![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reps | Structured version Visualization version GIF version |
Description: Construct a function mapping a half-open range of nonnegative integers to a constant. (Contributed by AV, 4-Nov-2018.) |
Ref | Expression |
---|---|
reps | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3509 | . . 3 ⊢ (𝑆 ∈ 𝑉 → 𝑆 ∈ V) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → 𝑆 ∈ V) |
3 | simpr 484 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
4 | ovex 7481 | . . 3 ⊢ (0..^𝑁) ∈ V | |
5 | mptexg 7258 | . . 3 ⊢ ((0..^𝑁) ∈ V → (𝑥 ∈ (0..^𝑁) ↦ 𝑆) ∈ V) | |
6 | 4, 5 | mp1i 13 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ (0..^𝑁) ↦ 𝑆) ∈ V) |
7 | oveq2 7456 | . . . . 5 ⊢ (𝑛 = 𝑁 → (0..^𝑛) = (0..^𝑁)) | |
8 | 7 | adantl 481 | . . . 4 ⊢ ((𝑠 = 𝑆 ∧ 𝑛 = 𝑁) → (0..^𝑛) = (0..^𝑁)) |
9 | simpll 766 | . . . 4 ⊢ (((𝑠 = 𝑆 ∧ 𝑛 = 𝑁) ∧ 𝑥 ∈ (0..^𝑛)) → 𝑠 = 𝑆) | |
10 | 8, 9 | mpteq12dva 5255 | . . 3 ⊢ ((𝑠 = 𝑆 ∧ 𝑛 = 𝑁) → (𝑥 ∈ (0..^𝑛) ↦ 𝑠) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆)) |
11 | df-reps 14817 | . . 3 ⊢ repeatS = (𝑠 ∈ V, 𝑛 ∈ ℕ0 ↦ (𝑥 ∈ (0..^𝑛) ↦ 𝑠)) | |
12 | 10, 11 | ovmpoga 7604 | . 2 ⊢ ((𝑆 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ (𝑥 ∈ (0..^𝑁) ↦ 𝑆) ∈ V) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆)) |
13 | 2, 3, 6, 12 | syl3anc 1371 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ↦ cmpt 5249 (class class class)co 7448 0cc0 11184 ℕ0cn0 12553 ..^cfzo 13711 repeatS creps 14816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-reps 14817 |
This theorem is referenced by: repsconst 14820 repsf 14821 repswsymb 14822 repswswrd 14832 repswccat 14834 repswrevw 14835 repsco 14889 |
Copyright terms: Public domain | W3C validator |