Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupequzmptlem Structured version   Visualization version   GIF version

Theorem limsupequzmptlem 45684
Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupequzmptlem.j 𝑗𝜑
limsupequzmptlem.m (𝜑𝑀 ∈ ℤ)
limsupequzmptlem.n (𝜑𝑁 ∈ ℤ)
limsupequzmptlem.a 𝐴 = (ℤ𝑀)
limsupequzmptlem.b 𝐵 = (ℤ𝑁)
limsupequzmptlem.c ((𝜑𝑗𝐴) → 𝐶𝑉)
limsupequzmptlem.d ((𝜑𝑗𝐵) → 𝐶𝑊)
limsupequzmptlem.k 𝐾 = if(𝑀𝑁, 𝑁, 𝑀)
Assertion
Ref Expression
limsupequzmptlem (𝜑 → (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑗𝐵𝐶)))
Distinct variable groups:   𝐴,𝑗   𝐵,𝑗   𝑗,𝐾   𝑗,𝑀   𝑗,𝑁
Allowed substitution hints:   𝜑(𝑗)   𝐶(𝑗)   𝑉(𝑗)   𝑊(𝑗)

Proof of Theorem limsupequzmptlem
StepHypRef Expression
1 limsupequzmptlem.j . 2 𝑗𝜑
2 nfmpt1 5256 . 2 𝑗(𝑗𝐴𝐶)
3 nfmpt1 5256 . 2 𝑗(𝑗𝐵𝐶)
4 limsupequzmptlem.m . 2 (𝜑𝑀 ∈ ℤ)
5 limsupequzmptlem.a . . . . . . 7 𝐴 = (ℤ𝑀)
65eqcomi 2744 . . . . . 6 (ℤ𝑀) = 𝐴
76eleq2i 2831 . . . . 5 (𝑗 ∈ (ℤ𝑀) ↔ 𝑗𝐴)
87biimpi 216 . . . 4 (𝑗 ∈ (ℤ𝑀) → 𝑗𝐴)
9 limsupequzmptlem.c . . . 4 ((𝜑𝑗𝐴) → 𝐶𝑉)
108, 9sylan2 593 . . 3 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝐶𝑉)
115mpteq1i 5244 . . 3 (𝑗𝐴𝐶) = (𝑗 ∈ (ℤ𝑀) ↦ 𝐶)
121, 10, 11fnmptd 6710 . 2 (𝜑 → (𝑗𝐴𝐶) Fn (ℤ𝑀))
13 limsupequzmptlem.n . 2 (𝜑𝑁 ∈ ℤ)
14 limsupequzmptlem.b . . . . . . 7 𝐵 = (ℤ𝑁)
1514eleq2i 2831 . . . . . 6 (𝑗𝐵𝑗 ∈ (ℤ𝑁))
1615bicomi 224 . . . . 5 (𝑗 ∈ (ℤ𝑁) ↔ 𝑗𝐵)
1716biimpi 216 . . . 4 (𝑗 ∈ (ℤ𝑁) → 𝑗𝐵)
18 limsupequzmptlem.d . . . 4 ((𝜑𝑗𝐵) → 𝐶𝑊)
1917, 18sylan2 593 . . 3 ((𝜑𝑗 ∈ (ℤ𝑁)) → 𝐶𝑊)
2014mpteq1i 5244 . . 3 (𝑗𝐵𝐶) = (𝑗 ∈ (ℤ𝑁) ↦ 𝐶)
211, 19, 20fnmptd 6710 . 2 (𝜑 → (𝑗𝐵𝐶) Fn (ℤ𝑁))
22 limsupequzmptlem.k . . 3 𝐾 = if(𝑀𝑁, 𝑁, 𝑀)
2313, 4ifcld 4577 . . 3 (𝜑 → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℤ)
2422, 23eqeltrid 2843 . 2 (𝜑𝐾 ∈ ℤ)
25 eqid 2735 . . . . . . . . 9 (ℤ𝑀) = (ℤ𝑀)
264zred 12720 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
2713zred 12720 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
28 max1 13224 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀))
2926, 27, 28syl2anc 584 . . . . . . . . . 10 (𝜑𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀))
3029, 22breqtrrdi 5190 . . . . . . . . 9 (𝜑𝑀𝐾)
3125, 4, 24, 30eluzd 45359 . . . . . . . 8 (𝜑𝐾 ∈ (ℤ𝑀))
3231uzssd 45358 . . . . . . 7 (𝜑 → (ℤ𝐾) ⊆ (ℤ𝑀))
336a1i 11 . . . . . . 7 (𝜑 → (ℤ𝑀) = 𝐴)
3432, 33sseqtrd 4036 . . . . . 6 (𝜑 → (ℤ𝐾) ⊆ 𝐴)
3534adantr 480 . . . . 5 ((𝜑𝑗 ∈ (ℤ𝐾)) → (ℤ𝐾) ⊆ 𝐴)
36 simpr 484 . . . . 5 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ (ℤ𝐾))
3735, 36sseldd 3996 . . . 4 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗𝐴)
3837, 9syldan 591 . . . 4 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝐶𝑉)
39 eqid 2735 . . . . 5 (𝑗𝐴𝐶) = (𝑗𝐴𝐶)
4039fvmpt2 7027 . . . 4 ((𝑗𝐴𝐶𝑉) → ((𝑗𝐴𝐶)‘𝑗) = 𝐶)
4137, 38, 40syl2anc 584 . . 3 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((𝑗𝐴𝐶)‘𝑗) = 𝐶)
42 eqid 2735 . . . . . . . . 9 (ℤ𝑁) = (ℤ𝑁)
43 max2 13226 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀))
4426, 27, 43syl2anc 584 . . . . . . . . . 10 (𝜑𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀))
4544, 22breqtrrdi 5190 . . . . . . . . 9 (𝜑𝑁𝐾)
4642, 13, 24, 45eluzd 45359 . . . . . . . 8 (𝜑𝐾 ∈ (ℤ𝑁))
4746uzssd 45358 . . . . . . 7 (𝜑 → (ℤ𝐾) ⊆ (ℤ𝑁))
4814eqcomi 2744 . . . . . . . 8 (ℤ𝑁) = 𝐵
4948a1i 11 . . . . . . 7 (𝜑 → (ℤ𝑁) = 𝐵)
5047, 49sseqtrd 4036 . . . . . 6 (𝜑 → (ℤ𝐾) ⊆ 𝐵)
5150adantr 480 . . . . 5 ((𝜑𝑗 ∈ (ℤ𝐾)) → (ℤ𝐾) ⊆ 𝐵)
5251, 36sseldd 3996 . . . 4 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗𝐵)
53 eqid 2735 . . . . 5 (𝑗𝐵𝐶) = (𝑗𝐵𝐶)
5453fvmpt2 7027 . . . 4 ((𝑗𝐵𝐶𝑉) → ((𝑗𝐵𝐶)‘𝑗) = 𝐶)
5552, 38, 54syl2anc 584 . . 3 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((𝑗𝐵𝐶)‘𝑗) = 𝐶)
5641, 55eqtr4d 2778 . 2 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((𝑗𝐴𝐶)‘𝑗) = ((𝑗𝐵𝐶)‘𝑗))
571, 2, 3, 4, 12, 13, 21, 24, 56limsupequz 45679 1 (𝜑 → (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑗𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wnf 1780  wcel 2106  wss 3963  ifcif 4531   class class class wbr 5148  cmpt 5231  cfv 6563  cr 11152  cle 11294  cz 12611  cuz 12876  lim supclsp 15503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-ico 13390  df-limsup 15504
This theorem is referenced by:  limsupequzmpt  45685
  Copyright terms: Public domain W3C validator