MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reps Structured version   Visualization version   GIF version

Theorem reps 14818
Description: Construct a function mapping a half-open range of nonnegative integers to a constant. (Contributed by AV, 4-Nov-2018.)
Assertion
Ref Expression
reps ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑆
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem reps
Dummy variables 𝑛 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3509 . . 3 (𝑆𝑉𝑆 ∈ V)
21adantr 480 . 2 ((𝑆𝑉𝑁 ∈ ℕ0) → 𝑆 ∈ V)
3 simpr 484 . 2 ((𝑆𝑉𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
4 ovex 7481 . . 3 (0..^𝑁) ∈ V
5 mptexg 7258 . . 3 ((0..^𝑁) ∈ V → (𝑥 ∈ (0..^𝑁) ↦ 𝑆) ∈ V)
64, 5mp1i 13 . 2 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑥 ∈ (0..^𝑁) ↦ 𝑆) ∈ V)
7 oveq2 7456 . . . . 5 (𝑛 = 𝑁 → (0..^𝑛) = (0..^𝑁))
87adantl 481 . . . 4 ((𝑠 = 𝑆𝑛 = 𝑁) → (0..^𝑛) = (0..^𝑁))
9 simpll 766 . . . 4 (((𝑠 = 𝑆𝑛 = 𝑁) ∧ 𝑥 ∈ (0..^𝑛)) → 𝑠 = 𝑆)
108, 9mpteq12dva 5255 . . 3 ((𝑠 = 𝑆𝑛 = 𝑁) → (𝑥 ∈ (0..^𝑛) ↦ 𝑠) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆))
11 df-reps 14817 . . 3 repeatS = (𝑠 ∈ V, 𝑛 ∈ ℕ0 ↦ (𝑥 ∈ (0..^𝑛) ↦ 𝑠))
1210, 11ovmpoga 7604 . 2 ((𝑆 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ (𝑥 ∈ (0..^𝑁) ↦ 𝑆) ∈ V) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆))
132, 3, 6, 12syl3anc 1371 1 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cmpt 5249  (class class class)co 7448  0cc0 11184  0cn0 12553  ..^cfzo 13711   repeatS creps 14816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-reps 14817
This theorem is referenced by:  repsconst  14820  repsf  14821  repswsymb  14822  repswswrd  14832  repswccat  14834  repswrevw  14835  repsco  14889
  Copyright terms: Public domain W3C validator