MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reps Structured version   Visualization version   GIF version

Theorem reps 14805
Description: Construct a function mapping a half-open range of nonnegative integers to a constant. (Contributed by AV, 4-Nov-2018.)
Assertion
Ref Expression
reps ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑆
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem reps
Dummy variables 𝑛 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3499 . . 3 (𝑆𝑉𝑆 ∈ V)
21adantr 480 . 2 ((𝑆𝑉𝑁 ∈ ℕ0) → 𝑆 ∈ V)
3 simpr 484 . 2 ((𝑆𝑉𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
4 ovex 7464 . . 3 (0..^𝑁) ∈ V
5 mptexg 7241 . . 3 ((0..^𝑁) ∈ V → (𝑥 ∈ (0..^𝑁) ↦ 𝑆) ∈ V)
64, 5mp1i 13 . 2 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑥 ∈ (0..^𝑁) ↦ 𝑆) ∈ V)
7 oveq2 7439 . . . . 5 (𝑛 = 𝑁 → (0..^𝑛) = (0..^𝑁))
87adantl 481 . . . 4 ((𝑠 = 𝑆𝑛 = 𝑁) → (0..^𝑛) = (0..^𝑁))
9 simpll 767 . . . 4 (((𝑠 = 𝑆𝑛 = 𝑁) ∧ 𝑥 ∈ (0..^𝑛)) → 𝑠 = 𝑆)
108, 9mpteq12dva 5237 . . 3 ((𝑠 = 𝑆𝑛 = 𝑁) → (𝑥 ∈ (0..^𝑛) ↦ 𝑠) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆))
11 df-reps 14804 . . 3 repeatS = (𝑠 ∈ V, 𝑛 ∈ ℕ0 ↦ (𝑥 ∈ (0..^𝑛) ↦ 𝑠))
1210, 11ovmpoga 7587 . 2 ((𝑆 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ (𝑥 ∈ (0..^𝑁) ↦ 𝑆) ∈ V) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆))
132, 3, 6, 12syl3anc 1370 1 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  cmpt 5231  (class class class)co 7431  0cc0 11153  0cn0 12524  ..^cfzo 13691   repeatS creps 14803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-reps 14804
This theorem is referenced by:  repsconst  14807  repsf  14808  repswsymb  14809  repswswrd  14819  repswccat  14821  repswrevw  14822  repsco  14876
  Copyright terms: Public domain W3C validator