Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupequzmptlem Structured version   Visualization version   GIF version

Theorem limsupequzmptlem 42227
 Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupequzmptlem.j 𝑗𝜑
limsupequzmptlem.m (𝜑𝑀 ∈ ℤ)
limsupequzmptlem.n (𝜑𝑁 ∈ ℤ)
limsupequzmptlem.a 𝐴 = (ℤ𝑀)
limsupequzmptlem.b 𝐵 = (ℤ𝑁)
limsupequzmptlem.c ((𝜑𝑗𝐴) → 𝐶𝑉)
limsupequzmptlem.d ((𝜑𝑗𝐵) → 𝐶𝑊)
limsupequzmptlem.k 𝐾 = if(𝑀𝑁, 𝑁, 𝑀)
Assertion
Ref Expression
limsupequzmptlem (𝜑 → (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑗𝐵𝐶)))
Distinct variable groups:   𝐴,𝑗   𝐵,𝑗   𝑗,𝐾   𝑗,𝑀   𝑗,𝑁
Allowed substitution hints:   𝜑(𝑗)   𝐶(𝑗)   𝑉(𝑗)   𝑊(𝑗)

Proof of Theorem limsupequzmptlem
StepHypRef Expression
1 limsupequzmptlem.j . 2 𝑗𝜑
2 nfmpt1 5147 . 2 𝑗(𝑗𝐴𝐶)
3 nfmpt1 5147 . 2 𝑗(𝑗𝐵𝐶)
4 limsupequzmptlem.m . 2 (𝜑𝑀 ∈ ℤ)
5 limsupequzmptlem.a . . . . . . 7 𝐴 = (ℤ𝑀)
65eqcomi 2833 . . . . . 6 (ℤ𝑀) = 𝐴
76eleq2i 2907 . . . . 5 (𝑗 ∈ (ℤ𝑀) ↔ 𝑗𝐴)
87biimpi 219 . . . 4 (𝑗 ∈ (ℤ𝑀) → 𝑗𝐴)
9 limsupequzmptlem.c . . . 4 ((𝜑𝑗𝐴) → 𝐶𝑉)
108, 9sylan2 595 . . 3 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝐶𝑉)
115mpteq1i 5139 . . 3 (𝑗𝐴𝐶) = (𝑗 ∈ (ℤ𝑀) ↦ 𝐶)
121, 10, 11fnmptd 6472 . 2 (𝜑 → (𝑗𝐴𝐶) Fn (ℤ𝑀))
13 limsupequzmptlem.n . 2 (𝜑𝑁 ∈ ℤ)
14 limsupequzmptlem.b . . . . . . 7 𝐵 = (ℤ𝑁)
1514eleq2i 2907 . . . . . 6 (𝑗𝐵𝑗 ∈ (ℤ𝑁))
1615bicomi 227 . . . . 5 (𝑗 ∈ (ℤ𝑁) ↔ 𝑗𝐵)
1716biimpi 219 . . . 4 (𝑗 ∈ (ℤ𝑁) → 𝑗𝐵)
18 limsupequzmptlem.d . . . 4 ((𝜑𝑗𝐵) → 𝐶𝑊)
1917, 18sylan2 595 . . 3 ((𝜑𝑗 ∈ (ℤ𝑁)) → 𝐶𝑊)
2014mpteq1i 5139 . . 3 (𝑗𝐵𝐶) = (𝑗 ∈ (ℤ𝑁) ↦ 𝐶)
211, 19, 20fnmptd 6472 . 2 (𝜑 → (𝑗𝐵𝐶) Fn (ℤ𝑁))
22 limsupequzmptlem.k . . 3 𝐾 = if(𝑀𝑁, 𝑁, 𝑀)
2313, 4ifcld 4493 . . 3 (𝜑 → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℤ)
2422, 23eqeltrid 2920 . 2 (𝜑𝐾 ∈ ℤ)
25 eqid 2824 . . . . . . . . 9 (ℤ𝑀) = (ℤ𝑀)
264zred 12075 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
2713zred 12075 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
28 max1 12566 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀))
2926, 27, 28syl2anc 587 . . . . . . . . . 10 (𝜑𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀))
3029, 22breqtrrdi 5091 . . . . . . . . 9 (𝜑𝑀𝐾)
3125, 4, 24, 30eluzd 41903 . . . . . . . 8 (𝜑𝐾 ∈ (ℤ𝑀))
3231uzssd 41902 . . . . . . 7 (𝜑 → (ℤ𝐾) ⊆ (ℤ𝑀))
336a1i 11 . . . . . . 7 (𝜑 → (ℤ𝑀) = 𝐴)
3432, 33sseqtrd 3991 . . . . . 6 (𝜑 → (ℤ𝐾) ⊆ 𝐴)
3534adantr 484 . . . . 5 ((𝜑𝑗 ∈ (ℤ𝐾)) → (ℤ𝐾) ⊆ 𝐴)
36 simpr 488 . . . . 5 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ (ℤ𝐾))
3735, 36sseldd 3952 . . . 4 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗𝐴)
3837, 9syldan 594 . . . 4 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝐶𝑉)
39 eqid 2824 . . . . 5 (𝑗𝐴𝐶) = (𝑗𝐴𝐶)
4039fvmpt2 6762 . . . 4 ((𝑗𝐴𝐶𝑉) → ((𝑗𝐴𝐶)‘𝑗) = 𝐶)
4137, 38, 40syl2anc 587 . . 3 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((𝑗𝐴𝐶)‘𝑗) = 𝐶)
42 eqid 2824 . . . . . . . . 9 (ℤ𝑁) = (ℤ𝑁)
43 max2 12568 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀))
4426, 27, 43syl2anc 587 . . . . . . . . . 10 (𝜑𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀))
4544, 22breqtrrdi 5091 . . . . . . . . 9 (𝜑𝑁𝐾)
4642, 13, 24, 45eluzd 41903 . . . . . . . 8 (𝜑𝐾 ∈ (ℤ𝑁))
4746uzssd 41902 . . . . . . 7 (𝜑 → (ℤ𝐾) ⊆ (ℤ𝑁))
4814eqcomi 2833 . . . . . . . 8 (ℤ𝑁) = 𝐵
4948a1i 11 . . . . . . 7 (𝜑 → (ℤ𝑁) = 𝐵)
5047, 49sseqtrd 3991 . . . . . 6 (𝜑 → (ℤ𝐾) ⊆ 𝐵)
5150adantr 484 . . . . 5 ((𝜑𝑗 ∈ (ℤ𝐾)) → (ℤ𝐾) ⊆ 𝐵)
5251, 36sseldd 3952 . . . 4 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗𝐵)
53 eqid 2824 . . . . 5 (𝑗𝐵𝐶) = (𝑗𝐵𝐶)
5453fvmpt2 6762 . . . 4 ((𝑗𝐵𝐶𝑉) → ((𝑗𝐵𝐶)‘𝑗) = 𝐶)
5552, 38, 54syl2anc 587 . . 3 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((𝑗𝐵𝐶)‘𝑗) = 𝐶)
5641, 55eqtr4d 2862 . 2 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((𝑗𝐴𝐶)‘𝑗) = ((𝑗𝐵𝐶)‘𝑗))
571, 2, 3, 4, 12, 13, 21, 24, 56limsupequz 42222 1 (𝜑 → (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑗𝐵𝐶)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538  Ⅎwnf 1785   ∈ wcel 2115   ⊆ wss 3918  ifcif 4448   class class class wbr 5049   ↦ cmpt 5129  ‘cfv 6338  ℝcr 10523   ≤ cle 10663  ℤcz 11969  ℤ≥cuz 12231  lim supclsp 14818 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5173  ax-sep 5186  ax-nul 5193  ax-pow 5249  ax-pr 5313  ax-un 7446  ax-cnex 10580  ax-resscn 10581  ax-1cn 10582  ax-icn 10583  ax-addcl 10584  ax-addrcl 10585  ax-mulcl 10586  ax-mulrcl 10587  ax-mulcom 10588  ax-addass 10589  ax-mulass 10590  ax-distr 10591  ax-i2m1 10592  ax-1ne0 10593  ax-1rid 10594  ax-rnegex 10595  ax-rrecex 10596  ax-cnre 10597  ax-pre-lttri 10598  ax-pre-lttrn 10599  ax-pre-ltadd 10600  ax-pre-mulgt0 10601  ax-pre-sup 10602 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4822  df-int 4860  df-iun 4904  df-br 5050  df-opab 5112  df-mpt 5130  df-tr 5156  df-id 5443  df-eprel 5448  df-po 5457  df-so 5458  df-fr 5497  df-we 5499  df-xp 5544  df-rel 5545  df-cnv 5546  df-co 5547  df-dm 5548  df-rn 5549  df-res 5550  df-ima 5551  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6297  df-fun 6340  df-fn 6341  df-f 6342  df-f1 6343  df-fo 6344  df-f1o 6345  df-fv 6346  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7674  df-2nd 7675  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-oadd 8091  df-er 8274  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-sup 8892  df-inf 8893  df-pnf 10664  df-mnf 10665  df-xr 10666  df-ltxr 10667  df-le 10668  df-sub 10859  df-neg 10860  df-div 11285  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-ico 12732  df-limsup 14819 This theorem is referenced by:  limsupequzmpt  42228
 Copyright terms: Public domain W3C validator