MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restco Structured version   Visualization version   GIF version

Theorem restco 21476
Description: Composition of subspaces. (Contributed by Mario Carneiro, 15-Dec-2013.) (Revised by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
restco ((𝐽𝑉𝐴𝑊𝐵𝑋) → ((𝐽t 𝐴) ↾t 𝐵) = (𝐽t (𝐴𝐵)))

Proof of Theorem restco
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3419 . . . . 5 𝑦 ∈ V
21inex1 5078 . . . 4 (𝑦𝐴) ∈ V
3 ineq1 4069 . . . . 5 (𝑥 = (𝑦𝐴) → (𝑥𝐵) = ((𝑦𝐴) ∩ 𝐵))
4 inass 4084 . . . . 5 ((𝑦𝐴) ∩ 𝐵) = (𝑦 ∩ (𝐴𝐵))
53, 4syl6eq 2831 . . . 4 (𝑥 = (𝑦𝐴) → (𝑥𝐵) = (𝑦 ∩ (𝐴𝐵)))
62, 5abrexco 6828 . . 3 {𝑧 ∣ ∃𝑥 ∈ {𝑤 ∣ ∃𝑦𝐽 𝑤 = (𝑦𝐴)}𝑧 = (𝑥𝐵)} = {𝑧 ∣ ∃𝑦𝐽 𝑧 = (𝑦 ∩ (𝐴𝐵))}
7 eqid 2779 . . . . . 6 (𝑦𝐽 ↦ (𝑦𝐴)) = (𝑦𝐽 ↦ (𝑦𝐴))
87rnmpt 5670 . . . . 5 ran (𝑦𝐽 ↦ (𝑦𝐴)) = {𝑤 ∣ ∃𝑦𝐽 𝑤 = (𝑦𝐴)}
98mpteq1i 5017 . . . 4 (𝑥 ∈ ran (𝑦𝐽 ↦ (𝑦𝐴)) ↦ (𝑥𝐵)) = (𝑥 ∈ {𝑤 ∣ ∃𝑦𝐽 𝑤 = (𝑦𝐴)} ↦ (𝑥𝐵))
109rnmpt 5670 . . 3 ran (𝑥 ∈ ran (𝑦𝐽 ↦ (𝑦𝐴)) ↦ (𝑥𝐵)) = {𝑧 ∣ ∃𝑥 ∈ {𝑤 ∣ ∃𝑦𝐽 𝑤 = (𝑦𝐴)}𝑧 = (𝑥𝐵)}
11 eqid 2779 . . . 4 (𝑦𝐽 ↦ (𝑦 ∩ (𝐴𝐵))) = (𝑦𝐽 ↦ (𝑦 ∩ (𝐴𝐵)))
1211rnmpt 5670 . . 3 ran (𝑦𝐽 ↦ (𝑦 ∩ (𝐴𝐵))) = {𝑧 ∣ ∃𝑦𝐽 𝑧 = (𝑦 ∩ (𝐴𝐵))}
136, 10, 123eqtr4i 2813 . 2 ran (𝑥 ∈ ran (𝑦𝐽 ↦ (𝑦𝐴)) ↦ (𝑥𝐵)) = ran (𝑦𝐽 ↦ (𝑦 ∩ (𝐴𝐵)))
14 restval 16556 . . . . 5 ((𝐽𝑉𝐴𝑊) → (𝐽t 𝐴) = ran (𝑦𝐽 ↦ (𝑦𝐴)))
15143adant3 1112 . . . 4 ((𝐽𝑉𝐴𝑊𝐵𝑋) → (𝐽t 𝐴) = ran (𝑦𝐽 ↦ (𝑦𝐴)))
1615oveq1d 6991 . . 3 ((𝐽𝑉𝐴𝑊𝐵𝑋) → ((𝐽t 𝐴) ↾t 𝐵) = (ran (𝑦𝐽 ↦ (𝑦𝐴)) ↾t 𝐵))
17 ovex 7008 . . . . 5 (𝐽t 𝐴) ∈ V
1815, 17syl6eqelr 2876 . . . 4 ((𝐽𝑉𝐴𝑊𝐵𝑋) → ran (𝑦𝐽 ↦ (𝑦𝐴)) ∈ V)
19 simp3 1118 . . . 4 ((𝐽𝑉𝐴𝑊𝐵𝑋) → 𝐵𝑋)
20 restval 16556 . . . 4 ((ran (𝑦𝐽 ↦ (𝑦𝐴)) ∈ V ∧ 𝐵𝑋) → (ran (𝑦𝐽 ↦ (𝑦𝐴)) ↾t 𝐵) = ran (𝑥 ∈ ran (𝑦𝐽 ↦ (𝑦𝐴)) ↦ (𝑥𝐵)))
2118, 19, 20syl2anc 576 . . 3 ((𝐽𝑉𝐴𝑊𝐵𝑋) → (ran (𝑦𝐽 ↦ (𝑦𝐴)) ↾t 𝐵) = ran (𝑥 ∈ ran (𝑦𝐽 ↦ (𝑦𝐴)) ↦ (𝑥𝐵)))
2216, 21eqtrd 2815 . 2 ((𝐽𝑉𝐴𝑊𝐵𝑋) → ((𝐽t 𝐴) ↾t 𝐵) = ran (𝑥 ∈ ran (𝑦𝐽 ↦ (𝑦𝐴)) ↦ (𝑥𝐵)))
23 simp1 1116 . . 3 ((𝐽𝑉𝐴𝑊𝐵𝑋) → 𝐽𝑉)
24 inex1g 5080 . . . 4 (𝐴𝑊 → (𝐴𝐵) ∈ V)
25243ad2ant2 1114 . . 3 ((𝐽𝑉𝐴𝑊𝐵𝑋) → (𝐴𝐵) ∈ V)
26 restval 16556 . . 3 ((𝐽𝑉 ∧ (𝐴𝐵) ∈ V) → (𝐽t (𝐴𝐵)) = ran (𝑦𝐽 ↦ (𝑦 ∩ (𝐴𝐵))))
2723, 25, 26syl2anc 576 . 2 ((𝐽𝑉𝐴𝑊𝐵𝑋) → (𝐽t (𝐴𝐵)) = ran (𝑦𝐽 ↦ (𝑦 ∩ (𝐴𝐵))))
2813, 22, 273eqtr4a 2841 1 ((𝐽𝑉𝐴𝑊𝐵𝑋) → ((𝐽t 𝐴) ↾t 𝐵) = (𝐽t (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1068   = wceq 1507  wcel 2050  {cab 2759  wrex 3090  Vcvv 3416  cin 3829  cmpt 5008  ran crn 5408  (class class class)co 6976  t crest 16550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pr 5186  ax-un 7279
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-nul 4180  df-if 4351  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-id 5312  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-ov 6979  df-oprab 6980  df-mpo 6981  df-rest 16552
This theorem is referenced by:  restabs  21477  restin  21478  resstopn  21498  ressuss  22575  smfres  42494
  Copyright terms: Public domain W3C validator