![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reps | Structured version Visualization version GIF version |
Description: Construct a function mapping a half-open range of nonnegative integers to a constant. (Contributed by AV, 4-Nov-2018.) |
Ref | Expression |
---|---|
reps | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3492 | . . 3 ⊢ (𝑆 ∈ 𝑉 → 𝑆 ∈ V) | |
2 | 1 | adantr 481 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → 𝑆 ∈ V) |
3 | simpr 485 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
4 | ovex 7438 | . . 3 ⊢ (0..^𝑁) ∈ V | |
5 | mptexg 7219 | . . 3 ⊢ ((0..^𝑁) ∈ V → (𝑥 ∈ (0..^𝑁) ↦ 𝑆) ∈ V) | |
6 | 4, 5 | mp1i 13 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ (0..^𝑁) ↦ 𝑆) ∈ V) |
7 | oveq2 7413 | . . . . 5 ⊢ (𝑛 = 𝑁 → (0..^𝑛) = (0..^𝑁)) | |
8 | 7 | adantl 482 | . . . 4 ⊢ ((𝑠 = 𝑆 ∧ 𝑛 = 𝑁) → (0..^𝑛) = (0..^𝑁)) |
9 | simpll 765 | . . . 4 ⊢ (((𝑠 = 𝑆 ∧ 𝑛 = 𝑁) ∧ 𝑥 ∈ (0..^𝑛)) → 𝑠 = 𝑆) | |
10 | 8, 9 | mpteq12dva 5236 | . . 3 ⊢ ((𝑠 = 𝑆 ∧ 𝑛 = 𝑁) → (𝑥 ∈ (0..^𝑛) ↦ 𝑠) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆)) |
11 | df-reps 14715 | . . 3 ⊢ repeatS = (𝑠 ∈ V, 𝑛 ∈ ℕ0 ↦ (𝑥 ∈ (0..^𝑛) ↦ 𝑠)) | |
12 | 10, 11 | ovmpoga 7558 | . 2 ⊢ ((𝑆 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ (𝑥 ∈ (0..^𝑁) ↦ 𝑆) ∈ V) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆)) |
13 | 2, 3, 6, 12 | syl3anc 1371 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ↦ cmpt 5230 (class class class)co 7405 0cc0 11106 ℕ0cn0 12468 ..^cfzo 13623 repeatS creps 14714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-reps 14715 |
This theorem is referenced by: repsconst 14718 repsf 14719 repswsymb 14720 repswswrd 14730 repswccat 14732 repswrevw 14733 repsco 14787 |
Copyright terms: Public domain | W3C validator |