![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reps | Structured version Visualization version GIF version |
Description: Construct a function mapping a half-open range of nonnegative integers to a constant. (Contributed by AV, 4-Nov-2018.) |
Ref | Expression |
---|---|
reps | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3485 | . . 3 ⊢ (𝑆 ∈ 𝑉 → 𝑆 ∈ V) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → 𝑆 ∈ V) |
3 | simpr 484 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
4 | ovex 7435 | . . 3 ⊢ (0..^𝑁) ∈ V | |
5 | mptexg 7215 | . . 3 ⊢ ((0..^𝑁) ∈ V → (𝑥 ∈ (0..^𝑁) ↦ 𝑆) ∈ V) | |
6 | 4, 5 | mp1i 13 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ (0..^𝑁) ↦ 𝑆) ∈ V) |
7 | oveq2 7410 | . . . . 5 ⊢ (𝑛 = 𝑁 → (0..^𝑛) = (0..^𝑁)) | |
8 | 7 | adantl 481 | . . . 4 ⊢ ((𝑠 = 𝑆 ∧ 𝑛 = 𝑁) → (0..^𝑛) = (0..^𝑁)) |
9 | simpll 764 | . . . 4 ⊢ (((𝑠 = 𝑆 ∧ 𝑛 = 𝑁) ∧ 𝑥 ∈ (0..^𝑛)) → 𝑠 = 𝑆) | |
10 | 8, 9 | mpteq12dva 5228 | . . 3 ⊢ ((𝑠 = 𝑆 ∧ 𝑛 = 𝑁) → (𝑥 ∈ (0..^𝑛) ↦ 𝑠) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆)) |
11 | df-reps 14721 | . . 3 ⊢ repeatS = (𝑠 ∈ V, 𝑛 ∈ ℕ0 ↦ (𝑥 ∈ (0..^𝑛) ↦ 𝑠)) | |
12 | 10, 11 | ovmpoga 7555 | . 2 ⊢ ((𝑆 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ (𝑥 ∈ (0..^𝑁) ↦ 𝑆) ∈ V) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆)) |
13 | 2, 3, 6, 12 | syl3anc 1368 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3466 ↦ cmpt 5222 (class class class)co 7402 0cc0 11107 ℕ0cn0 12471 ..^cfzo 13628 repeatS creps 14720 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-oprab 7406 df-mpo 7407 df-reps 14721 |
This theorem is referenced by: repsconst 14724 repsf 14725 repswsymb 14726 repswswrd 14736 repswccat 14738 repswrevw 14739 repsco 14793 |
Copyright terms: Public domain | W3C validator |