝑧(2nd𝑌)𝑤)‘)‘𝑦) ∈ (((1st ‘((1st𝑌)‘𝑧))‘𝑦)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑤))‘𝑦)) ↔ (((𝑧(2nd𝑌)𝑤)‘)‘𝑦):((1st ‘((1st𝑌)‘𝑧))‘𝑦)⟶((1st ‘((1st𝑌)‘𝑤))‘𝑦)))
149134, 148mpbid 234 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → (((𝑧(2nd𝑌)𝑤)‘)‘𝑦):((1st ‘((1st𝑌)‘𝑧))‘𝑦)⟶((1st ‘((1st𝑌)‘𝑤))‘𝑦))
150149feqmptd 6735 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → (((𝑧(2nd𝑌)𝑤)‘)‘𝑦) = (𝑔 ∈ ((1st ‘((1st𝑌)‘𝑧))‘𝑦) ↦ ((((𝑧(2nd𝑌)𝑤)‘)‘𝑦)‘𝑔)))
151127, 150eqtr4d 2861 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ 𝑦𝐵) → (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ↦ (((𝑧(2nd ‘((1st𝑌)‘𝑤))𝑦)‘𝑔)‘)) = (((𝑧(2nd𝑌)𝑤)‘)‘𝑦))
152151mpteq2dva 5163 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ↦ (((𝑧(2nd ‘((1st𝑌)‘𝑤))𝑦)‘𝑔)‘))) = (𝑦𝐵 ↦ (((𝑧(2nd𝑌)𝑤)‘)‘𝑦)))
15378adantr 483 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑉𝑊)
15479adantr 483 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ran (Homf𝐶) ⊆ 𝑈)
15580adantr 483 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
15663adantr 483 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((1st𝑌)‘𝑤) ∈ (𝑂 Func 𝑆))
15776eleq2d 2900 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ( ∈ ((1st ‘((1st𝑌)‘𝑤))‘𝑧) ↔ ∈ (𝑧(Hom ‘𝐶)𝑤)))
158157biimpar 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ∈ ((1st ‘((1st𝑌)‘𝑤))‘𝑧))
1592, 31, 32, 4, 5, 33, 6, 34, 28, 35, 36, 110, 153, 154, 155, 156, 112, 47, 158yonedalem4a 17527 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((((1st𝑌)‘𝑤)𝑁𝑧)‘) = (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ↦ (((𝑧(2nd ‘((1st𝑌)‘𝑤))𝑦)‘𝑔)‘))))
16097, 131, 52natfn 17226 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑧(2nd𝑌)𝑤)‘) Fn 𝐵)
161 dffn5 6726 . . . . . . . . . . 11 (((𝑧(2nd𝑌)𝑤)‘) Fn 𝐵 ↔ ((𝑧(2nd𝑌)𝑤)‘) = (𝑦𝐵 ↦ (((𝑧(2nd𝑌)𝑤)‘)‘𝑦)))
162160, 161sylib 220 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑧(2nd𝑌)𝑤)‘) = (𝑦𝐵 ↦ (((𝑧(2nd𝑌)𝑤)‘)‘𝑦)))
163152, 159, 1623eqtr4d 2868 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((((1st𝑌)‘𝑤)𝑁𝑧)‘) = ((𝑧(2nd𝑌)𝑤)‘))
164163mpteq2dva 5163 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ( ∈ (𝑧(Hom ‘𝐶)𝑤) ↦ ((((1st𝑌)‘𝑤)𝑁𝑧)‘)) = ( ∈ (𝑧(Hom ‘𝐶)𝑤) ↦ ((𝑧(2nd𝑌)𝑤)‘)))
165 f1of 6617 . . . . . . . . . 10 ((((1st𝑌)‘𝑤)𝑁𝑧):(𝑧(Hom ‘𝐶)𝑤)–1-1-onto→(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)) → (((1st𝑌)‘𝑤)𝑁𝑧):(𝑧(Hom ‘𝐶)𝑤)⟶(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)))
166109, 165syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑤)𝑁𝑧):(𝑧(Hom ‘𝐶)𝑤)⟶(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)))
167166feqmptd 6735 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑤)𝑁𝑧) = ( ∈ (𝑧(Hom ‘𝐶)𝑤) ↦ ((((1st𝑌)‘𝑤)𝑁𝑧)‘)))
168129feqmptd 6735 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (𝑧(2nd𝑌)𝑤) = ( ∈ (𝑧(Hom ‘𝐶)𝑤) ↦ ((𝑧(2nd𝑌)𝑤)‘)))
169164, 167, 1683eqtr4d 2868 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((1st𝑌)‘𝑤)𝑁𝑧) = (𝑧(2nd𝑌)𝑤))
170 f1oeq1 6606 . . . . . . 7 ((((1st𝑌)‘𝑤)𝑁𝑧) = (𝑧(2nd𝑌)𝑤) → ((((1st𝑌)‘𝑤)𝑁𝑧):(𝑧(Hom ‘𝐶)𝑤)–1-1-onto→(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)) ↔ (𝑧(2nd𝑌)𝑤):(𝑧(Hom ‘𝐶)𝑤)–1-1-onto→(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤))))
171169, 170syl 17 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ((((1st𝑌)‘𝑤)𝑁𝑧):(𝑧(Hom ‘𝐶)𝑤)–1-1-onto→(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)) ↔ (𝑧(2nd𝑌)𝑤):(𝑧(Hom ‘𝐶)𝑤)–1-1-onto→(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤))))
172109, 171mpbid 234 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (𝑧(2nd𝑌)𝑤):(𝑧(Hom ‘𝐶)𝑤)–1-1-onto→(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)))
173172ralrimivva 3193 . . . 4 (𝜑 → ∀𝑧𝐵𝑤𝐵 (𝑧(2nd𝑌)𝑤):(𝑧(Hom ‘𝐶)𝑤)–1-1-onto→(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤)))
17431, 75, 98isffth2 17188 . . . 4 ((1st𝑌)((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄))(2nd𝑌) ↔ ((1st𝑌)(𝐶 Func 𝑄)(2nd𝑌) ∧ ∀𝑧𝐵𝑤𝐵 (𝑧(2nd𝑌)𝑤):(𝑧(Hom ‘𝐶)𝑤)–1-1-onto→(((1st𝑌)‘𝑧)(𝑂 Nat 𝑆)((1st𝑌)‘𝑤))))
17516, 173, 174sylanbrc 585 . . 3 (𝜑 → (1st𝑌)((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄))(2nd𝑌))
176 df-br 5069 . . 3 ((1st𝑌)((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄))(2nd𝑌) ↔ ⟨(1st𝑌), (2nd𝑌)⟩ ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄)))
177175, 176sylib 220 . 2 (𝜑 → ⟨(1st𝑌), (2nd𝑌)⟩ ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄)))
17814, 177eqeltrd 2915 1 (𝜑𝑌 ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  Vcvv 3496  cun 3936  cin 3937  wss 3938  cop 4575   class class class wbr 5068  cmpt 5148   × cxp 5555  ran crn 5558  Rel wrel 5562   Fn wfn 6352  wf 6353  1-1-ontowf1o 6356  cfv 6357  (class class class)co 7158  cmpo 7160  1st c1st 7689  2nd c2nd 7690  tpos ctpos 7893  Basecbs 16485  Hom chom 16578  compcco 16579  Catccat 16937  Idccid 16938  Homf chomf 16939  oppCatcoppc 16983  Invcinv 17017  Isociso 17018   Func cfunc 17126  func ccofu 17128   Full cful 17174   Faith cfth 17175   Nat cnat 17213   FuncCat cfuc 17214  SetCatcsetc 17337   ×c cxpc 17420   1stF c1stf 17421   2ndF c2ndf 17422   ⟨,⟩F cprf 17423   evalF cevlf 17461  HomFchof 17500  Yoncyon 17501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-tpos 7894  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-hom 16591  df-cco 16592  df-cat 16941  df-cid 16942  df-homf 16943  df-comf 16944  df-oppc 16984  df-sect 17019  df-inv 17020  df-iso 17021  df-ssc 17082  df-resc 17083  df-subc 17084  df-func 17130  df-cofu 17132  df-full 17176  df-fth 17177  df-nat 17215  df-fuc 17216  df-setc 17338  df-xpc 17424  df-1stf 17425  df-2ndf 17426  df-prf 17427  df-evlf 17465  df-curf 17466  df-hof 17502  df-yon 17503
This theorem is referenced by:  yonffth  17536
  Copyright terms: Public domain W3C validator