MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxnm Structured version   Visualization version   GIF version

Theorem rrxnm 24755
Description: The norm of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
rrxval.r 𝐻 = (ℝ^‘𝐼)
rrxbase.b 𝐵 = (Base‘𝐻)
Assertion
Ref Expression
rrxnm (𝐼𝑉 → (𝑓𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2))))) = (norm‘𝐻))
Distinct variable groups:   𝑥,𝑓,𝐵   𝑓,𝐼,𝑥   𝑓,𝑉,𝑥
Allowed substitution hints:   𝐻(𝑥,𝑓)

Proof of Theorem rrxnm
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resrng 21025 . . . . 5 fld ∈ *-Ring
2 srngring 20311 . . . . 5 (ℝfld ∈ *-Ring → ℝfld ∈ Ring)
31, 2ax-mp 5 . . . 4 fld ∈ Ring
4 eqid 2736 . . . . 5 (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼)
54frlmlmod 21155 . . . 4 ((ℝfld ∈ Ring ∧ 𝐼𝑉) → (ℝfld freeLMod 𝐼) ∈ LMod)
63, 5mpan 688 . . 3 (𝐼𝑉 → (ℝfld freeLMod 𝐼) ∈ LMod)
7 lmodgrp 20329 . . 3 ((ℝfld freeLMod 𝐼) ∈ LMod → (ℝfld freeLMod 𝐼) ∈ Grp)
8 eqid 2736 . . . 4 (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘(ℝfld freeLMod 𝐼))
9 eqid 2736 . . . 4 (norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))
10 eqid 2736 . . . 4 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼))
11 eqid 2736 . . . 4 (·𝑖‘(ℝfld freeLMod 𝐼)) = (·𝑖‘(ℝfld freeLMod 𝐼))
128, 9, 10, 11tchnmfval 24592 . . 3 ((ℝfld freeLMod 𝐼) ∈ Grp → (norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓))))
136, 7, 123syl 18 . 2 (𝐼𝑉 → (norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓))))
14 rrxval.r . . . 4 𝐻 = (ℝ^‘𝐼)
1514rrxval 24751 . . 3 (𝐼𝑉𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
1615fveq2d 6846 . 2 (𝐼𝑉 → (norm‘𝐻) = (norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
1715fveq2d 6846 . . . 4 (𝐼𝑉 → (Base‘𝐻) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
18 rrxbase.b . . . 4 𝐵 = (Base‘𝐻)
198, 10tcphbas 24583 . . . 4 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))
2017, 18, 193eqtr4g 2801 . . 3 (𝐼𝑉𝐵 = (Base‘(ℝfld freeLMod 𝐼)))
2114, 18rrxbase 24752 . . . . . . . 8 (𝐼𝑉𝐵 = {𝑓 ∈ (ℝ ↑m 𝐼) ∣ 𝑓 finSupp 0})
22 ssrab2 4037 . . . . . . . 8 {𝑓 ∈ (ℝ ↑m 𝐼) ∣ 𝑓 finSupp 0} ⊆ (ℝ ↑m 𝐼)
2321, 22eqsstrdi 3998 . . . . . . 7 (𝐼𝑉𝐵 ⊆ (ℝ ↑m 𝐼))
2423sselda 3944 . . . . . 6 ((𝐼𝑉𝑓𝐵) → 𝑓 ∈ (ℝ ↑m 𝐼))
2515fveq2d 6846 . . . . . . . . 9 (𝐼𝑉 → (·𝑖𝐻) = (·𝑖‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
2614, 18rrxip 24754 . . . . . . . . 9 (𝐼𝑉 → ( ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥))))) = (·𝑖𝐻))
278, 11tcphip 24589 . . . . . . . . . 10 (·𝑖‘(ℝfld freeLMod 𝐼)) = (·𝑖‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))
2827a1i 11 . . . . . . . . 9 (𝐼𝑉 → (·𝑖‘(ℝfld freeLMod 𝐼)) = (·𝑖‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
2925, 26, 283eqtr4rd 2787 . . . . . . . 8 (𝐼𝑉 → (·𝑖‘(ℝfld freeLMod 𝐼)) = ( ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥))))))
3029adantr 481 . . . . . . 7 ((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) → (·𝑖‘(ℝfld freeLMod 𝐼)) = ( ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥))))))
31 simprl 769 . . . . . . . . . . . . 13 (((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) → = 𝑓)
3231fveq1d 6844 . . . . . . . . . . . 12 (((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) → (𝑥) = (𝑓𝑥))
33 simprr 771 . . . . . . . . . . . . 13 (((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) → 𝑔 = 𝑓)
3433fveq1d 6844 . . . . . . . . . . . 12 (((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) → (𝑔𝑥) = (𝑓𝑥))
3532, 34oveq12d 7375 . . . . . . . . . . 11 (((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) → ((𝑥) · (𝑔𝑥)) = ((𝑓𝑥) · (𝑓𝑥)))
3635adantr 481 . . . . . . . . . 10 ((((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) ∧ 𝑥𝐼) → ((𝑥) · (𝑔𝑥)) = ((𝑓𝑥) · (𝑓𝑥)))
37 elmapi 8787 . . . . . . . . . . . . . . 15 (𝑓 ∈ (ℝ ↑m 𝐼) → 𝑓:𝐼⟶ℝ)
3837adantl 482 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) → 𝑓:𝐼⟶ℝ)
3938ffvelcdmda 7035 . . . . . . . . . . . . 13 (((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℝ)
4039recnd 11183 . . . . . . . . . . . 12 (((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℂ)
4140adantlr 713 . . . . . . . . . . 11 ((((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℂ)
4241sqvald 14048 . . . . . . . . . 10 ((((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) ∧ 𝑥𝐼) → ((𝑓𝑥)↑2) = ((𝑓𝑥) · (𝑓𝑥)))
4336, 42eqtr4d 2779 . . . . . . . . 9 ((((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) ∧ 𝑥𝐼) → ((𝑥) · (𝑔𝑥)) = ((𝑓𝑥)↑2))
4443mpteq2dva 5205 . . . . . . . 8 (((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) → (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)↑2)))
4544oveq2d 7373 . . . . . . 7 (((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) ∧ ( = 𝑓𝑔 = 𝑓)) → (ℝfld Σg (𝑥𝐼 ↦ ((𝑥) · (𝑔𝑥)))) = (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2))))
46 simpr 485 . . . . . . 7 ((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) → 𝑓 ∈ (ℝ ↑m 𝐼))
47 ovexd 7392 . . . . . . 7 ((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) → (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2))) ∈ V)
4830, 45, 46, 46, 47ovmpod 7507 . . . . . 6 ((𝐼𝑉𝑓 ∈ (ℝ ↑m 𝐼)) → (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2))))
4924, 48syldan 591 . . . . 5 ((𝐼𝑉𝑓𝐵) → (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2))))
5049eqcomd 2742 . . . 4 ((𝐼𝑉𝑓𝐵) → (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2))) = (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓))
5150fveq2d 6846 . . 3 ((𝐼𝑉𝑓𝐵) → (√‘(ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2)))) = (√‘(𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓)))
5220, 51mpteq12dva 5194 . 2 (𝐼𝑉 → (𝑓𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2))))) = (𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓))))
5313, 16, 523eqtr4rd 2787 1 (𝐼𝑉 → (𝑓𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)↑2))))) = (norm‘𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  {crab 3407  Vcvv 3445   class class class wbr 5105  cmpt 5188  wf 6492  cfv 6496  (class class class)co 7357  cmpo 7359  m cmap 8765   finSupp cfsupp 9305  cc 11049  cr 11050  0cc0 11051   · cmul 11056  2c2 12208  cexp 13967  csqrt 15118  Basecbs 17083  ·𝑖cip 17138   Σg cgsu 17322  Grpcgrp 18748  Ringcrg 19964  *-Ringcsr 20303  LModclmod 20322  fldcrefld 21008   freeLMod cfrlm 21152  normcnm 23932  toℂPreHilctcph 24531  ℝ^crrx 24747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-rp 12916  df-fz 13425  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-0g 17323  df-prds 17329  df-pws 17331  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-ghm 19006  df-cmn 19564  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-rnghom 20146  df-drng 20187  df-field 20188  df-subrg 20220  df-staf 20304  df-srng 20305  df-lmod 20324  df-lss 20393  df-sra 20633  df-rgmod 20634  df-cnfld 20797  df-refld 21009  df-dsmm 21138  df-frlm 21153  df-nm 23938  df-tng 23940  df-tcph 24533  df-rrx 24749
This theorem is referenced by:  rrxds  24757
  Copyright terms: Public domain W3C validator