MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxnm Structured version   Visualization version   GIF version

Theorem rrxnm 25318
Description: The norm of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
rrxval.r 𝐻 = (ℝ^‘𝐼)
rrxbase.b 𝐵 = (Base‘𝐻)
Assertion
Ref Expression
rrxnm (𝐼𝑉 → (𝑓𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2))))) = (norm‘𝐻))
Distinct variable groups:   𝑥,𝑓,𝐵   𝑓,𝐼,𝑥   𝑓,𝑉,𝑥
Allowed substitution hints:   𝐻(𝑥,𝑓)

Proof of Theorem rrxnm
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resrng 21558 . . . . 5 fld ∈ *-Ring
2 srngring 20761 . . . . 5 (ℝfld ∈ *-Ring → ℝfld ∈ Ring)
31, 2ax-mp 5 . . . 4 fld ∈ Ring
4 eqid 2731 . . . . 5 (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼)
54frlmlmod 21686 . . . 4 ((ℝfld ∈ Ring ∧ 𝐼𝑉) → (ℝfld freeLMod 𝐼) ∈ LMod)
63, 5mpan 690 . . 3 (𝐼𝑉 → (ℝfld freeLMod 𝐼) ∈ LMod)
7 lmodgrp 20800 . . 3 ((ℝfld freeLMod 𝐼) ∈ LMod → (ℝfld freeLMod 𝐼) ∈ Grp)
8 eqid 2731 . . . 4 (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘(ℝfld freeLMod 𝐼))
9 eqid 2731 . . . 4 (norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))
10 eqid 2731 . . . 4 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼))
11 eqid 2731 . . . 4 (·𝑖‘(ℝfld freeLMod 𝐼)) = (·𝑖‘(ℝfld freeLMod 𝐼))
128, 9, 10, 11tchnmfval 25155 . . 3 ((ℝfld freeLMod 𝐼) ∈ Grp → (norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓))))
136, 7, 123syl 18 . 2 (𝐼𝑉 → (norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓))))
14 rrxval.r . . . 4 𝐻 = (ℝ^‘𝐼)
1514rrxval 25314 . . 3 (𝐼𝑉𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
1615fveq2d 6826 . 2 (𝐼𝑉 → (norm‘𝐻) = (norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
1715fveq2d 6826 . . . 4 (𝐼𝑉 → (Base‘𝐻) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
18 rrxbase.b . . . 4 𝐵 = (Base‘𝐻)
198, 10tcphbas 25146 . . . 4 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))
2017, 18, 193eqtr4g 2791 . . 3 (𝐼𝑉𝐵 = (Base‘(ℝfld freeLMod 𝐼)))
2114, 18rrxbase 25315 . . . . . . . 8 (𝐼𝑉𝐵 = {𝑓 ∈ (ℝ ↑m 𝐼) ∣ 𝑓 finSupp 0})
22 ssrab2 4027 . . . . . . . 8 {𝑓 ∈ (ℝ ↑m 𝐼) ∣ 𝑓 finSupp 0} ⊆ (ℝ ↑m 𝐼)
2321, 22eqsstrdi 3974 . . . . . . 7 (𝐼𝑉𝐵 ⊆ (ℝ ↑m 𝐼))
2423sselda 3929 . . . . . 6 ((𝐼𝑉𝑓𝐵) → 𝑓 ∈ (ℝ ↑m 𝐼))
2515fveq2d 6826 . . . . . . . . 9 (𝐼𝑉 → (·𝑖𝐻) = (·𝑖‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
2614, 18rrxip 25317 . . . . . . . . 9 (𝐼𝑉 → ( ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥))))) = (·𝑖𝐻))
278, 11tcphip 25152 . . . . . . . . . 10 (·𝑖‘(ℝfld freeLMod 𝐼)) = (·𝑖‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))
2827a1i 11 . . . . . . . . 9 (𝐼𝑉 → (·𝑖‘(ℝfld freeLMod 𝐼)) = (·𝑖‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
2925, 26, 283eqtr4rd 2777 . . . . . . . 8 (𝐼𝑉 → (·𝑖‘(ℝfld freeLMod 𝐼)) = ( ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥))))))
3029adantr 480 . . . . . . 7 ((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) → (·𝑖‘(ℝfld freeLMod 𝐼)) = ( ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥))))))
31 simprl 770 . . . . . . . . . . . . 13 (((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) → = 𝑓)
3231fveq1d 6824 . . . . . . . . . . . 12 (((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) → (𝑥) = (𝑓𝑥))
33 simprr 772 . . . . . . . . . . . . 13 (((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) → 𝑔 = 𝑓)
3433fveq1d 6824 . . . . . . . . . . . 12 (((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) → (𝑔𝑥) = (𝑓𝑥))
3532, 34oveq12d 7364 . . . . . . . . . . 11 (((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) → ((𝑥) · (𝑔𝑥)) = ((𝑓𝑥) · (𝑓𝑥)))
3635adantr 480 . . . . . . . . . 10 ((((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) ∧ 𝑥𝐼) → ((𝑥) · (𝑔𝑥)) = ((𝑓𝑥) · (𝑓𝑥)))
37 elmapi 8773 . . . . . . . . . . . . . . 15 (𝑓 ∈ (ℝ ↑m 𝐼) → 𝑓:𝐼⟶ℝ)
3837adantl 481 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) → 𝑓:𝐼⟶ℝ)
3938ffvelcdmda 7017 . . . . . . . . . . . . 13 (((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℝ)
4039recnd 11140 . . . . . . . . . . . 12 (((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℂ)
4140adantlr 715 . . . . . . . . . . 11 ((((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℂ)
4241sqvald 14050 . . . . . . . . . 10 ((((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) ∧ 𝑥𝐼) → ((𝑓𝑥)↑2) = ((𝑓𝑥) · (𝑓𝑥)))
4336, 42eqtr4d 2769 . . . . . . . . 9 ((((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) ∧ 𝑥𝐼) → ((𝑥) · (𝑔𝑥)) = ((𝑓𝑥)↑2))
4443mpteq2dva 5182 . . . . . . . 8 (((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) → (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)↑2)))
4544oveq2d 7362 . . . . . . 7 (((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) → (ℝfld Σg (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥)))) = (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2))))
46 simpr 484 . . . . . . 7 ((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) → 𝑓 ∈ (ℝ ↑m 𝐼))
47 ovexd 7381 . . . . . . 7 ((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) → (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2))) ∈ V)
4830, 45, 46, 46, 47ovmpod 7498 . . . . . 6 ((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) → (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2))))
4924, 48syldan 591 . . . . 5 ((𝐼𝑉𝑓𝐵) → (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2))))
5049eqcomd 2737 . . . 4 ((𝐼𝑉𝑓𝐵) → (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2))) = (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓))
5150fveq2d 6826 . . 3 ((𝐼𝑉𝑓𝐵) → (√‘(ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2)))) = (√‘(𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓)))
5220, 51mpteq12dva 5175 . 2 (𝐼𝑉 → (𝑓𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2))))) = (𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓))))
5313, 16, 523eqtr4rd 2777 1 (𝐼𝑉 → (𝑓𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2))))) = (norm‘𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436   class class class wbr 5089  cmpt 5170  wf 6477  cfv 6481  (class class class)co 7346  cmpo 7348  m cmap 8750   finSupp cfsupp 9245  cc 11004  cr 11005  0cc0 11006   · cmul 11011  2c2 12180  cexp 13968  csqrt 15140  Basecbs 17120  ·𝑖cip 17166   Σg cgsu 17344  Grpcgrp 18846  Ringcrg 20151  *-Ringcsr 20753  LModclmod 20793  fldcrefld 21541   freeLMod cfrlm 21683  normcnm 24491  toℂPreHilctcph 25094  ℝ^crrx 25310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-rp 12891  df-fz 13408  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-prds 17351  df-pws 17353  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-ghm 19125  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-dvr 20319  df-rhm 20390  df-subrng 20461  df-subrg 20485  df-drng 20646  df-field 20647  df-staf 20754  df-srng 20755  df-lmod 20795  df-lss 20865  df-sra 21107  df-rgmod 21108  df-cnfld 21292  df-refld 21542  df-dsmm 21669  df-frlm 21684  df-nm 24497  df-tng 24499  df-tcph 25096  df-rrx 25312
This theorem is referenced by:  rrxds  25320
  Copyright terms: Public domain W3C validator