MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m2detleiblem3 Structured version   Visualization version   GIF version

Theorem m2detleiblem3 22516
Description: Lemma 3 for m2detleib 22518. (Contributed by AV, 16-Dec-2018.) (Proof shortened by AV, 2-Jan-2019.)
Hypotheses
Ref Expression
m2detleiblem2.n 𝑁 = {1, 2}
m2detleiblem2.p 𝑃 = (Base‘(SymGrp‘𝑁))
m2detleiblem2.a 𝐴 = (𝑁 Mat 𝑅)
m2detleiblem2.b 𝐵 = (Base‘𝐴)
m2detleiblem2.g 𝐺 = (mulGrp‘𝑅)
m2detleiblem3.m · = (+g𝐺)
Assertion
Ref Expression
m2detleiblem3 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → (𝐺 Σg (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))) = ((1𝑀1) · (2𝑀2)))
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑃,𝑛   𝑄,𝑛   𝑅,𝑛
Allowed substitution hints:   𝐴(𝑛)   · (𝑛)   𝐺(𝑛)

Proof of Theorem m2detleiblem3
StepHypRef Expression
1 m2detleiblem2.g . . . 4 𝐺 = (mulGrp‘𝑅)
2 eqid 2729 . . . 4 (Base‘𝑅) = (Base‘𝑅)
31, 2mgpbas 20054 . . 3 (Base‘𝑅) = (Base‘𝐺)
4 m2detleiblem3.m . . 3 · = (+g𝐺)
51fvexi 6872 . . . 4 𝐺 ∈ V
65a1i 11 . . 3 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → 𝐺 ∈ V)
7 1ex 11170 . . . . . . 7 1 ∈ V
8 2nn 12259 . . . . . . 7 2 ∈ ℕ
9 prex 5392 . . . . . . . . 9 {⟨1, 1⟩, ⟨2, 2⟩} ∈ V
109prid1 4726 . . . . . . . 8 {⟨1, 1⟩, ⟨2, 2⟩} ∈ {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}}
11 eqid 2729 . . . . . . . . 9 (SymGrp‘𝑁) = (SymGrp‘𝑁)
12 m2detleiblem2.p . . . . . . . . 9 𝑃 = (Base‘(SymGrp‘𝑁))
13 m2detleiblem2.n . . . . . . . . 9 𝑁 = {1, 2}
1411, 12, 13symg2bas 19323 . . . . . . . 8 ((1 ∈ V ∧ 2 ∈ ℕ) → 𝑃 = {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}})
1510, 14eleqtrrid 2835 . . . . . . 7 ((1 ∈ V ∧ 2 ∈ ℕ) → {⟨1, 1⟩, ⟨2, 2⟩} ∈ 𝑃)
167, 8, 15mp2an 692 . . . . . 6 {⟨1, 1⟩, ⟨2, 2⟩} ∈ 𝑃
17 eleq1 2816 . . . . . 6 (𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} → (𝑄𝑃 ↔ {⟨1, 1⟩, ⟨2, 2⟩} ∈ 𝑃))
1816, 17mpbiri 258 . . . . 5 (𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} → 𝑄𝑃)
19 m2detleiblem2.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
2013oveq1i 7397 . . . . . . 7 (𝑁 Mat 𝑅) = ({1, 2} Mat 𝑅)
2119, 20eqtri 2752 . . . . . 6 𝐴 = ({1, 2} Mat 𝑅)
22 m2detleiblem2.b . . . . . 6 𝐵 = (Base‘𝐴)
2313fveq2i 6861 . . . . . . . 8 (SymGrp‘𝑁) = (SymGrp‘{1, 2})
2423fveq2i 6861 . . . . . . 7 (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘{1, 2}))
2512, 24eqtri 2752 . . . . . 6 𝑃 = (Base‘(SymGrp‘{1, 2}))
2621, 22, 25matepmcl 22349 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑄𝑃𝑀𝐵) → ∀𝑛 ∈ {1, 2} ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅))
2718, 26syl3an2 1164 . . . 4 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → ∀𝑛 ∈ {1, 2} ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅))
2813mpteq1i 5198 . . . . 5 (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛)) = (𝑛 ∈ {1, 2} ↦ ((𝑄𝑛)𝑀𝑛))
2928fmpt 7082 . . . 4 (∀𝑛 ∈ {1, 2} ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅) ↔ (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛)):{1, 2}⟶(Base‘𝑅))
3027, 29sylib 218 . . 3 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛)):{1, 2}⟶(Base‘𝑅))
313, 4, 6, 30gsumpr12val 18616 . 2 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → (𝐺 Σg (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))) = (((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘1) · ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘2)))
327prid1 4726 . . . . . 6 1 ∈ {1, 2}
3332, 13eleqtrri 2827 . . . . 5 1 ∈ 𝑁
3419, 22, 12matepmcl 22349 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑄𝑃𝑀𝐵) → ∀𝑛𝑁 ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅))
3518, 34syl3an2 1164 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → ∀𝑛𝑁 ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅))
36 fveq2 6858 . . . . . . . . 9 (𝑛 = 1 → (𝑄𝑛) = (𝑄‘1))
37 id 22 . . . . . . . . 9 (𝑛 = 1 → 𝑛 = 1)
3836, 37oveq12d 7405 . . . . . . . 8 (𝑛 = 1 → ((𝑄𝑛)𝑀𝑛) = ((𝑄‘1)𝑀1))
3938eleq1d 2813 . . . . . . 7 (𝑛 = 1 → (((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅) ↔ ((𝑄‘1)𝑀1) ∈ (Base‘𝑅)))
4039rspcva 3586 . . . . . 6 ((1 ∈ 𝑁 ∧ ∀𝑛𝑁 ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅)) → ((𝑄‘1)𝑀1) ∈ (Base‘𝑅))
4133, 35, 40sylancr 587 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → ((𝑄‘1)𝑀1) ∈ (Base‘𝑅))
42 eqid 2729 . . . . . 6 (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛)) = (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))
4338, 42fvmptg 6966 . . . . 5 ((1 ∈ 𝑁 ∧ ((𝑄‘1)𝑀1) ∈ (Base‘𝑅)) → ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘1) = ((𝑄‘1)𝑀1))
4433, 41, 43sylancr 587 . . . 4 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘1) = ((𝑄‘1)𝑀1))
45 fveq1 6857 . . . . . . 7 (𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} → (𝑄‘1) = ({⟨1, 1⟩, ⟨2, 2⟩}‘1))
46 1ne2 12389 . . . . . . . 8 1 ≠ 2
477, 7fvpr1 7166 . . . . . . . 8 (1 ≠ 2 → ({⟨1, 1⟩, ⟨2, 2⟩}‘1) = 1)
4846, 47ax-mp 5 . . . . . . 7 ({⟨1, 1⟩, ⟨2, 2⟩}‘1) = 1
4945, 48eqtrdi 2780 . . . . . 6 (𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} → (𝑄‘1) = 1)
50493ad2ant2 1134 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → (𝑄‘1) = 1)
5150oveq1d 7402 . . . 4 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → ((𝑄‘1)𝑀1) = (1𝑀1))
5244, 51eqtrd 2764 . . 3 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘1) = (1𝑀1))
53 2ex 12263 . . . . . . 7 2 ∈ V
5453prid2 4727 . . . . . 6 2 ∈ {1, 2}
5554, 13eleqtrri 2827 . . . . 5 2 ∈ 𝑁
56 fveq2 6858 . . . . . . . . 9 (𝑛 = 2 → (𝑄𝑛) = (𝑄‘2))
57 id 22 . . . . . . . . 9 (𝑛 = 2 → 𝑛 = 2)
5856, 57oveq12d 7405 . . . . . . . 8 (𝑛 = 2 → ((𝑄𝑛)𝑀𝑛) = ((𝑄‘2)𝑀2))
5958eleq1d 2813 . . . . . . 7 (𝑛 = 2 → (((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅) ↔ ((𝑄‘2)𝑀2) ∈ (Base‘𝑅)))
6059rspcva 3586 . . . . . 6 ((2 ∈ 𝑁 ∧ ∀𝑛𝑁 ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅)) → ((𝑄‘2)𝑀2) ∈ (Base‘𝑅))
6155, 35, 60sylancr 587 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → ((𝑄‘2)𝑀2) ∈ (Base‘𝑅))
6258, 42fvmptg 6966 . . . . 5 ((2 ∈ 𝑁 ∧ ((𝑄‘2)𝑀2) ∈ (Base‘𝑅)) → ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘2) = ((𝑄‘2)𝑀2))
6355, 61, 62sylancr 587 . . . 4 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘2) = ((𝑄‘2)𝑀2))
64 fveq1 6857 . . . . . . 7 (𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} → (𝑄‘2) = ({⟨1, 1⟩, ⟨2, 2⟩}‘2))
6553, 53fvpr2 7167 . . . . . . . 8 (1 ≠ 2 → ({⟨1, 1⟩, ⟨2, 2⟩}‘2) = 2)
6646, 65ax-mp 5 . . . . . . 7 ({⟨1, 1⟩, ⟨2, 2⟩}‘2) = 2
6764, 66eqtrdi 2780 . . . . . 6 (𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} → (𝑄‘2) = 2)
68673ad2ant2 1134 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → (𝑄‘2) = 2)
6968oveq1d 7402 . . . 4 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → ((𝑄‘2)𝑀2) = (2𝑀2))
7063, 69eqtrd 2764 . . 3 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘2) = (2𝑀2))
7152, 70oveq12d 7405 . 2 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → (((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘1) · ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘2)) = ((1𝑀1) · (2𝑀2)))
7231, 71eqtrd 2764 1 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → (𝐺 Σg (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))) = ((1𝑀1) · (2𝑀2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3447  {cpr 4591  cop 4595  cmpt 5188  wf 6507  cfv 6511  (class class class)co 7387  1c1 11069  cn 12186  2c2 12241  Basecbs 17179  +gcplusg 17220   Σg cgsu 17403  SymGrpcsymg 19299  mulGrpcmgp 20049  Ringcrg 20142   Mat cmat 22294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-seq 13967  df-fac 14239  df-bc 14268  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-efmnd 18796  df-symg 19300  df-mgp 20050  df-sra 21080  df-rgmod 21081  df-dsmm 21641  df-frlm 21656  df-mat 22295
This theorem is referenced by:  m2detleib  22518
  Copyright terms: Public domain W3C validator