Proof of Theorem limsupequzmptlem
Step | Hyp | Ref
| Expression |
1 | | limsupequzmptlem.j |
. 2
⊢
Ⅎ𝑗𝜑 |
2 | | nfmpt1 5182 |
. 2
⊢
Ⅎ𝑗(𝑗 ∈ 𝐴 ↦ 𝐶) |
3 | | nfmpt1 5182 |
. 2
⊢
Ⅎ𝑗(𝑗 ∈ 𝐵 ↦ 𝐶) |
4 | | limsupequzmptlem.m |
. 2
⊢ (𝜑 → 𝑀 ∈ ℤ) |
5 | | limsupequzmptlem.a |
. . . . . . 7
⊢ 𝐴 =
(ℤ≥‘𝑀) |
6 | 5 | eqcomi 2747 |
. . . . . 6
⊢
(ℤ≥‘𝑀) = 𝐴 |
7 | 6 | eleq2i 2830 |
. . . . 5
⊢ (𝑗 ∈
(ℤ≥‘𝑀) ↔ 𝑗 ∈ 𝐴) |
8 | 7 | biimpi 215 |
. . . 4
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → 𝑗 ∈ 𝐴) |
9 | | limsupequzmptlem.c |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐶 ∈ 𝑉) |
10 | 8, 9 | sylan2 593 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → 𝐶 ∈ 𝑉) |
11 | 5 | mpteq1i 5170 |
. . 3
⊢ (𝑗 ∈ 𝐴 ↦ 𝐶) = (𝑗 ∈ (ℤ≥‘𝑀) ↦ 𝐶) |
12 | 1, 10, 11 | fnmptd 6574 |
. 2
⊢ (𝜑 → (𝑗 ∈ 𝐴 ↦ 𝐶) Fn (ℤ≥‘𝑀)) |
13 | | limsupequzmptlem.n |
. 2
⊢ (𝜑 → 𝑁 ∈ ℤ) |
14 | | limsupequzmptlem.b |
. . . . . . 7
⊢ 𝐵 =
(ℤ≥‘𝑁) |
15 | 14 | eleq2i 2830 |
. . . . . 6
⊢ (𝑗 ∈ 𝐵 ↔ 𝑗 ∈ (ℤ≥‘𝑁)) |
16 | 15 | bicomi 223 |
. . . . 5
⊢ (𝑗 ∈
(ℤ≥‘𝑁) ↔ 𝑗 ∈ 𝐵) |
17 | 16 | biimpi 215 |
. . . 4
⊢ (𝑗 ∈
(ℤ≥‘𝑁) → 𝑗 ∈ 𝐵) |
18 | | limsupequzmptlem.d |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐵) → 𝐶 ∈ 𝑊) |
19 | 17, 18 | sylan2 593 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) → 𝐶 ∈ 𝑊) |
20 | 14 | mpteq1i 5170 |
. . 3
⊢ (𝑗 ∈ 𝐵 ↦ 𝐶) = (𝑗 ∈ (ℤ≥‘𝑁) ↦ 𝐶) |
21 | 1, 19, 20 | fnmptd 6574 |
. 2
⊢ (𝜑 → (𝑗 ∈ 𝐵 ↦ 𝐶) Fn (ℤ≥‘𝑁)) |
22 | | limsupequzmptlem.k |
. . 3
⊢ 𝐾 = if(𝑀 ≤ 𝑁, 𝑁, 𝑀) |
23 | 13, 4 | ifcld 4505 |
. . 3
⊢ (𝜑 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℤ) |
24 | 22, 23 | eqeltrid 2843 |
. 2
⊢ (𝜑 → 𝐾 ∈ ℤ) |
25 | | eqid 2738 |
. . . . . . . . 9
⊢
(ℤ≥‘𝑀) = (ℤ≥‘𝑀) |
26 | 4 | zred 12426 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℝ) |
27 | 13 | zred 12426 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℝ) |
28 | | max1 12919 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) |
29 | 26, 27, 28 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) |
30 | 29, 22 | breqtrrdi 5116 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ≤ 𝐾) |
31 | 25, 4, 24, 30 | eluzd 42949 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) |
32 | 31 | uzssd 42948 |
. . . . . . 7
⊢ (𝜑 →
(ℤ≥‘𝐾) ⊆
(ℤ≥‘𝑀)) |
33 | 6 | a1i 11 |
. . . . . . 7
⊢ (𝜑 →
(ℤ≥‘𝑀) = 𝐴) |
34 | 32, 33 | sseqtrd 3961 |
. . . . . 6
⊢ (𝜑 →
(ℤ≥‘𝐾) ⊆ 𝐴) |
35 | 34 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) →
(ℤ≥‘𝐾) ⊆ 𝐴) |
36 | | simpr 485 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → 𝑗 ∈ (ℤ≥‘𝐾)) |
37 | 35, 36 | sseldd 3922 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → 𝑗 ∈ 𝐴) |
38 | 37, 9 | syldan 591 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → 𝐶 ∈ 𝑉) |
39 | | eqid 2738 |
. . . . 5
⊢ (𝑗 ∈ 𝐴 ↦ 𝐶) = (𝑗 ∈ 𝐴 ↦ 𝐶) |
40 | 39 | fvmpt2 6886 |
. . . 4
⊢ ((𝑗 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → ((𝑗 ∈ 𝐴 ↦ 𝐶)‘𝑗) = 𝐶) |
41 | 37, 38, 40 | syl2anc 584 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → ((𝑗 ∈ 𝐴 ↦ 𝐶)‘𝑗) = 𝐶) |
42 | | eqid 2738 |
. . . . . . . . 9
⊢
(ℤ≥‘𝑁) = (ℤ≥‘𝑁) |
43 | | max2 12921 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) |
44 | 26, 27, 43 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) |
45 | 44, 22 | breqtrrdi 5116 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ≤ 𝐾) |
46 | 42, 13, 24, 45 | eluzd 42949 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑁)) |
47 | 46 | uzssd 42948 |
. . . . . . 7
⊢ (𝜑 →
(ℤ≥‘𝐾) ⊆
(ℤ≥‘𝑁)) |
48 | 14 | eqcomi 2747 |
. . . . . . . 8
⊢
(ℤ≥‘𝑁) = 𝐵 |
49 | 48 | a1i 11 |
. . . . . . 7
⊢ (𝜑 →
(ℤ≥‘𝑁) = 𝐵) |
50 | 47, 49 | sseqtrd 3961 |
. . . . . 6
⊢ (𝜑 →
(ℤ≥‘𝐾) ⊆ 𝐵) |
51 | 50 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) →
(ℤ≥‘𝐾) ⊆ 𝐵) |
52 | 51, 36 | sseldd 3922 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → 𝑗 ∈ 𝐵) |
53 | | eqid 2738 |
. . . . 5
⊢ (𝑗 ∈ 𝐵 ↦ 𝐶) = (𝑗 ∈ 𝐵 ↦ 𝐶) |
54 | 53 | fvmpt2 6886 |
. . . 4
⊢ ((𝑗 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → ((𝑗 ∈ 𝐵 ↦ 𝐶)‘𝑗) = 𝐶) |
55 | 52, 38, 54 | syl2anc 584 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → ((𝑗 ∈ 𝐵 ↦ 𝐶)‘𝑗) = 𝐶) |
56 | 41, 55 | eqtr4d 2781 |
. 2
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → ((𝑗 ∈ 𝐴 ↦ 𝐶)‘𝑗) = ((𝑗 ∈ 𝐵 ↦ 𝐶)‘𝑗)) |
57 | 1, 2, 3, 4, 12, 13, 21, 24, 56 | limsupequz 43264 |
1
⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝐴 ↦ 𝐶)) = (lim sup‘(𝑗 ∈ 𝐵 ↦ 𝐶))) |