Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ccatmulgnn0dir Structured version   Visualization version   GIF version

Theorem ccatmulgnn0dir 32421
Description: Concatenation of words follow the rule mulgnn0dir 18648 (although applying mulgnn0dir 18648 would require 𝑆 to be a set). In this case 𝐴 is ⟨“𝐾”⟩ to the power 𝑀 in the free monoid. (Contributed by Thierry Arnoux, 5-Oct-2018.)
Hypotheses
Ref Expression
ccatmulgnn0dir.a 𝐴 = ((0..^𝑀) × {𝐾})
ccatmulgnn0dir.b 𝐵 = ((0..^𝑁) × {𝐾})
ccatmulgnn0dir.c 𝐶 = ((0..^(𝑀 + 𝑁)) × {𝐾})
ccatmulgnn0dir.k (𝜑𝐾𝑆)
ccatmulgnn0dir.m (𝜑𝑀 ∈ ℕ0)
ccatmulgnn0dir.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
ccatmulgnn0dir (𝜑 → (𝐴 ++ 𝐵) = 𝐶)

Proof of Theorem ccatmulgnn0dir
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ccatmulgnn0dir.a . . . . . . . . 9 𝐴 = ((0..^𝑀) × {𝐾})
21fveq2i 6759 . . . . . . . 8 (♯‘𝐴) = (♯‘((0..^𝑀) × {𝐾}))
3 fzofi 13622 . . . . . . . . 9 (0..^𝑀) ∈ Fin
4 snfi 8788 . . . . . . . . 9 {𝐾} ∈ Fin
5 hashxp 14077 . . . . . . . . 9 (((0..^𝑀) ∈ Fin ∧ {𝐾} ∈ Fin) → (♯‘((0..^𝑀) × {𝐾})) = ((♯‘(0..^𝑀)) · (♯‘{𝐾})))
63, 4, 5mp2an 688 . . . . . . . 8 (♯‘((0..^𝑀) × {𝐾})) = ((♯‘(0..^𝑀)) · (♯‘{𝐾}))
72, 6eqtri 2766 . . . . . . 7 (♯‘𝐴) = ((♯‘(0..^𝑀)) · (♯‘{𝐾}))
8 ccatmulgnn0dir.m . . . . . . . . 9 (𝜑𝑀 ∈ ℕ0)
9 hashfzo0 14073 . . . . . . . . 9 (𝑀 ∈ ℕ0 → (♯‘(0..^𝑀)) = 𝑀)
108, 9syl 17 . . . . . . . 8 (𝜑 → (♯‘(0..^𝑀)) = 𝑀)
11 ccatmulgnn0dir.k . . . . . . . . 9 (𝜑𝐾𝑆)
12 hashsng 14012 . . . . . . . . 9 (𝐾𝑆 → (♯‘{𝐾}) = 1)
1311, 12syl 17 . . . . . . . 8 (𝜑 → (♯‘{𝐾}) = 1)
1410, 13oveq12d 7273 . . . . . . 7 (𝜑 → ((♯‘(0..^𝑀)) · (♯‘{𝐾})) = (𝑀 · 1))
157, 14syl5eq 2791 . . . . . 6 (𝜑 → (♯‘𝐴) = (𝑀 · 1))
168nn0cnd 12225 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
1716mulid1d 10923 . . . . . 6 (𝜑 → (𝑀 · 1) = 𝑀)
1815, 17eqtrd 2778 . . . . 5 (𝜑 → (♯‘𝐴) = 𝑀)
19 ccatmulgnn0dir.b . . . . . . . . 9 𝐵 = ((0..^𝑁) × {𝐾})
2019fveq2i 6759 . . . . . . . 8 (♯‘𝐵) = (♯‘((0..^𝑁) × {𝐾}))
21 fzofi 13622 . . . . . . . . 9 (0..^𝑁) ∈ Fin
22 hashxp 14077 . . . . . . . . 9 (((0..^𝑁) ∈ Fin ∧ {𝐾} ∈ Fin) → (♯‘((0..^𝑁) × {𝐾})) = ((♯‘(0..^𝑁)) · (♯‘{𝐾})))
2321, 4, 22mp2an 688 . . . . . . . 8 (♯‘((0..^𝑁) × {𝐾})) = ((♯‘(0..^𝑁)) · (♯‘{𝐾}))
2420, 23eqtri 2766 . . . . . . 7 (♯‘𝐵) = ((♯‘(0..^𝑁)) · (♯‘{𝐾}))
25 ccatmulgnn0dir.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
26 hashfzo0 14073 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (♯‘(0..^𝑁)) = 𝑁)
2725, 26syl 17 . . . . . . . 8 (𝜑 → (♯‘(0..^𝑁)) = 𝑁)
2827, 13oveq12d 7273 . . . . . . 7 (𝜑 → ((♯‘(0..^𝑁)) · (♯‘{𝐾})) = (𝑁 · 1))
2924, 28syl5eq 2791 . . . . . 6 (𝜑 → (♯‘𝐵) = (𝑁 · 1))
3025nn0cnd 12225 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
3130mulid1d 10923 . . . . . 6 (𝜑 → (𝑁 · 1) = 𝑁)
3229, 31eqtrd 2778 . . . . 5 (𝜑 → (♯‘𝐵) = 𝑁)
3318, 32oveq12d 7273 . . . 4 (𝜑 → ((♯‘𝐴) + (♯‘𝐵)) = (𝑀 + 𝑁))
3433oveq2d 7271 . . 3 (𝜑 → (0..^((♯‘𝐴) + (♯‘𝐵))) = (0..^(𝑀 + 𝑁)))
35 simpll 763 . . . . 5 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ 𝑖 ∈ (0..^(♯‘𝐴))) → 𝜑)
36 simpr 484 . . . . . 6 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ 𝑖 ∈ (0..^(♯‘𝐴))) → 𝑖 ∈ (0..^(♯‘𝐴)))
3718oveq2d 7271 . . . . . . 7 (𝜑 → (0..^(♯‘𝐴)) = (0..^𝑀))
3835, 37syl 17 . . . . . 6 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ 𝑖 ∈ (0..^(♯‘𝐴))) → (0..^(♯‘𝐴)) = (0..^𝑀))
3936, 38eleqtrd 2841 . . . . 5 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ 𝑖 ∈ (0..^(♯‘𝐴))) → 𝑖 ∈ (0..^𝑀))
40 fconstg 6645 . . . . . . . 8 (𝐾𝑆 → ((0..^𝑀) × {𝐾}):(0..^𝑀)⟶{𝐾})
4111, 40syl 17 . . . . . . 7 (𝜑 → ((0..^𝑀) × {𝐾}):(0..^𝑀)⟶{𝐾})
421a1i 11 . . . . . . . 8 (𝜑𝐴 = ((0..^𝑀) × {𝐾}))
4342feq1d 6569 . . . . . . 7 (𝜑 → (𝐴:(0..^𝑀)⟶{𝐾} ↔ ((0..^𝑀) × {𝐾}):(0..^𝑀)⟶{𝐾}))
4441, 43mpbird 256 . . . . . 6 (𝜑𝐴:(0..^𝑀)⟶{𝐾})
45 fvconst 7018 . . . . . 6 ((𝐴:(0..^𝑀)⟶{𝐾} ∧ 𝑖 ∈ (0..^𝑀)) → (𝐴𝑖) = 𝐾)
4644, 45sylan 579 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐴𝑖) = 𝐾)
4735, 39, 46syl2anc 583 . . . 4 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ 𝑖 ∈ (0..^(♯‘𝐴))) → (𝐴𝑖) = 𝐾)
48 simpll 763 . . . . 5 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘𝐴))) → 𝜑)
49 simplr 765 . . . . . . 7 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘𝐴))) → 𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))))
50 simpr 484 . . . . . . 7 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘𝐴))) → ¬ 𝑖 ∈ (0..^(♯‘𝐴)))
5118, 8eqeltrd 2839 . . . . . . . . 9 (𝜑 → (♯‘𝐴) ∈ ℕ0)
5248, 51syl 17 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘𝐴))) → (♯‘𝐴) ∈ ℕ0)
5352nn0zd 12353 . . . . . . 7 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘𝐴))) → (♯‘𝐴) ∈ ℤ)
5432, 25eqeltrd 2839 . . . . . . . . 9 (𝜑 → (♯‘𝐵) ∈ ℕ0)
5548, 54syl 17 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘𝐴))) → (♯‘𝐵) ∈ ℕ0)
5655nn0zd 12353 . . . . . . 7 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘𝐴))) → (♯‘𝐵) ∈ ℤ)
57 fzocatel 13379 . . . . . . 7 (((𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ∧ ¬ 𝑖 ∈ (0..^(♯‘𝐴))) ∧ ((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℤ)) → (𝑖 − (♯‘𝐴)) ∈ (0..^(♯‘𝐵)))
5849, 50, 53, 56, 57syl22anc 835 . . . . . 6 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘𝐴))) → (𝑖 − (♯‘𝐴)) ∈ (0..^(♯‘𝐵)))
5932oveq2d 7271 . . . . . . 7 (𝜑 → (0..^(♯‘𝐵)) = (0..^𝑁))
6048, 59syl 17 . . . . . 6 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘𝐴))) → (0..^(♯‘𝐵)) = (0..^𝑁))
6158, 60eleqtrd 2841 . . . . 5 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘𝐴))) → (𝑖 − (♯‘𝐴)) ∈ (0..^𝑁))
62 fconstg 6645 . . . . . . . 8 (𝐾𝑆 → ((0..^𝑁) × {𝐾}):(0..^𝑁)⟶{𝐾})
6311, 62syl 17 . . . . . . 7 (𝜑 → ((0..^𝑁) × {𝐾}):(0..^𝑁)⟶{𝐾})
6419a1i 11 . . . . . . . 8 (𝜑𝐵 = ((0..^𝑁) × {𝐾}))
6564feq1d 6569 . . . . . . 7 (𝜑 → (𝐵:(0..^𝑁)⟶{𝐾} ↔ ((0..^𝑁) × {𝐾}):(0..^𝑁)⟶{𝐾}))
6663, 65mpbird 256 . . . . . 6 (𝜑𝐵:(0..^𝑁)⟶{𝐾})
67 fvconst 7018 . . . . . 6 ((𝐵:(0..^𝑁)⟶{𝐾} ∧ (𝑖 − (♯‘𝐴)) ∈ (0..^𝑁)) → (𝐵‘(𝑖 − (♯‘𝐴))) = 𝐾)
6866, 67sylan 579 . . . . 5 ((𝜑 ∧ (𝑖 − (♯‘𝐴)) ∈ (0..^𝑁)) → (𝐵‘(𝑖 − (♯‘𝐴))) = 𝐾)
6948, 61, 68syl2anc 583 . . . 4 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘𝐴))) → (𝐵‘(𝑖 − (♯‘𝐴))) = 𝐾)
7047, 69ifeqda 4492 . . 3 ((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) → if(𝑖 ∈ (0..^(♯‘𝐴)), (𝐴𝑖), (𝐵‘(𝑖 − (♯‘𝐴)))) = 𝐾)
7134, 70mpteq12dva 5159 . 2 (𝜑 → (𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑖 ∈ (0..^(♯‘𝐴)), (𝐴𝑖), (𝐵‘(𝑖 − (♯‘𝐴))))) = (𝑖 ∈ (0..^(𝑀 + 𝑁)) ↦ 𝐾))
72 ovex 7288 . . . . 5 (0..^𝑀) ∈ V
73 snex 5349 . . . . 5 {𝐾} ∈ V
7472, 73xpex 7581 . . . 4 ((0..^𝑀) × {𝐾}) ∈ V
751, 74eqeltri 2835 . . 3 𝐴 ∈ V
76 ovex 7288 . . . . 5 (0..^𝑁) ∈ V
7776, 73xpex 7581 . . . 4 ((0..^𝑁) × {𝐾}) ∈ V
7819, 77eqeltri 2835 . . 3 𝐵 ∈ V
79 ccatfval 14204 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ++ 𝐵) = (𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑖 ∈ (0..^(♯‘𝐴)), (𝐴𝑖), (𝐵‘(𝑖 − (♯‘𝐴))))))
8075, 78, 79mp2an 688 . 2 (𝐴 ++ 𝐵) = (𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑖 ∈ (0..^(♯‘𝐴)), (𝐴𝑖), (𝐵‘(𝑖 − (♯‘𝐴)))))
81 ccatmulgnn0dir.c . . 3 𝐶 = ((0..^(𝑀 + 𝑁)) × {𝐾})
82 fconstmpt 5640 . . 3 ((0..^(𝑀 + 𝑁)) × {𝐾}) = (𝑖 ∈ (0..^(𝑀 + 𝑁)) ↦ 𝐾)
8381, 82eqtri 2766 . 2 𝐶 = (𝑖 ∈ (0..^(𝑀 + 𝑁)) ↦ 𝐾)
8471, 80, 833eqtr4g 2804 1 (𝜑 → (𝐴 ++ 𝐵) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  ifcif 4456  {csn 4558  cmpt 5153   × cxp 5578  wf 6414  cfv 6418  (class class class)co 7255  Fincfn 8691  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cmin 11135  0cn0 12163  cz 12249  ..^cfzo 13311  chash 13972   ++ cconcat 14201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-concat 14202
This theorem is referenced by:  ofcccat  32422
  Copyright terms: Public domain W3C validator