Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlset Structured version   Visualization version   GIF version

Theorem trlset 40185
Description: The set of traces of lattice translations for a fiducial co-atom 𝑊. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
trlset.b 𝐵 = (Base‘𝐾)
trlset.l = (le‘𝐾)
trlset.j = (join‘𝐾)
trlset.m = (meet‘𝐾)
trlset.a 𝐴 = (Atoms‘𝐾)
trlset.h 𝐻 = (LHyp‘𝐾)
trlset.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlset.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlset ((𝐾𝐶𝑊𝐻) → 𝑅 = (𝑓𝑇 ↦ (𝑥𝐵𝑝𝐴𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊)))))
Distinct variable groups:   𝐴,𝑝   𝑥,𝐵   𝑓,𝑝,𝑥,𝐾   𝑇,𝑓   𝑓,𝑊,𝑝,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑓)   𝐵(𝑓,𝑝)   𝐶(𝑥,𝑓,𝑝)   𝑅(𝑥,𝑓,𝑝)   𝑇(𝑥,𝑝)   𝐻(𝑥,𝑓,𝑝)   (𝑥,𝑓,𝑝)   (𝑥,𝑓,𝑝)   (𝑥,𝑓,𝑝)

Proof of Theorem trlset
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 trlset.r . . 3 𝑅 = ((trL‘𝐾)‘𝑊)
2 trlset.b . . . . 5 𝐵 = (Base‘𝐾)
3 trlset.l . . . . 5 = (le‘𝐾)
4 trlset.j . . . . 5 = (join‘𝐾)
5 trlset.m . . . . 5 = (meet‘𝐾)
6 trlset.a . . . . 5 𝐴 = (Atoms‘𝐾)
7 trlset.h . . . . 5 𝐻 = (LHyp‘𝐾)
82, 3, 4, 5, 6, 7trlfset 40184 . . . 4 (𝐾𝐶 → (trL‘𝐾) = (𝑤𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤))))))
98fveq1d 6883 . . 3 (𝐾𝐶 → ((trL‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤)))))‘𝑊))
101, 9eqtrid 2783 . 2 (𝐾𝐶𝑅 = ((𝑤𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤)))))‘𝑊))
11 fveq2 6881 . . . . 5 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = ((LTrn‘𝐾)‘𝑊))
12 breq2 5128 . . . . . . . . 9 (𝑤 = 𝑊 → (𝑝 𝑤𝑝 𝑊))
1312notbid 318 . . . . . . . 8 (𝑤 = 𝑊 → (¬ 𝑝 𝑤 ↔ ¬ 𝑝 𝑊))
14 oveq2 7418 . . . . . . . . 9 (𝑤 = 𝑊 → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑝 (𝑓𝑝)) 𝑊))
1514eqeq2d 2747 . . . . . . . 8 (𝑤 = 𝑊 → (𝑥 = ((𝑝 (𝑓𝑝)) 𝑤) ↔ 𝑥 = ((𝑝 (𝑓𝑝)) 𝑊)))
1613, 15imbi12d 344 . . . . . . 7 (𝑤 = 𝑊 → ((¬ 𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤)) ↔ (¬ 𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊))))
1716ralbidv 3164 . . . . . 6 (𝑤 = 𝑊 → (∀𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤)) ↔ ∀𝑝𝐴𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊))))
1817riotabidv 7369 . . . . 5 (𝑤 = 𝑊 → (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤))) = (𝑥𝐵𝑝𝐴𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊))))
1911, 18mpteq12dv 5212 . . . 4 (𝑤 = 𝑊 → (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤)))) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊)))))
20 eqid 2736 . . . 4 (𝑤𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤))))) = (𝑤𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤)))))
21 fvex 6894 . . . . 5 ((LTrn‘𝐾)‘𝑊) ∈ V
2221mptex 7220 . . . 4 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊)))) ∈ V
2319, 20, 22fvmpt 6991 . . 3 (𝑊𝐻 → ((𝑤𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤)))))‘𝑊) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊)))))
24 trlset.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
2524mpteq1i 5216 . . 3 (𝑓𝑇 ↦ (𝑥𝐵𝑝𝐴𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊)))) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊))))
2623, 25eqtr4di 2789 . 2 (𝑊𝐻 → ((𝑤𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤)))))‘𝑊) = (𝑓𝑇 ↦ (𝑥𝐵𝑝𝐴𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊)))))
2710, 26sylan9eq 2791 1 ((𝐾𝐶𝑊𝐻) → 𝑅 = (𝑓𝑇 ↦ (𝑥𝐵𝑝𝐴𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3052   class class class wbr 5124  cmpt 5206  cfv 6536  crio 7366  (class class class)co 7410  Basecbs 17233  lecple 17283  joincjn 18328  meetcmee 18329  Atomscatm 39286  LHypclh 40008  LTrncltrn 40125  trLctrl 40182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-trl 40183
This theorem is referenced by:  trlval  40186
  Copyright terms: Public domain W3C validator