MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxnm Structured version   Visualization version   GIF version

Theorem rrxnm 23681
Description: The norm of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
rrxval.r 𝐻 = (ℝ^‘𝐼)
rrxbase.b 𝐵 = (Base‘𝐻)
Assertion
Ref Expression
rrxnm (𝐼𝑉 → (𝑓𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2))))) = (norm‘𝐻))
Distinct variable groups:   𝑥,𝑓,𝐵   𝑓,𝐼,𝑥   𝑓,𝑉,𝑥
Allowed substitution hints:   𝐻(𝑥,𝑓)

Proof of Theorem rrxnm
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recrng 20451 . . . . 5 fld ∈ *-Ring
2 srngring 19317 . . . . 5 (ℝfld ∈ *-Ring → ℝfld ∈ Ring)
31, 2ax-mp 5 . . . 4 fld ∈ Ring
4 eqid 2797 . . . . 5 (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼)
54frlmlmod 20579 . . . 4 ((ℝfld ∈ Ring ∧ 𝐼𝑉) → (ℝfld freeLMod 𝐼) ∈ LMod)
63, 5mpan 686 . . 3 (𝐼𝑉 → (ℝfld freeLMod 𝐼) ∈ LMod)
7 lmodgrp 19335 . . 3 ((ℝfld freeLMod 𝐼) ∈ LMod → (ℝfld freeLMod 𝐼) ∈ Grp)
8 eqid 2797 . . . 4 (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘(ℝfld freeLMod 𝐼))
9 eqid 2797 . . . 4 (norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))
10 eqid 2797 . . . 4 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼))
11 eqid 2797 . . . 4 (·𝑖‘(ℝfld freeLMod 𝐼)) = (·𝑖‘(ℝfld freeLMod 𝐼))
128, 9, 10, 11tchnmfval 23518 . . 3 ((ℝfld freeLMod 𝐼) ∈ Grp → (norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓))))
136, 7, 123syl 18 . 2 (𝐼𝑉 → (norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓))))
14 rrxval.r . . . 4 𝐻 = (ℝ^‘𝐼)
1514rrxval 23677 . . 3 (𝐼𝑉𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
1615fveq2d 6549 . 2 (𝐼𝑉 → (norm‘𝐻) = (norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
1715fveq2d 6549 . . . 4 (𝐼𝑉 → (Base‘𝐻) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
18 rrxbase.b . . . 4 𝐵 = (Base‘𝐻)
198, 10tcphbas 23509 . . . 4 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))
2017, 18, 193eqtr4g 2858 . . 3 (𝐼𝑉𝐵 = (Base‘(ℝfld freeLMod 𝐼)))
2114, 18rrxbase 23678 . . . . . . . 8 (𝐼𝑉𝐵 = {𝑓 ∈ (ℝ ↑𝑚 𝐼) ∣ 𝑓 finSupp 0})
22 ssrab2 3983 . . . . . . . 8 {𝑓 ∈ (ℝ ↑𝑚 𝐼) ∣ 𝑓 finSupp 0} ⊆ (ℝ ↑𝑚 𝐼)
2321, 22syl6eqss 3948 . . . . . . 7 (𝐼𝑉𝐵 ⊆ (ℝ ↑𝑚 𝐼))
2423sselda 3895 . . . . . 6 ((𝐼𝑉𝑓𝐵) → 𝑓 ∈ (ℝ ↑𝑚 𝐼))
2515fveq2d 6549 . . . . . . . . 9 (𝐼𝑉 → (·𝑖𝐻) = (·𝑖‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
2614, 18rrxip 23680 . . . . . . . . 9 (𝐼𝑉 → ( ∈ (ℝ ↑𝑚 𝐼), 𝑔 ∈ (ℝ ↑𝑚 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥))))) = (·𝑖𝐻))
278, 11tcphip 23515 . . . . . . . . . 10 (·𝑖‘(ℝfld freeLMod 𝐼)) = (·𝑖‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))
2827a1i 11 . . . . . . . . 9 (𝐼𝑉 → (·𝑖‘(ℝfld freeLMod 𝐼)) = (·𝑖‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
2925, 26, 283eqtr4rd 2844 . . . . . . . 8 (𝐼𝑉 → (·𝑖‘(ℝfld freeLMod 𝐼)) = ( ∈ (ℝ ↑𝑚 𝐼), 𝑔 ∈ (ℝ ↑𝑚 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥))))))
3029adantr 481 . . . . . . 7 ((𝐼𝑉𝑓 ∈ (ℝ ↑𝑚 𝐼)) → (·𝑖‘(ℝfld freeLMod 𝐼)) = ( ∈ (ℝ ↑𝑚 𝐼), 𝑔 ∈ (ℝ ↑𝑚 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥))))))
31 simprl 767 . . . . . . . . . . . . 13 (((𝐼𝑉𝑓 ∈ (ℝ ↑𝑚 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) → = 𝑓)
3231fveq1d 6547 . . . . . . . . . . . 12 (((𝐼𝑉𝑓 ∈ (ℝ ↑𝑚 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) → (𝑥) = (𝑓𝑥))
33 simprr 769 . . . . . . . . . . . . 13 (((𝐼𝑉𝑓 ∈ (ℝ ↑𝑚 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) → 𝑔 = 𝑓)
3433fveq1d 6547 . . . . . . . . . . . 12 (((𝐼𝑉𝑓 ∈ (ℝ ↑𝑚 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) → (𝑔𝑥) = (𝑓𝑥))
3532, 34oveq12d 7041 . . . . . . . . . . 11 (((𝐼𝑉𝑓 ∈ (ℝ ↑𝑚 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) → ((𝑥) · (𝑔𝑥)) = ((𝑓𝑥) · (𝑓𝑥)))
3635adantr 481 . . . . . . . . . 10 ((((𝐼𝑉𝑓 ∈ (ℝ ↑𝑚 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) ∧ 𝑥𝐼) → ((𝑥) · (𝑔𝑥)) = ((𝑓𝑥) · (𝑓𝑥)))
37 elmapi 8285 . . . . . . . . . . . . . . 15 (𝑓 ∈ (ℝ ↑𝑚 𝐼) → 𝑓:𝐼⟶ℝ)
3837adantl 482 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑓 ∈ (ℝ ↑𝑚 𝐼)) → 𝑓:𝐼⟶ℝ)
3938ffvelrnda 6723 . . . . . . . . . . . . 13 (((𝐼𝑉𝑓 ∈ (ℝ ↑𝑚 𝐼)) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℝ)
4039recnd 10522 . . . . . . . . . . . 12 (((𝐼𝑉𝑓 ∈ (ℝ ↑𝑚 𝐼)) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℂ)
4140adantlr 711 . . . . . . . . . . 11 ((((𝐼𝑉𝑓 ∈ (ℝ ↑𝑚 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℂ)
4241sqvald 13361 . . . . . . . . . 10 ((((𝐼𝑉𝑓 ∈ (ℝ ↑𝑚 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) ∧ 𝑥𝐼) → ((𝑓𝑥)↑2) = ((𝑓𝑥) · (𝑓𝑥)))
4336, 42eqtr4d 2836 . . . . . . . . 9 ((((𝐼𝑉𝑓 ∈ (ℝ ↑𝑚 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) ∧ 𝑥𝐼) → ((𝑥) · (𝑔𝑥)) = ((𝑓𝑥)↑2))
4443mpteq2dva 5062 . . . . . . . 8 (((𝐼𝑉𝑓 ∈ (ℝ ↑𝑚 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) → (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)↑2)))
4544oveq2d 7039 . . . . . . 7 (((𝐼𝑉𝑓 ∈ (ℝ ↑𝑚 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) → (ℝfld Σg (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥)))) = (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2))))
46 simpr 485 . . . . . . 7 ((𝐼𝑉𝑓 ∈ (ℝ ↑𝑚 𝐼)) → 𝑓 ∈ (ℝ ↑𝑚 𝐼))
47 ovexd 7057 . . . . . . 7 ((𝐼𝑉𝑓 ∈ (ℝ ↑𝑚 𝐼)) → (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2))) ∈ V)
4830, 45, 46, 46, 47ovmpod 7165 . . . . . 6 ((𝐼𝑉𝑓 ∈ (ℝ ↑𝑚 𝐼)) → (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2))))
4924, 48syldan 591 . . . . 5 ((𝐼𝑉𝑓𝐵) → (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2))))
5049eqcomd 2803 . . . 4 ((𝐼𝑉𝑓𝐵) → (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2))) = (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓))
5150fveq2d 6549 . . 3 ((𝐼𝑉𝑓𝐵) → (√‘(ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2)))) = (√‘(𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓)))
5220, 51mpteq12dva 5051 . 2 (𝐼𝑉 → (𝑓𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2))))) = (𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓))))
5313, 16, 523eqtr4rd 2844 1 (𝐼𝑉 → (𝑓𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2))))) = (norm‘𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1525  wcel 2083  {crab 3111  Vcvv 3440   class class class wbr 4968  cmpt 5047  wf 6228  cfv 6232  (class class class)co 7023  cmpo 7025  𝑚 cmap 8263   finSupp cfsupp 8686  cc 10388  cr 10389  0cc0 10390   · cmul 10395  2c2 11546  cexp 13283  csqrt 14430  Basecbs 16316  ·𝑖cip 16403   Σg cgsu 16547  Grpcgrp 17865  Ringcrg 18991  *-Ringcsr 19309  LModclmod 19328  fldcrefld 20434   freeLMod cfrlm 20576  normcnm 22873  toℂPreHilctcph 23458  ℝ^crrx 23673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467  ax-pre-sup 10468  ax-addf 10469  ax-mulf 10470
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-1st 7552  df-2nd 7553  df-supp 7689  df-tpos 7750  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-oadd 7964  df-er 8146  df-map 8265  df-ixp 8318  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-fsupp 8687  df-sup 8759  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-div 11152  df-nn 11493  df-2 11554  df-3 11555  df-4 11556  df-5 11557  df-6 11558  df-7 11559  df-8 11560  df-9 11561  df-n0 11752  df-z 11836  df-dec 11953  df-uz 12098  df-rp 12244  df-fz 12747  df-seq 13224  df-exp 13284  df-cj 14296  df-re 14297  df-im 14298  df-sqrt 14432  df-abs 14433  df-struct 16318  df-ndx 16319  df-slot 16320  df-base 16322  df-sets 16323  df-ress 16324  df-plusg 16411  df-mulr 16412  df-starv 16413  df-sca 16414  df-vsca 16415  df-ip 16416  df-tset 16417  df-ple 16418  df-ds 16420  df-unif 16421  df-hom 16422  df-cco 16423  df-0g 16548  df-prds 16554  df-pws 16556  df-mgm 17685  df-sgrp 17727  df-mnd 17738  df-mhm 17778  df-grp 17868  df-minusg 17869  df-sbg 17870  df-subg 18034  df-ghm 18101  df-cmn 18639  df-mgp 18934  df-ur 18946  df-ring 18993  df-cring 18994  df-oppr 19067  df-dvdsr 19085  df-unit 19086  df-invr 19116  df-dvr 19127  df-rnghom 19161  df-drng 19198  df-field 19199  df-subrg 19227  df-staf 19310  df-srng 19311  df-lmod 19330  df-lss 19398  df-sra 19638  df-rgmod 19639  df-cnfld 20232  df-refld 20435  df-dsmm 20562  df-frlm 20577  df-nm 22879  df-tng 22881  df-tcph 23460  df-rrx 23675
This theorem is referenced by:  rrxds  23683
  Copyright terms: Public domain W3C validator