MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxnm Structured version   Visualization version   GIF version

Theorem rrxnm 25289
Description: The norm of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
rrxval.r 𝐻 = (ℝ^‘𝐼)
rrxbase.b 𝐵 = (Base‘𝐻)
Assertion
Ref Expression
rrxnm (𝐼𝑉 → (𝑓𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2))))) = (norm‘𝐻))
Distinct variable groups:   𝑥,𝑓,𝐵   𝑓,𝐼,𝑥   𝑓,𝑉,𝑥
Allowed substitution hints:   𝐻(𝑥,𝑓)

Proof of Theorem rrxnm
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resrng 21528 . . . . 5 fld ∈ *-Ring
2 srngring 20731 . . . . 5 (ℝfld ∈ *-Ring → ℝfld ∈ Ring)
31, 2ax-mp 5 . . . 4 fld ∈ Ring
4 eqid 2729 . . . . 5 (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼)
54frlmlmod 21656 . . . 4 ((ℝfld ∈ Ring ∧ 𝐼𝑉) → (ℝfld freeLMod 𝐼) ∈ LMod)
63, 5mpan 690 . . 3 (𝐼𝑉 → (ℝfld freeLMod 𝐼) ∈ LMod)
7 lmodgrp 20770 . . 3 ((ℝfld freeLMod 𝐼) ∈ LMod → (ℝfld freeLMod 𝐼) ∈ Grp)
8 eqid 2729 . . . 4 (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘(ℝfld freeLMod 𝐼))
9 eqid 2729 . . . 4 (norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))
10 eqid 2729 . . . 4 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼))
11 eqid 2729 . . . 4 (·𝑖‘(ℝfld freeLMod 𝐼)) = (·𝑖‘(ℝfld freeLMod 𝐼))
128, 9, 10, 11tchnmfval 25126 . . 3 ((ℝfld freeLMod 𝐼) ∈ Grp → (norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓))))
136, 7, 123syl 18 . 2 (𝐼𝑉 → (norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓))))
14 rrxval.r . . . 4 𝐻 = (ℝ^‘𝐼)
1514rrxval 25285 . . 3 (𝐼𝑉𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
1615fveq2d 6826 . 2 (𝐼𝑉 → (norm‘𝐻) = (norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
1715fveq2d 6826 . . . 4 (𝐼𝑉 → (Base‘𝐻) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
18 rrxbase.b . . . 4 𝐵 = (Base‘𝐻)
198, 10tcphbas 25117 . . . 4 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))
2017, 18, 193eqtr4g 2789 . . 3 (𝐼𝑉𝐵 = (Base‘(ℝfld freeLMod 𝐼)))
2114, 18rrxbase 25286 . . . . . . . 8 (𝐼𝑉𝐵 = {𝑓 ∈ (ℝ ↑m 𝐼) ∣ 𝑓 finSupp 0})
22 ssrab2 4031 . . . . . . . 8 {𝑓 ∈ (ℝ ↑m 𝐼) ∣ 𝑓 finSupp 0} ⊆ (ℝ ↑m 𝐼)
2321, 22eqsstrdi 3980 . . . . . . 7 (𝐼𝑉𝐵 ⊆ (ℝ ↑m 𝐼))
2423sselda 3935 . . . . . 6 ((𝐼𝑉𝑓𝐵) → 𝑓 ∈ (ℝ ↑m 𝐼))
2515fveq2d 6826 . . . . . . . . 9 (𝐼𝑉 → (·𝑖𝐻) = (·𝑖‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
2614, 18rrxip 25288 . . . . . . . . 9 (𝐼𝑉 → ( ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥))))) = (·𝑖𝐻))
278, 11tcphip 25123 . . . . . . . . . 10 (·𝑖‘(ℝfld freeLMod 𝐼)) = (·𝑖‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))
2827a1i 11 . . . . . . . . 9 (𝐼𝑉 → (·𝑖‘(ℝfld freeLMod 𝐼)) = (·𝑖‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
2925, 26, 283eqtr4rd 2775 . . . . . . . 8 (𝐼𝑉 → (·𝑖‘(ℝfld freeLMod 𝐼)) = ( ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥))))))
3029adantr 480 . . . . . . 7 ((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) → (·𝑖‘(ℝfld freeLMod 𝐼)) = ( ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥))))))
31 simprl 770 . . . . . . . . . . . . 13 (((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) → = 𝑓)
3231fveq1d 6824 . . . . . . . . . . . 12 (((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) → (𝑥) = (𝑓𝑥))
33 simprr 772 . . . . . . . . . . . . 13 (((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) → 𝑔 = 𝑓)
3433fveq1d 6824 . . . . . . . . . . . 12 (((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) → (𝑔𝑥) = (𝑓𝑥))
3532, 34oveq12d 7367 . . . . . . . . . . 11 (((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) → ((𝑥) · (𝑔𝑥)) = ((𝑓𝑥) · (𝑓𝑥)))
3635adantr 480 . . . . . . . . . 10 ((((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) ∧ 𝑥𝐼) → ((𝑥) · (𝑔𝑥)) = ((𝑓𝑥) · (𝑓𝑥)))
37 elmapi 8776 . . . . . . . . . . . . . . 15 (𝑓 ∈ (ℝ ↑m 𝐼) → 𝑓:𝐼⟶ℝ)
3837adantl 481 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) → 𝑓:𝐼⟶ℝ)
3938ffvelcdmda 7018 . . . . . . . . . . . . 13 (((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℝ)
4039recnd 11143 . . . . . . . . . . . 12 (((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℂ)
4140adantlr 715 . . . . . . . . . . 11 ((((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℂ)
4241sqvald 14050 . . . . . . . . . 10 ((((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) ∧ 𝑥𝐼) → ((𝑓𝑥)↑2) = ((𝑓𝑥) · (𝑓𝑥)))
4336, 42eqtr4d 2767 . . . . . . . . 9 ((((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) ∧ 𝑥𝐼) → ((𝑥) · (𝑔𝑥)) = ((𝑓𝑥)↑2))
4443mpteq2dva 5185 . . . . . . . 8 (((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) → (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)↑2)))
4544oveq2d 7365 . . . . . . 7 (((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) → (ℝfld Σg (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥)))) = (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2))))
46 simpr 484 . . . . . . 7 ((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) → 𝑓 ∈ (ℝ ↑m 𝐼))
47 ovexd 7384 . . . . . . 7 ((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) → (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2))) ∈ V)
4830, 45, 46, 46, 47ovmpod 7501 . . . . . 6 ((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) → (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2))))
4924, 48syldan 591 . . . . 5 ((𝐼𝑉𝑓𝐵) → (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2))))
5049eqcomd 2735 . . . 4 ((𝐼𝑉𝑓𝐵) → (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2))) = (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓))
5150fveq2d 6826 . . 3 ((𝐼𝑉𝑓𝐵) → (√‘(ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2)))) = (√‘(𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓)))
5220, 51mpteq12dva 5178 . 2 (𝐼𝑉 → (𝑓𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2))))) = (𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓))))
5313, 16, 523eqtr4rd 2775 1 (𝐼𝑉 → (𝑓𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2))))) = (norm‘𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3394  Vcvv 3436   class class class wbr 5092  cmpt 5173  wf 6478  cfv 6482  (class class class)co 7349  cmpo 7351  m cmap 8753   finSupp cfsupp 9251  cc 11007  cr 11008  0cc0 11009   · cmul 11014  2c2 12183  cexp 13968  csqrt 15140  Basecbs 17120  ·𝑖cip 17166   Σg cgsu 17344  Grpcgrp 18812  Ringcrg 20118  *-Ringcsr 20723  LModclmod 20763  fldcrefld 21511   freeLMod cfrlm 21653  normcnm 24462  toℂPreHilctcph 25065  ℝ^crrx 25281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-rp 12894  df-fz 13411  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-prds 17351  df-pws 17353  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-grp 18815  df-minusg 18816  df-sbg 18817  df-subg 19002  df-ghm 19092  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-rhm 20357  df-subrng 20431  df-subrg 20455  df-drng 20616  df-field 20617  df-staf 20724  df-srng 20725  df-lmod 20765  df-lss 20835  df-sra 21077  df-rgmod 21078  df-cnfld 21262  df-refld 21512  df-dsmm 21639  df-frlm 21654  df-nm 24468  df-tng 24470  df-tcph 25067  df-rrx 25283
This theorem is referenced by:  rrxds  25291
  Copyright terms: Public domain W3C validator