Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupequzmptlem Structured version   Visualization version   GIF version

Theorem limsupequzmptlem 45733
Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupequzmptlem.j 𝑗𝜑
limsupequzmptlem.m (𝜑𝑀 ∈ ℤ)
limsupequzmptlem.n (𝜑𝑁 ∈ ℤ)
limsupequzmptlem.a 𝐴 = (ℤ𝑀)
limsupequzmptlem.b 𝐵 = (ℤ𝑁)
limsupequzmptlem.c ((𝜑𝑗𝐴) → 𝐶𝑉)
limsupequzmptlem.d ((𝜑𝑗𝐵) → 𝐶𝑊)
limsupequzmptlem.k 𝐾 = if(𝑀𝑁, 𝑁, 𝑀)
Assertion
Ref Expression
limsupequzmptlem (𝜑 → (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑗𝐵𝐶)))
Distinct variable groups:   𝐴,𝑗   𝐵,𝑗   𝑗,𝐾   𝑗,𝑀   𝑗,𝑁
Allowed substitution hints:   𝜑(𝑗)   𝐶(𝑗)   𝑉(𝑗)   𝑊(𝑗)

Proof of Theorem limsupequzmptlem
StepHypRef Expression
1 limsupequzmptlem.j . 2 𝑗𝜑
2 nfmpt1 5209 . 2 𝑗(𝑗𝐴𝐶)
3 nfmpt1 5209 . 2 𝑗(𝑗𝐵𝐶)
4 limsupequzmptlem.m . 2 (𝜑𝑀 ∈ ℤ)
5 limsupequzmptlem.a . . . . . . 7 𝐴 = (ℤ𝑀)
65eqcomi 2739 . . . . . 6 (ℤ𝑀) = 𝐴
76eleq2i 2821 . . . . 5 (𝑗 ∈ (ℤ𝑀) ↔ 𝑗𝐴)
87biimpi 216 . . . 4 (𝑗 ∈ (ℤ𝑀) → 𝑗𝐴)
9 limsupequzmptlem.c . . . 4 ((𝜑𝑗𝐴) → 𝐶𝑉)
108, 9sylan2 593 . . 3 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝐶𝑉)
115mpteq1i 5201 . . 3 (𝑗𝐴𝐶) = (𝑗 ∈ (ℤ𝑀) ↦ 𝐶)
121, 10, 11fnmptd 6662 . 2 (𝜑 → (𝑗𝐴𝐶) Fn (ℤ𝑀))
13 limsupequzmptlem.n . 2 (𝜑𝑁 ∈ ℤ)
14 limsupequzmptlem.b . . . . . . 7 𝐵 = (ℤ𝑁)
1514eleq2i 2821 . . . . . 6 (𝑗𝐵𝑗 ∈ (ℤ𝑁))
1615bicomi 224 . . . . 5 (𝑗 ∈ (ℤ𝑁) ↔ 𝑗𝐵)
1716biimpi 216 . . . 4 (𝑗 ∈ (ℤ𝑁) → 𝑗𝐵)
18 limsupequzmptlem.d . . . 4 ((𝜑𝑗𝐵) → 𝐶𝑊)
1917, 18sylan2 593 . . 3 ((𝜑𝑗 ∈ (ℤ𝑁)) → 𝐶𝑊)
2014mpteq1i 5201 . . 3 (𝑗𝐵𝐶) = (𝑗 ∈ (ℤ𝑁) ↦ 𝐶)
211, 19, 20fnmptd 6662 . 2 (𝜑 → (𝑗𝐵𝐶) Fn (ℤ𝑁))
22 limsupequzmptlem.k . . 3 𝐾 = if(𝑀𝑁, 𝑁, 𝑀)
2313, 4ifcld 4538 . . 3 (𝜑 → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℤ)
2422, 23eqeltrid 2833 . 2 (𝜑𝐾 ∈ ℤ)
25 eqid 2730 . . . . . . . . 9 (ℤ𝑀) = (ℤ𝑀)
264zred 12645 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
2713zred 12645 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
28 max1 13152 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀))
2926, 27, 28syl2anc 584 . . . . . . . . . 10 (𝜑𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀))
3029, 22breqtrrdi 5152 . . . . . . . . 9 (𝜑𝑀𝐾)
3125, 4, 24, 30eluzd 45412 . . . . . . . 8 (𝜑𝐾 ∈ (ℤ𝑀))
3231uzssd 45411 . . . . . . 7 (𝜑 → (ℤ𝐾) ⊆ (ℤ𝑀))
336a1i 11 . . . . . . 7 (𝜑 → (ℤ𝑀) = 𝐴)
3432, 33sseqtrd 3986 . . . . . 6 (𝜑 → (ℤ𝐾) ⊆ 𝐴)
3534adantr 480 . . . . 5 ((𝜑𝑗 ∈ (ℤ𝐾)) → (ℤ𝐾) ⊆ 𝐴)
36 simpr 484 . . . . 5 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ (ℤ𝐾))
3735, 36sseldd 3950 . . . 4 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗𝐴)
3837, 9syldan 591 . . . 4 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝐶𝑉)
39 eqid 2730 . . . . 5 (𝑗𝐴𝐶) = (𝑗𝐴𝐶)
4039fvmpt2 6982 . . . 4 ((𝑗𝐴𝐶𝑉) → ((𝑗𝐴𝐶)‘𝑗) = 𝐶)
4137, 38, 40syl2anc 584 . . 3 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((𝑗𝐴𝐶)‘𝑗) = 𝐶)
42 eqid 2730 . . . . . . . . 9 (ℤ𝑁) = (ℤ𝑁)
43 max2 13154 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀))
4426, 27, 43syl2anc 584 . . . . . . . . . 10 (𝜑𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀))
4544, 22breqtrrdi 5152 . . . . . . . . 9 (𝜑𝑁𝐾)
4642, 13, 24, 45eluzd 45412 . . . . . . . 8 (𝜑𝐾 ∈ (ℤ𝑁))
4746uzssd 45411 . . . . . . 7 (𝜑 → (ℤ𝐾) ⊆ (ℤ𝑁))
4814eqcomi 2739 . . . . . . . 8 (ℤ𝑁) = 𝐵
4948a1i 11 . . . . . . 7 (𝜑 → (ℤ𝑁) = 𝐵)
5047, 49sseqtrd 3986 . . . . . 6 (𝜑 → (ℤ𝐾) ⊆ 𝐵)
5150adantr 480 . . . . 5 ((𝜑𝑗 ∈ (ℤ𝐾)) → (ℤ𝐾) ⊆ 𝐵)
5251, 36sseldd 3950 . . . 4 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗𝐵)
53 eqid 2730 . . . . 5 (𝑗𝐵𝐶) = (𝑗𝐵𝐶)
5453fvmpt2 6982 . . . 4 ((𝑗𝐵𝐶𝑉) → ((𝑗𝐵𝐶)‘𝑗) = 𝐶)
5552, 38, 54syl2anc 584 . . 3 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((𝑗𝐵𝐶)‘𝑗) = 𝐶)
5641, 55eqtr4d 2768 . 2 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((𝑗𝐴𝐶)‘𝑗) = ((𝑗𝐵𝐶)‘𝑗))
571, 2, 3, 4, 12, 13, 21, 24, 56limsupequz 45728 1 (𝜑 → (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑗𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wss 3917  ifcif 4491   class class class wbr 5110  cmpt 5191  cfv 6514  cr 11074  cle 11216  cz 12536  cuz 12800  lim supclsp 15443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-ico 13319  df-limsup 15444
This theorem is referenced by:  limsupequzmpt  45734
  Copyright terms: Public domain W3C validator