Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupequzmptlem Structured version   Visualization version   GIF version

Theorem limsupequzmptlem 45726
Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupequzmptlem.j 𝑗𝜑
limsupequzmptlem.m (𝜑𝑀 ∈ ℤ)
limsupequzmptlem.n (𝜑𝑁 ∈ ℤ)
limsupequzmptlem.a 𝐴 = (ℤ𝑀)
limsupequzmptlem.b 𝐵 = (ℤ𝑁)
limsupequzmptlem.c ((𝜑𝑗𝐴) → 𝐶𝑉)
limsupequzmptlem.d ((𝜑𝑗𝐵) → 𝐶𝑊)
limsupequzmptlem.k 𝐾 = if(𝑀𝑁, 𝑁, 𝑀)
Assertion
Ref Expression
limsupequzmptlem (𝜑 → (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑗𝐵𝐶)))
Distinct variable groups:   𝐴,𝑗   𝐵,𝑗   𝑗,𝐾   𝑗,𝑀   𝑗,𝑁
Allowed substitution hints:   𝜑(𝑗)   𝐶(𝑗)   𝑉(𝑗)   𝑊(𝑗)

Proof of Theorem limsupequzmptlem
StepHypRef Expression
1 limsupequzmptlem.j . 2 𝑗𝜑
2 nfmpt1 5206 . 2 𝑗(𝑗𝐴𝐶)
3 nfmpt1 5206 . 2 𝑗(𝑗𝐵𝐶)
4 limsupequzmptlem.m . 2 (𝜑𝑀 ∈ ℤ)
5 limsupequzmptlem.a . . . . . . 7 𝐴 = (ℤ𝑀)
65eqcomi 2738 . . . . . 6 (ℤ𝑀) = 𝐴
76eleq2i 2820 . . . . 5 (𝑗 ∈ (ℤ𝑀) ↔ 𝑗𝐴)
87biimpi 216 . . . 4 (𝑗 ∈ (ℤ𝑀) → 𝑗𝐴)
9 limsupequzmptlem.c . . . 4 ((𝜑𝑗𝐴) → 𝐶𝑉)
108, 9sylan2 593 . . 3 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝐶𝑉)
115mpteq1i 5198 . . 3 (𝑗𝐴𝐶) = (𝑗 ∈ (ℤ𝑀) ↦ 𝐶)
121, 10, 11fnmptd 6659 . 2 (𝜑 → (𝑗𝐴𝐶) Fn (ℤ𝑀))
13 limsupequzmptlem.n . 2 (𝜑𝑁 ∈ ℤ)
14 limsupequzmptlem.b . . . . . . 7 𝐵 = (ℤ𝑁)
1514eleq2i 2820 . . . . . 6 (𝑗𝐵𝑗 ∈ (ℤ𝑁))
1615bicomi 224 . . . . 5 (𝑗 ∈ (ℤ𝑁) ↔ 𝑗𝐵)
1716biimpi 216 . . . 4 (𝑗 ∈ (ℤ𝑁) → 𝑗𝐵)
18 limsupequzmptlem.d . . . 4 ((𝜑𝑗𝐵) → 𝐶𝑊)
1917, 18sylan2 593 . . 3 ((𝜑𝑗 ∈ (ℤ𝑁)) → 𝐶𝑊)
2014mpteq1i 5198 . . 3 (𝑗𝐵𝐶) = (𝑗 ∈ (ℤ𝑁) ↦ 𝐶)
211, 19, 20fnmptd 6659 . 2 (𝜑 → (𝑗𝐵𝐶) Fn (ℤ𝑁))
22 limsupequzmptlem.k . . 3 𝐾 = if(𝑀𝑁, 𝑁, 𝑀)
2313, 4ifcld 4535 . . 3 (𝜑 → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℤ)
2422, 23eqeltrid 2832 . 2 (𝜑𝐾 ∈ ℤ)
25 eqid 2729 . . . . . . . . 9 (ℤ𝑀) = (ℤ𝑀)
264zred 12638 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
2713zred 12638 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
28 max1 13145 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀))
2926, 27, 28syl2anc 584 . . . . . . . . . 10 (𝜑𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀))
3029, 22breqtrrdi 5149 . . . . . . . . 9 (𝜑𝑀𝐾)
3125, 4, 24, 30eluzd 45405 . . . . . . . 8 (𝜑𝐾 ∈ (ℤ𝑀))
3231uzssd 45404 . . . . . . 7 (𝜑 → (ℤ𝐾) ⊆ (ℤ𝑀))
336a1i 11 . . . . . . 7 (𝜑 → (ℤ𝑀) = 𝐴)
3432, 33sseqtrd 3983 . . . . . 6 (𝜑 → (ℤ𝐾) ⊆ 𝐴)
3534adantr 480 . . . . 5 ((𝜑𝑗 ∈ (ℤ𝐾)) → (ℤ𝐾) ⊆ 𝐴)
36 simpr 484 . . . . 5 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ (ℤ𝐾))
3735, 36sseldd 3947 . . . 4 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗𝐴)
3837, 9syldan 591 . . . 4 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝐶𝑉)
39 eqid 2729 . . . . 5 (𝑗𝐴𝐶) = (𝑗𝐴𝐶)
4039fvmpt2 6979 . . . 4 ((𝑗𝐴𝐶𝑉) → ((𝑗𝐴𝐶)‘𝑗) = 𝐶)
4137, 38, 40syl2anc 584 . . 3 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((𝑗𝐴𝐶)‘𝑗) = 𝐶)
42 eqid 2729 . . . . . . . . 9 (ℤ𝑁) = (ℤ𝑁)
43 max2 13147 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀))
4426, 27, 43syl2anc 584 . . . . . . . . . 10 (𝜑𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀))
4544, 22breqtrrdi 5149 . . . . . . . . 9 (𝜑𝑁𝐾)
4642, 13, 24, 45eluzd 45405 . . . . . . . 8 (𝜑𝐾 ∈ (ℤ𝑁))
4746uzssd 45404 . . . . . . 7 (𝜑 → (ℤ𝐾) ⊆ (ℤ𝑁))
4814eqcomi 2738 . . . . . . . 8 (ℤ𝑁) = 𝐵
4948a1i 11 . . . . . . 7 (𝜑 → (ℤ𝑁) = 𝐵)
5047, 49sseqtrd 3983 . . . . . 6 (𝜑 → (ℤ𝐾) ⊆ 𝐵)
5150adantr 480 . . . . 5 ((𝜑𝑗 ∈ (ℤ𝐾)) → (ℤ𝐾) ⊆ 𝐵)
5251, 36sseldd 3947 . . . 4 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗𝐵)
53 eqid 2729 . . . . 5 (𝑗𝐵𝐶) = (𝑗𝐵𝐶)
5453fvmpt2 6979 . . . 4 ((𝑗𝐵𝐶𝑉) → ((𝑗𝐵𝐶)‘𝑗) = 𝐶)
5552, 38, 54syl2anc 584 . . 3 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((𝑗𝐵𝐶)‘𝑗) = 𝐶)
5641, 55eqtr4d 2767 . 2 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((𝑗𝐴𝐶)‘𝑗) = ((𝑗𝐵𝐶)‘𝑗))
571, 2, 3, 4, 12, 13, 21, 24, 56limsupequz 45721 1 (𝜑 → (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑗𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wss 3914  ifcif 4488   class class class wbr 5107  cmpt 5188  cfv 6511  cr 11067  cle 11209  cz 12529  cuz 12793  lim supclsp 15436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-ico 13312  df-limsup 15437
This theorem is referenced by:  limsupequzmpt  45727
  Copyright terms: Public domain W3C validator