Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupequzmptlem Structured version   Visualization version   GIF version

Theorem limsupequzmptlem 43269
Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupequzmptlem.j 𝑗𝜑
limsupequzmptlem.m (𝜑𝑀 ∈ ℤ)
limsupequzmptlem.n (𝜑𝑁 ∈ ℤ)
limsupequzmptlem.a 𝐴 = (ℤ𝑀)
limsupequzmptlem.b 𝐵 = (ℤ𝑁)
limsupequzmptlem.c ((𝜑𝑗𝐴) → 𝐶𝑉)
limsupequzmptlem.d ((𝜑𝑗𝐵) → 𝐶𝑊)
limsupequzmptlem.k 𝐾 = if(𝑀𝑁, 𝑁, 𝑀)
Assertion
Ref Expression
limsupequzmptlem (𝜑 → (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑗𝐵𝐶)))
Distinct variable groups:   𝐴,𝑗   𝐵,𝑗   𝑗,𝐾   𝑗,𝑀   𝑗,𝑁
Allowed substitution hints:   𝜑(𝑗)   𝐶(𝑗)   𝑉(𝑗)   𝑊(𝑗)

Proof of Theorem limsupequzmptlem
StepHypRef Expression
1 limsupequzmptlem.j . 2 𝑗𝜑
2 nfmpt1 5182 . 2 𝑗(𝑗𝐴𝐶)
3 nfmpt1 5182 . 2 𝑗(𝑗𝐵𝐶)
4 limsupequzmptlem.m . 2 (𝜑𝑀 ∈ ℤ)
5 limsupequzmptlem.a . . . . . . 7 𝐴 = (ℤ𝑀)
65eqcomi 2747 . . . . . 6 (ℤ𝑀) = 𝐴
76eleq2i 2830 . . . . 5 (𝑗 ∈ (ℤ𝑀) ↔ 𝑗𝐴)
87biimpi 215 . . . 4 (𝑗 ∈ (ℤ𝑀) → 𝑗𝐴)
9 limsupequzmptlem.c . . . 4 ((𝜑𝑗𝐴) → 𝐶𝑉)
108, 9sylan2 593 . . 3 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝐶𝑉)
115mpteq1i 5170 . . 3 (𝑗𝐴𝐶) = (𝑗 ∈ (ℤ𝑀) ↦ 𝐶)
121, 10, 11fnmptd 6574 . 2 (𝜑 → (𝑗𝐴𝐶) Fn (ℤ𝑀))
13 limsupequzmptlem.n . 2 (𝜑𝑁 ∈ ℤ)
14 limsupequzmptlem.b . . . . . . 7 𝐵 = (ℤ𝑁)
1514eleq2i 2830 . . . . . 6 (𝑗𝐵𝑗 ∈ (ℤ𝑁))
1615bicomi 223 . . . . 5 (𝑗 ∈ (ℤ𝑁) ↔ 𝑗𝐵)
1716biimpi 215 . . . 4 (𝑗 ∈ (ℤ𝑁) → 𝑗𝐵)
18 limsupequzmptlem.d . . . 4 ((𝜑𝑗𝐵) → 𝐶𝑊)
1917, 18sylan2 593 . . 3 ((𝜑𝑗 ∈ (ℤ𝑁)) → 𝐶𝑊)
2014mpteq1i 5170 . . 3 (𝑗𝐵𝐶) = (𝑗 ∈ (ℤ𝑁) ↦ 𝐶)
211, 19, 20fnmptd 6574 . 2 (𝜑 → (𝑗𝐵𝐶) Fn (ℤ𝑁))
22 limsupequzmptlem.k . . 3 𝐾 = if(𝑀𝑁, 𝑁, 𝑀)
2313, 4ifcld 4505 . . 3 (𝜑 → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℤ)
2422, 23eqeltrid 2843 . 2 (𝜑𝐾 ∈ ℤ)
25 eqid 2738 . . . . . . . . 9 (ℤ𝑀) = (ℤ𝑀)
264zred 12426 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
2713zred 12426 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
28 max1 12919 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀))
2926, 27, 28syl2anc 584 . . . . . . . . . 10 (𝜑𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀))
3029, 22breqtrrdi 5116 . . . . . . . . 9 (𝜑𝑀𝐾)
3125, 4, 24, 30eluzd 42949 . . . . . . . 8 (𝜑𝐾 ∈ (ℤ𝑀))
3231uzssd 42948 . . . . . . 7 (𝜑 → (ℤ𝐾) ⊆ (ℤ𝑀))
336a1i 11 . . . . . . 7 (𝜑 → (ℤ𝑀) = 𝐴)
3432, 33sseqtrd 3961 . . . . . 6 (𝜑 → (ℤ𝐾) ⊆ 𝐴)
3534adantr 481 . . . . 5 ((𝜑𝑗 ∈ (ℤ𝐾)) → (ℤ𝐾) ⊆ 𝐴)
36 simpr 485 . . . . 5 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ (ℤ𝐾))
3735, 36sseldd 3922 . . . 4 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗𝐴)
3837, 9syldan 591 . . . 4 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝐶𝑉)
39 eqid 2738 . . . . 5 (𝑗𝐴𝐶) = (𝑗𝐴𝐶)
4039fvmpt2 6886 . . . 4 ((𝑗𝐴𝐶𝑉) → ((𝑗𝐴𝐶)‘𝑗) = 𝐶)
4137, 38, 40syl2anc 584 . . 3 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((𝑗𝐴𝐶)‘𝑗) = 𝐶)
42 eqid 2738 . . . . . . . . 9 (ℤ𝑁) = (ℤ𝑁)
43 max2 12921 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀))
4426, 27, 43syl2anc 584 . . . . . . . . . 10 (𝜑𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀))
4544, 22breqtrrdi 5116 . . . . . . . . 9 (𝜑𝑁𝐾)
4642, 13, 24, 45eluzd 42949 . . . . . . . 8 (𝜑𝐾 ∈ (ℤ𝑁))
4746uzssd 42948 . . . . . . 7 (𝜑 → (ℤ𝐾) ⊆ (ℤ𝑁))
4814eqcomi 2747 . . . . . . . 8 (ℤ𝑁) = 𝐵
4948a1i 11 . . . . . . 7 (𝜑 → (ℤ𝑁) = 𝐵)
5047, 49sseqtrd 3961 . . . . . 6 (𝜑 → (ℤ𝐾) ⊆ 𝐵)
5150adantr 481 . . . . 5 ((𝜑𝑗 ∈ (ℤ𝐾)) → (ℤ𝐾) ⊆ 𝐵)
5251, 36sseldd 3922 . . . 4 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗𝐵)
53 eqid 2738 . . . . 5 (𝑗𝐵𝐶) = (𝑗𝐵𝐶)
5453fvmpt2 6886 . . . 4 ((𝑗𝐵𝐶𝑉) → ((𝑗𝐵𝐶)‘𝑗) = 𝐶)
5552, 38, 54syl2anc 584 . . 3 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((𝑗𝐵𝐶)‘𝑗) = 𝐶)
5641, 55eqtr4d 2781 . 2 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((𝑗𝐴𝐶)‘𝑗) = ((𝑗𝐵𝐶)‘𝑗))
571, 2, 3, 4, 12, 13, 21, 24, 56limsupequz 43264 1 (𝜑 → (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑗𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wnf 1786  wcel 2106  wss 3887  ifcif 4459   class class class wbr 5074  cmpt 5157  cfv 6433  cr 10870  cle 11010  cz 12319  cuz 12582  lim supclsp 15179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-ico 13085  df-limsup 15180
This theorem is referenced by:  limsupequzmpt  43270
  Copyright terms: Public domain W3C validator