Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ccatmulgnn0dir Structured version   Visualization version   GIF version

Theorem ccatmulgnn0dir 33154
Description: Concatenation of words follow the rule mulgnn0dir 18906 (although applying mulgnn0dir 18906 would require 𝑆 to be a set). In this case 𝐴 is ⟨“𝐾”⟩ to the power 𝑀 in the free monoid. (Contributed by Thierry Arnoux, 5-Oct-2018.)
Hypotheses
Ref Expression
ccatmulgnn0dir.a 𝐴 = ((0..^𝑀) × {𝐾})
ccatmulgnn0dir.b 𝐵 = ((0..^𝑁) × {𝐾})
ccatmulgnn0dir.c 𝐶 = ((0..^(𝑀 + 𝑁)) × {𝐾})
ccatmulgnn0dir.k (𝜑𝐾𝑆)
ccatmulgnn0dir.m (𝜑𝑀 ∈ ℕ0)
ccatmulgnn0dir.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
ccatmulgnn0dir (𝜑 → (𝐴 ++ 𝐵) = 𝐶)

Proof of Theorem ccatmulgnn0dir
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ccatmulgnn0dir.a . . . . . . . . 9 𝐴 = ((0..^𝑀) × {𝐾})
21fveq2i 6845 . . . . . . . 8 (♯‘𝐴) = (♯‘((0..^𝑀) × {𝐾}))
3 fzofi 13879 . . . . . . . . 9 (0..^𝑀) ∈ Fin
4 snfi 8988 . . . . . . . . 9 {𝐾} ∈ Fin
5 hashxp 14334 . . . . . . . . 9 (((0..^𝑀) ∈ Fin ∧ {𝐾} ∈ Fin) → (♯‘((0..^𝑀) × {𝐾})) = ((♯‘(0..^𝑀)) · (♯‘{𝐾})))
63, 4, 5mp2an 690 . . . . . . . 8 (♯‘((0..^𝑀) × {𝐾})) = ((♯‘(0..^𝑀)) · (♯‘{𝐾}))
72, 6eqtri 2764 . . . . . . 7 (♯‘𝐴) = ((♯‘(0..^𝑀)) · (♯‘{𝐾}))
8 ccatmulgnn0dir.m . . . . . . . . 9 (𝜑𝑀 ∈ ℕ0)
9 hashfzo0 14330 . . . . . . . . 9 (𝑀 ∈ ℕ0 → (♯‘(0..^𝑀)) = 𝑀)
108, 9syl 17 . . . . . . . 8 (𝜑 → (♯‘(0..^𝑀)) = 𝑀)
11 ccatmulgnn0dir.k . . . . . . . . 9 (𝜑𝐾𝑆)
12 hashsng 14269 . . . . . . . . 9 (𝐾𝑆 → (♯‘{𝐾}) = 1)
1311, 12syl 17 . . . . . . . 8 (𝜑 → (♯‘{𝐾}) = 1)
1410, 13oveq12d 7375 . . . . . . 7 (𝜑 → ((♯‘(0..^𝑀)) · (♯‘{𝐾})) = (𝑀 · 1))
157, 14eqtrid 2788 . . . . . 6 (𝜑 → (♯‘𝐴) = (𝑀 · 1))
168nn0cnd 12475 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
1716mulid1d 11172 . . . . . 6 (𝜑 → (𝑀 · 1) = 𝑀)
1815, 17eqtrd 2776 . . . . 5 (𝜑 → (♯‘𝐴) = 𝑀)
19 ccatmulgnn0dir.b . . . . . . . . 9 𝐵 = ((0..^𝑁) × {𝐾})
2019fveq2i 6845 . . . . . . . 8 (♯‘𝐵) = (♯‘((0..^𝑁) × {𝐾}))
21 fzofi 13879 . . . . . . . . 9 (0..^𝑁) ∈ Fin
22 hashxp 14334 . . . . . . . . 9 (((0..^𝑁) ∈ Fin ∧ {𝐾} ∈ Fin) → (♯‘((0..^𝑁) × {𝐾})) = ((♯‘(0..^𝑁)) · (♯‘{𝐾})))
2321, 4, 22mp2an 690 . . . . . . . 8 (♯‘((0..^𝑁) × {𝐾})) = ((♯‘(0..^𝑁)) · (♯‘{𝐾}))
2420, 23eqtri 2764 . . . . . . 7 (♯‘𝐵) = ((♯‘(0..^𝑁)) · (♯‘{𝐾}))
25 ccatmulgnn0dir.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
26 hashfzo0 14330 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (♯‘(0..^𝑁)) = 𝑁)
2725, 26syl 17 . . . . . . . 8 (𝜑 → (♯‘(0..^𝑁)) = 𝑁)
2827, 13oveq12d 7375 . . . . . . 7 (𝜑 → ((♯‘(0..^𝑁)) · (♯‘{𝐾})) = (𝑁 · 1))
2924, 28eqtrid 2788 . . . . . 6 (𝜑 → (♯‘𝐵) = (𝑁 · 1))
3025nn0cnd 12475 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
3130mulid1d 11172 . . . . . 6 (𝜑 → (𝑁 · 1) = 𝑁)
3229, 31eqtrd 2776 . . . . 5 (𝜑 → (♯‘𝐵) = 𝑁)
3318, 32oveq12d 7375 . . . 4 (𝜑 → ((♯‘𝐴) + (♯‘𝐵)) = (𝑀 + 𝑁))
3433oveq2d 7373 . . 3 (𝜑 → (0..^((♯‘𝐴) + (♯‘𝐵))) = (0..^(𝑀 + 𝑁)))
35 simpll 765 . . . . 5 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ 𝑖 ∈ (0..^(♯‘𝐴))) → 𝜑)
36 simpr 485 . . . . . 6 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ 𝑖 ∈ (0..^(♯‘𝐴))) → 𝑖 ∈ (0..^(♯‘𝐴)))
3718oveq2d 7373 . . . . . . 7 (𝜑 → (0..^(♯‘𝐴)) = (0..^𝑀))
3835, 37syl 17 . . . . . 6 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ 𝑖 ∈ (0..^(♯‘𝐴))) → (0..^(♯‘𝐴)) = (0..^𝑀))
3936, 38eleqtrd 2840 . . . . 5 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ 𝑖 ∈ (0..^(♯‘𝐴))) → 𝑖 ∈ (0..^𝑀))
40 fconstg 6729 . . . . . . . 8 (𝐾𝑆 → ((0..^𝑀) × {𝐾}):(0..^𝑀)⟶{𝐾})
4111, 40syl 17 . . . . . . 7 (𝜑 → ((0..^𝑀) × {𝐾}):(0..^𝑀)⟶{𝐾})
421a1i 11 . . . . . . . 8 (𝜑𝐴 = ((0..^𝑀) × {𝐾}))
4342feq1d 6653 . . . . . . 7 (𝜑 → (𝐴:(0..^𝑀)⟶{𝐾} ↔ ((0..^𝑀) × {𝐾}):(0..^𝑀)⟶{𝐾}))
4441, 43mpbird 256 . . . . . 6 (𝜑𝐴:(0..^𝑀)⟶{𝐾})
45 fvconst 7110 . . . . . 6 ((𝐴:(0..^𝑀)⟶{𝐾} ∧ 𝑖 ∈ (0..^𝑀)) → (𝐴𝑖) = 𝐾)
4644, 45sylan 580 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐴𝑖) = 𝐾)
4735, 39, 46syl2anc 584 . . . 4 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ 𝑖 ∈ (0..^(♯‘𝐴))) → (𝐴𝑖) = 𝐾)
48 simpll 765 . . . . 5 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘𝐴))) → 𝜑)
49 simplr 767 . . . . . . 7 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘𝐴))) → 𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))))
50 simpr 485 . . . . . . 7 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘𝐴))) → ¬ 𝑖 ∈ (0..^(♯‘𝐴)))
5118, 8eqeltrd 2838 . . . . . . . . 9 (𝜑 → (♯‘𝐴) ∈ ℕ0)
5248, 51syl 17 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘𝐴))) → (♯‘𝐴) ∈ ℕ0)
5352nn0zd 12525 . . . . . . 7 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘𝐴))) → (♯‘𝐴) ∈ ℤ)
5432, 25eqeltrd 2838 . . . . . . . . 9 (𝜑 → (♯‘𝐵) ∈ ℕ0)
5548, 54syl 17 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘𝐴))) → (♯‘𝐵) ∈ ℕ0)
5655nn0zd 12525 . . . . . . 7 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘𝐴))) → (♯‘𝐵) ∈ ℤ)
57 fzocatel 13636 . . . . . . 7 (((𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ∧ ¬ 𝑖 ∈ (0..^(♯‘𝐴))) ∧ ((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℤ)) → (𝑖 − (♯‘𝐴)) ∈ (0..^(♯‘𝐵)))
5849, 50, 53, 56, 57syl22anc 837 . . . . . 6 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘𝐴))) → (𝑖 − (♯‘𝐴)) ∈ (0..^(♯‘𝐵)))
5932oveq2d 7373 . . . . . . 7 (𝜑 → (0..^(♯‘𝐵)) = (0..^𝑁))
6048, 59syl 17 . . . . . 6 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘𝐴))) → (0..^(♯‘𝐵)) = (0..^𝑁))
6158, 60eleqtrd 2840 . . . . 5 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘𝐴))) → (𝑖 − (♯‘𝐴)) ∈ (0..^𝑁))
62 fconstg 6729 . . . . . . . 8 (𝐾𝑆 → ((0..^𝑁) × {𝐾}):(0..^𝑁)⟶{𝐾})
6311, 62syl 17 . . . . . . 7 (𝜑 → ((0..^𝑁) × {𝐾}):(0..^𝑁)⟶{𝐾})
6419a1i 11 . . . . . . . 8 (𝜑𝐵 = ((0..^𝑁) × {𝐾}))
6564feq1d 6653 . . . . . . 7 (𝜑 → (𝐵:(0..^𝑁)⟶{𝐾} ↔ ((0..^𝑁) × {𝐾}):(0..^𝑁)⟶{𝐾}))
6663, 65mpbird 256 . . . . . 6 (𝜑𝐵:(0..^𝑁)⟶{𝐾})
67 fvconst 7110 . . . . . 6 ((𝐵:(0..^𝑁)⟶{𝐾} ∧ (𝑖 − (♯‘𝐴)) ∈ (0..^𝑁)) → (𝐵‘(𝑖 − (♯‘𝐴))) = 𝐾)
6866, 67sylan 580 . . . . 5 ((𝜑 ∧ (𝑖 − (♯‘𝐴)) ∈ (0..^𝑁)) → (𝐵‘(𝑖 − (♯‘𝐴))) = 𝐾)
6948, 61, 68syl2anc 584 . . . 4 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘𝐴))) → (𝐵‘(𝑖 − (♯‘𝐴))) = 𝐾)
7047, 69ifeqda 4522 . . 3 ((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) → if(𝑖 ∈ (0..^(♯‘𝐴)), (𝐴𝑖), (𝐵‘(𝑖 − (♯‘𝐴)))) = 𝐾)
7134, 70mpteq12dva 5194 . 2 (𝜑 → (𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑖 ∈ (0..^(♯‘𝐴)), (𝐴𝑖), (𝐵‘(𝑖 − (♯‘𝐴))))) = (𝑖 ∈ (0..^(𝑀 + 𝑁)) ↦ 𝐾))
72 ovex 7390 . . . . 5 (0..^𝑀) ∈ V
73 snex 5388 . . . . 5 {𝐾} ∈ V
7472, 73xpex 7687 . . . 4 ((0..^𝑀) × {𝐾}) ∈ V
751, 74eqeltri 2834 . . 3 𝐴 ∈ V
76 ovex 7390 . . . . 5 (0..^𝑁) ∈ V
7776, 73xpex 7687 . . . 4 ((0..^𝑁) × {𝐾}) ∈ V
7819, 77eqeltri 2834 . . 3 𝐵 ∈ V
79 ccatfval 14461 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ++ 𝐵) = (𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑖 ∈ (0..^(♯‘𝐴)), (𝐴𝑖), (𝐵‘(𝑖 − (♯‘𝐴))))))
8075, 78, 79mp2an 690 . 2 (𝐴 ++ 𝐵) = (𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑖 ∈ (0..^(♯‘𝐴)), (𝐴𝑖), (𝐵‘(𝑖 − (♯‘𝐴)))))
81 ccatmulgnn0dir.c . . 3 𝐶 = ((0..^(𝑀 + 𝑁)) × {𝐾})
82 fconstmpt 5694 . . 3 ((0..^(𝑀 + 𝑁)) × {𝐾}) = (𝑖 ∈ (0..^(𝑀 + 𝑁)) ↦ 𝐾)
8381, 82eqtri 2764 . 2 𝐶 = (𝑖 ∈ (0..^(𝑀 + 𝑁)) ↦ 𝐾)
8471, 80, 833eqtr4g 2801 1 (𝜑 → (𝐴 ++ 𝐵) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3445  ifcif 4486  {csn 4586  cmpt 5188   × cxp 5631  wf 6492  cfv 6496  (class class class)co 7357  Fincfn 8883  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  cmin 11385  0cn0 12413  cz 12499  ..^cfzo 13567  chash 14230   ++ cconcat 14458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-hash 14231  df-concat 14459
This theorem is referenced by:  ofcccat  33155
  Copyright terms: Public domain W3C validator