Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reps | Structured version Visualization version GIF version |
Description: Construct a function mapping a half-open range of nonnegative integers to a constant. (Contributed by AV, 4-Nov-2018.) |
Ref | Expression |
---|---|
reps | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3448 | . . 3 ⊢ (𝑆 ∈ 𝑉 → 𝑆 ∈ V) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → 𝑆 ∈ V) |
3 | simpr 484 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
4 | ovex 7301 | . . 3 ⊢ (0..^𝑁) ∈ V | |
5 | mptexg 7091 | . . 3 ⊢ ((0..^𝑁) ∈ V → (𝑥 ∈ (0..^𝑁) ↦ 𝑆) ∈ V) | |
6 | 4, 5 | mp1i 13 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ (0..^𝑁) ↦ 𝑆) ∈ V) |
7 | oveq2 7276 | . . . . 5 ⊢ (𝑛 = 𝑁 → (0..^𝑛) = (0..^𝑁)) | |
8 | 7 | adantl 481 | . . . 4 ⊢ ((𝑠 = 𝑆 ∧ 𝑛 = 𝑁) → (0..^𝑛) = (0..^𝑁)) |
9 | simpll 763 | . . . 4 ⊢ (((𝑠 = 𝑆 ∧ 𝑛 = 𝑁) ∧ 𝑥 ∈ (0..^𝑛)) → 𝑠 = 𝑆) | |
10 | 8, 9 | mpteq12dva 5167 | . . 3 ⊢ ((𝑠 = 𝑆 ∧ 𝑛 = 𝑁) → (𝑥 ∈ (0..^𝑛) ↦ 𝑠) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆)) |
11 | df-reps 14463 | . . 3 ⊢ repeatS = (𝑠 ∈ V, 𝑛 ∈ ℕ0 ↦ (𝑥 ∈ (0..^𝑛) ↦ 𝑠)) | |
12 | 10, 11 | ovmpoga 7418 | . 2 ⊢ ((𝑆 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ (𝑥 ∈ (0..^𝑁) ↦ 𝑆) ∈ V) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆)) |
13 | 2, 3, 6, 12 | syl3anc 1369 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 Vcvv 3430 ↦ cmpt 5161 (class class class)co 7268 0cc0 10855 ℕ0cn0 12216 ..^cfzo 13364 repeatS creps 14462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-reps 14463 |
This theorem is referenced by: repsconst 14466 repsf 14467 repswsymb 14468 repswswrd 14478 repswccat 14480 repswrevw 14481 repsco 14534 |
Copyright terms: Public domain | W3C validator |