MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m2detleiblem3 Structured version   Visualization version   GIF version

Theorem m2detleiblem3 22650
Description: Lemma 3 for m2detleib 22652. (Contributed by AV, 16-Dec-2018.) (Proof shortened by AV, 2-Jan-2019.)
Hypotheses
Ref Expression
m2detleiblem2.n 𝑁 = {1, 2}
m2detleiblem2.p 𝑃 = (Base‘(SymGrp‘𝑁))
m2detleiblem2.a 𝐴 = (𝑁 Mat 𝑅)
m2detleiblem2.b 𝐵 = (Base‘𝐴)
m2detleiblem2.g 𝐺 = (mulGrp‘𝑅)
m2detleiblem3.m · = (+g𝐺)
Assertion
Ref Expression
m2detleiblem3 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → (𝐺 Σg (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))) = ((1𝑀1) · (2𝑀2)))
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑃,𝑛   𝑄,𝑛   𝑅,𝑛
Allowed substitution hints:   𝐴(𝑛)   · (𝑛)   𝐺(𝑛)

Proof of Theorem m2detleiblem3
StepHypRef Expression
1 m2detleiblem2.g . . . 4 𝐺 = (mulGrp‘𝑅)
2 eqid 2734 . . . 4 (Base‘𝑅) = (Base‘𝑅)
31, 2mgpbas 20157 . . 3 (Base‘𝑅) = (Base‘𝐺)
4 m2detleiblem3.m . . 3 · = (+g𝐺)
51fvexi 6920 . . . 4 𝐺 ∈ V
65a1i 11 . . 3 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → 𝐺 ∈ V)
7 1ex 11254 . . . . . . 7 1 ∈ V
8 2nn 12336 . . . . . . 7 2 ∈ ℕ
9 prex 5442 . . . . . . . . 9 {⟨1, 1⟩, ⟨2, 2⟩} ∈ V
109prid1 4766 . . . . . . . 8 {⟨1, 1⟩, ⟨2, 2⟩} ∈ {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}}
11 eqid 2734 . . . . . . . . 9 (SymGrp‘𝑁) = (SymGrp‘𝑁)
12 m2detleiblem2.p . . . . . . . . 9 𝑃 = (Base‘(SymGrp‘𝑁))
13 m2detleiblem2.n . . . . . . . . 9 𝑁 = {1, 2}
1411, 12, 13symg2bas 19424 . . . . . . . 8 ((1 ∈ V ∧ 2 ∈ ℕ) → 𝑃 = {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}})
1510, 14eleqtrrid 2845 . . . . . . 7 ((1 ∈ V ∧ 2 ∈ ℕ) → {⟨1, 1⟩, ⟨2, 2⟩} ∈ 𝑃)
167, 8, 15mp2an 692 . . . . . 6 {⟨1, 1⟩, ⟨2, 2⟩} ∈ 𝑃
17 eleq1 2826 . . . . . 6 (𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} → (𝑄𝑃 ↔ {⟨1, 1⟩, ⟨2, 2⟩} ∈ 𝑃))
1816, 17mpbiri 258 . . . . 5 (𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} → 𝑄𝑃)
19 m2detleiblem2.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
2013oveq1i 7440 . . . . . . 7 (𝑁 Mat 𝑅) = ({1, 2} Mat 𝑅)
2119, 20eqtri 2762 . . . . . 6 𝐴 = ({1, 2} Mat 𝑅)
22 m2detleiblem2.b . . . . . 6 𝐵 = (Base‘𝐴)
2313fveq2i 6909 . . . . . . . 8 (SymGrp‘𝑁) = (SymGrp‘{1, 2})
2423fveq2i 6909 . . . . . . 7 (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘{1, 2}))
2512, 24eqtri 2762 . . . . . 6 𝑃 = (Base‘(SymGrp‘{1, 2}))
2621, 22, 25matepmcl 22483 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑄𝑃𝑀𝐵) → ∀𝑛 ∈ {1, 2} ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅))
2718, 26syl3an2 1163 . . . 4 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → ∀𝑛 ∈ {1, 2} ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅))
2813mpteq1i 5243 . . . . 5 (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛)) = (𝑛 ∈ {1, 2} ↦ ((𝑄𝑛)𝑀𝑛))
2928fmpt 7129 . . . 4 (∀𝑛 ∈ {1, 2} ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅) ↔ (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛)):{1, 2}⟶(Base‘𝑅))
3027, 29sylib 218 . . 3 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛)):{1, 2}⟶(Base‘𝑅))
313, 4, 6, 30gsumpr12val 18714 . 2 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → (𝐺 Σg (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))) = (((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘1) · ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘2)))
327prid1 4766 . . . . . 6 1 ∈ {1, 2}
3332, 13eleqtrri 2837 . . . . 5 1 ∈ 𝑁
3419, 22, 12matepmcl 22483 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑄𝑃𝑀𝐵) → ∀𝑛𝑁 ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅))
3518, 34syl3an2 1163 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → ∀𝑛𝑁 ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅))
36 fveq2 6906 . . . . . . . . 9 (𝑛 = 1 → (𝑄𝑛) = (𝑄‘1))
37 id 22 . . . . . . . . 9 (𝑛 = 1 → 𝑛 = 1)
3836, 37oveq12d 7448 . . . . . . . 8 (𝑛 = 1 → ((𝑄𝑛)𝑀𝑛) = ((𝑄‘1)𝑀1))
3938eleq1d 2823 . . . . . . 7 (𝑛 = 1 → (((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅) ↔ ((𝑄‘1)𝑀1) ∈ (Base‘𝑅)))
4039rspcva 3619 . . . . . 6 ((1 ∈ 𝑁 ∧ ∀𝑛𝑁 ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅)) → ((𝑄‘1)𝑀1) ∈ (Base‘𝑅))
4133, 35, 40sylancr 587 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → ((𝑄‘1)𝑀1) ∈ (Base‘𝑅))
42 eqid 2734 . . . . . 6 (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛)) = (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))
4338, 42fvmptg 7013 . . . . 5 ((1 ∈ 𝑁 ∧ ((𝑄‘1)𝑀1) ∈ (Base‘𝑅)) → ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘1) = ((𝑄‘1)𝑀1))
4433, 41, 43sylancr 587 . . . 4 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘1) = ((𝑄‘1)𝑀1))
45 fveq1 6905 . . . . . . 7 (𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} → (𝑄‘1) = ({⟨1, 1⟩, ⟨2, 2⟩}‘1))
46 1ne2 12471 . . . . . . . 8 1 ≠ 2
477, 7fvpr1 7211 . . . . . . . 8 (1 ≠ 2 → ({⟨1, 1⟩, ⟨2, 2⟩}‘1) = 1)
4846, 47ax-mp 5 . . . . . . 7 ({⟨1, 1⟩, ⟨2, 2⟩}‘1) = 1
4945, 48eqtrdi 2790 . . . . . 6 (𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} → (𝑄‘1) = 1)
50493ad2ant2 1133 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → (𝑄‘1) = 1)
5150oveq1d 7445 . . . 4 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → ((𝑄‘1)𝑀1) = (1𝑀1))
5244, 51eqtrd 2774 . . 3 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘1) = (1𝑀1))
53 2ex 12340 . . . . . . 7 2 ∈ V
5453prid2 4767 . . . . . 6 2 ∈ {1, 2}
5554, 13eleqtrri 2837 . . . . 5 2 ∈ 𝑁
56 fveq2 6906 . . . . . . . . 9 (𝑛 = 2 → (𝑄𝑛) = (𝑄‘2))
57 id 22 . . . . . . . . 9 (𝑛 = 2 → 𝑛 = 2)
5856, 57oveq12d 7448 . . . . . . . 8 (𝑛 = 2 → ((𝑄𝑛)𝑀𝑛) = ((𝑄‘2)𝑀2))
5958eleq1d 2823 . . . . . . 7 (𝑛 = 2 → (((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅) ↔ ((𝑄‘2)𝑀2) ∈ (Base‘𝑅)))
6059rspcva 3619 . . . . . 6 ((2 ∈ 𝑁 ∧ ∀𝑛𝑁 ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅)) → ((𝑄‘2)𝑀2) ∈ (Base‘𝑅))
6155, 35, 60sylancr 587 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → ((𝑄‘2)𝑀2) ∈ (Base‘𝑅))
6258, 42fvmptg 7013 . . . . 5 ((2 ∈ 𝑁 ∧ ((𝑄‘2)𝑀2) ∈ (Base‘𝑅)) → ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘2) = ((𝑄‘2)𝑀2))
6355, 61, 62sylancr 587 . . . 4 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘2) = ((𝑄‘2)𝑀2))
64 fveq1 6905 . . . . . . 7 (𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} → (𝑄‘2) = ({⟨1, 1⟩, ⟨2, 2⟩}‘2))
6553, 53fvpr2 7212 . . . . . . . 8 (1 ≠ 2 → ({⟨1, 1⟩, ⟨2, 2⟩}‘2) = 2)
6646, 65ax-mp 5 . . . . . . 7 ({⟨1, 1⟩, ⟨2, 2⟩}‘2) = 2
6764, 66eqtrdi 2790 . . . . . 6 (𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} → (𝑄‘2) = 2)
68673ad2ant2 1133 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → (𝑄‘2) = 2)
6968oveq1d 7445 . . . 4 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → ((𝑄‘2)𝑀2) = (2𝑀2))
7063, 69eqtrd 2774 . . 3 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘2) = (2𝑀2))
7152, 70oveq12d 7448 . 2 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → (((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘1) · ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘2)) = ((1𝑀1) · (2𝑀2)))
7231, 71eqtrd 2774 1 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → (𝐺 Σg (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))) = ((1𝑀1) · (2𝑀2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wral 3058  Vcvv 3477  {cpr 4632  cop 4636  cmpt 5230  wf 6558  cfv 6562  (class class class)co 7430  1c1 11153  cn 12263  2c2 12318  Basecbs 17244  +gcplusg 17297   Σg cgsu 17486  SymGrpcsymg 19400  mulGrpcmgp 20151  Ringcrg 20250   Mat cmat 22426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-ot 4639  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-sup 9479  df-dju 9938  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-xnn0 12597  df-z 12611  df-dec 12731  df-uz 12876  df-fz 13544  df-seq 14039  df-fac 14309  df-bc 14338  df-hash 14366  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-0g 17487  df-gsum 17488  df-prds 17493  df-pws 17495  df-efmnd 18894  df-symg 19401  df-mgp 20152  df-sra 21189  df-rgmod 21190  df-dsmm 21769  df-frlm 21784  df-mat 22427
This theorem is referenced by:  m2detleib  22652
  Copyright terms: Public domain W3C validator