MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m2detleiblem3 Structured version   Visualization version   GIF version

Theorem m2detleiblem3 22635
Description: Lemma 3 for m2detleib 22637. (Contributed by AV, 16-Dec-2018.) (Proof shortened by AV, 2-Jan-2019.)
Hypotheses
Ref Expression
m2detleiblem2.n 𝑁 = {1, 2}
m2detleiblem2.p 𝑃 = (Base‘(SymGrp‘𝑁))
m2detleiblem2.a 𝐴 = (𝑁 Mat 𝑅)
m2detleiblem2.b 𝐵 = (Base‘𝐴)
m2detleiblem2.g 𝐺 = (mulGrp‘𝑅)
m2detleiblem3.m · = (+g𝐺)
Assertion
Ref Expression
m2detleiblem3 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → (𝐺 Σg (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))) = ((1𝑀1) · (2𝑀2)))
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑃,𝑛   𝑄,𝑛   𝑅,𝑛
Allowed substitution hints:   𝐴(𝑛)   · (𝑛)   𝐺(𝑛)

Proof of Theorem m2detleiblem3
StepHypRef Expression
1 m2detleiblem2.g . . . 4 𝐺 = (mulGrp‘𝑅)
2 eqid 2737 . . . 4 (Base‘𝑅) = (Base‘𝑅)
31, 2mgpbas 20142 . . 3 (Base‘𝑅) = (Base‘𝐺)
4 m2detleiblem3.m . . 3 · = (+g𝐺)
51fvexi 6920 . . . 4 𝐺 ∈ V
65a1i 11 . . 3 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → 𝐺 ∈ V)
7 1ex 11257 . . . . . . 7 1 ∈ V
8 2nn 12339 . . . . . . 7 2 ∈ ℕ
9 prex 5437 . . . . . . . . 9 {⟨1, 1⟩, ⟨2, 2⟩} ∈ V
109prid1 4762 . . . . . . . 8 {⟨1, 1⟩, ⟨2, 2⟩} ∈ {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}}
11 eqid 2737 . . . . . . . . 9 (SymGrp‘𝑁) = (SymGrp‘𝑁)
12 m2detleiblem2.p . . . . . . . . 9 𝑃 = (Base‘(SymGrp‘𝑁))
13 m2detleiblem2.n . . . . . . . . 9 𝑁 = {1, 2}
1411, 12, 13symg2bas 19410 . . . . . . . 8 ((1 ∈ V ∧ 2 ∈ ℕ) → 𝑃 = {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}})
1510, 14eleqtrrid 2848 . . . . . . 7 ((1 ∈ V ∧ 2 ∈ ℕ) → {⟨1, 1⟩, ⟨2, 2⟩} ∈ 𝑃)
167, 8, 15mp2an 692 . . . . . 6 {⟨1, 1⟩, ⟨2, 2⟩} ∈ 𝑃
17 eleq1 2829 . . . . . 6 (𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} → (𝑄𝑃 ↔ {⟨1, 1⟩, ⟨2, 2⟩} ∈ 𝑃))
1816, 17mpbiri 258 . . . . 5 (𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} → 𝑄𝑃)
19 m2detleiblem2.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
2013oveq1i 7441 . . . . . . 7 (𝑁 Mat 𝑅) = ({1, 2} Mat 𝑅)
2119, 20eqtri 2765 . . . . . 6 𝐴 = ({1, 2} Mat 𝑅)
22 m2detleiblem2.b . . . . . 6 𝐵 = (Base‘𝐴)
2313fveq2i 6909 . . . . . . . 8 (SymGrp‘𝑁) = (SymGrp‘{1, 2})
2423fveq2i 6909 . . . . . . 7 (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘{1, 2}))
2512, 24eqtri 2765 . . . . . 6 𝑃 = (Base‘(SymGrp‘{1, 2}))
2621, 22, 25matepmcl 22468 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑄𝑃𝑀𝐵) → ∀𝑛 ∈ {1, 2} ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅))
2718, 26syl3an2 1165 . . . 4 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → ∀𝑛 ∈ {1, 2} ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅))
2813mpteq1i 5238 . . . . 5 (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛)) = (𝑛 ∈ {1, 2} ↦ ((𝑄𝑛)𝑀𝑛))
2928fmpt 7130 . . . 4 (∀𝑛 ∈ {1, 2} ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅) ↔ (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛)):{1, 2}⟶(Base‘𝑅))
3027, 29sylib 218 . . 3 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛)):{1, 2}⟶(Base‘𝑅))
313, 4, 6, 30gsumpr12val 18702 . 2 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → (𝐺 Σg (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))) = (((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘1) · ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘2)))
327prid1 4762 . . . . . 6 1 ∈ {1, 2}
3332, 13eleqtrri 2840 . . . . 5 1 ∈ 𝑁
3419, 22, 12matepmcl 22468 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑄𝑃𝑀𝐵) → ∀𝑛𝑁 ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅))
3518, 34syl3an2 1165 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → ∀𝑛𝑁 ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅))
36 fveq2 6906 . . . . . . . . 9 (𝑛 = 1 → (𝑄𝑛) = (𝑄‘1))
37 id 22 . . . . . . . . 9 (𝑛 = 1 → 𝑛 = 1)
3836, 37oveq12d 7449 . . . . . . . 8 (𝑛 = 1 → ((𝑄𝑛)𝑀𝑛) = ((𝑄‘1)𝑀1))
3938eleq1d 2826 . . . . . . 7 (𝑛 = 1 → (((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅) ↔ ((𝑄‘1)𝑀1) ∈ (Base‘𝑅)))
4039rspcva 3620 . . . . . 6 ((1 ∈ 𝑁 ∧ ∀𝑛𝑁 ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅)) → ((𝑄‘1)𝑀1) ∈ (Base‘𝑅))
4133, 35, 40sylancr 587 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → ((𝑄‘1)𝑀1) ∈ (Base‘𝑅))
42 eqid 2737 . . . . . 6 (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛)) = (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))
4338, 42fvmptg 7014 . . . . 5 ((1 ∈ 𝑁 ∧ ((𝑄‘1)𝑀1) ∈ (Base‘𝑅)) → ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘1) = ((𝑄‘1)𝑀1))
4433, 41, 43sylancr 587 . . . 4 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘1) = ((𝑄‘1)𝑀1))
45 fveq1 6905 . . . . . . 7 (𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} → (𝑄‘1) = ({⟨1, 1⟩, ⟨2, 2⟩}‘1))
46 1ne2 12474 . . . . . . . 8 1 ≠ 2
477, 7fvpr1 7212 . . . . . . . 8 (1 ≠ 2 → ({⟨1, 1⟩, ⟨2, 2⟩}‘1) = 1)
4846, 47ax-mp 5 . . . . . . 7 ({⟨1, 1⟩, ⟨2, 2⟩}‘1) = 1
4945, 48eqtrdi 2793 . . . . . 6 (𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} → (𝑄‘1) = 1)
50493ad2ant2 1135 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → (𝑄‘1) = 1)
5150oveq1d 7446 . . . 4 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → ((𝑄‘1)𝑀1) = (1𝑀1))
5244, 51eqtrd 2777 . . 3 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘1) = (1𝑀1))
53 2ex 12343 . . . . . . 7 2 ∈ V
5453prid2 4763 . . . . . 6 2 ∈ {1, 2}
5554, 13eleqtrri 2840 . . . . 5 2 ∈ 𝑁
56 fveq2 6906 . . . . . . . . 9 (𝑛 = 2 → (𝑄𝑛) = (𝑄‘2))
57 id 22 . . . . . . . . 9 (𝑛 = 2 → 𝑛 = 2)
5856, 57oveq12d 7449 . . . . . . . 8 (𝑛 = 2 → ((𝑄𝑛)𝑀𝑛) = ((𝑄‘2)𝑀2))
5958eleq1d 2826 . . . . . . 7 (𝑛 = 2 → (((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅) ↔ ((𝑄‘2)𝑀2) ∈ (Base‘𝑅)))
6059rspcva 3620 . . . . . 6 ((2 ∈ 𝑁 ∧ ∀𝑛𝑁 ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅)) → ((𝑄‘2)𝑀2) ∈ (Base‘𝑅))
6155, 35, 60sylancr 587 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → ((𝑄‘2)𝑀2) ∈ (Base‘𝑅))
6258, 42fvmptg 7014 . . . . 5 ((2 ∈ 𝑁 ∧ ((𝑄‘2)𝑀2) ∈ (Base‘𝑅)) → ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘2) = ((𝑄‘2)𝑀2))
6355, 61, 62sylancr 587 . . . 4 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘2) = ((𝑄‘2)𝑀2))
64 fveq1 6905 . . . . . . 7 (𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} → (𝑄‘2) = ({⟨1, 1⟩, ⟨2, 2⟩}‘2))
6553, 53fvpr2 7213 . . . . . . . 8 (1 ≠ 2 → ({⟨1, 1⟩, ⟨2, 2⟩}‘2) = 2)
6646, 65ax-mp 5 . . . . . . 7 ({⟨1, 1⟩, ⟨2, 2⟩}‘2) = 2
6764, 66eqtrdi 2793 . . . . . 6 (𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} → (𝑄‘2) = 2)
68673ad2ant2 1135 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → (𝑄‘2) = 2)
6968oveq1d 7446 . . . 4 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → ((𝑄‘2)𝑀2) = (2𝑀2))
7063, 69eqtrd 2777 . . 3 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘2) = (2𝑀2))
7152, 70oveq12d 7449 . 2 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → (((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘1) · ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘2)) = ((1𝑀1) · (2𝑀2)))
7231, 71eqtrd 2777 1 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → (𝐺 Σg (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))) = ((1𝑀1) · (2𝑀2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  Vcvv 3480  {cpr 4628  cop 4632  cmpt 5225  wf 6557  cfv 6561  (class class class)co 7431  1c1 11156  cn 12266  2c2 12321  Basecbs 17247  +gcplusg 17297   Σg cgsu 17485  SymGrpcsymg 19386  mulGrpcmgp 20137  Ringcrg 20230   Mat cmat 22411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-ot 4635  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12600  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-seq 14043  df-fac 14313  df-bc 14342  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-efmnd 18882  df-symg 19387  df-mgp 20138  df-sra 21172  df-rgmod 21173  df-dsmm 21752  df-frlm 21767  df-mat 22412
This theorem is referenced by:  m2detleib  22637
  Copyright terms: Public domain W3C validator