Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlset Structured version   Visualization version   GIF version

Theorem trlset 40118
Description: The set of traces of lattice translations for a fiducial co-atom 𝑊. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
trlset.b 𝐵 = (Base‘𝐾)
trlset.l = (le‘𝐾)
trlset.j = (join‘𝐾)
trlset.m = (meet‘𝐾)
trlset.a 𝐴 = (Atoms‘𝐾)
trlset.h 𝐻 = (LHyp‘𝐾)
trlset.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlset.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlset ((𝐾𝐶𝑊𝐻) → 𝑅 = (𝑓𝑇 ↦ (𝑥𝐵𝑝𝐴𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊)))))
Distinct variable groups:   𝐴,𝑝   𝑥,𝐵   𝑓,𝑝,𝑥,𝐾   𝑇,𝑓   𝑓,𝑊,𝑝,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑓)   𝐵(𝑓,𝑝)   𝐶(𝑥,𝑓,𝑝)   𝑅(𝑥,𝑓,𝑝)   𝑇(𝑥,𝑝)   𝐻(𝑥,𝑓,𝑝)   (𝑥,𝑓,𝑝)   (𝑥,𝑓,𝑝)   (𝑥,𝑓,𝑝)

Proof of Theorem trlset
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 trlset.r . . 3 𝑅 = ((trL‘𝐾)‘𝑊)
2 trlset.b . . . . 5 𝐵 = (Base‘𝐾)
3 trlset.l . . . . 5 = (le‘𝐾)
4 trlset.j . . . . 5 = (join‘𝐾)
5 trlset.m . . . . 5 = (meet‘𝐾)
6 trlset.a . . . . 5 𝐴 = (Atoms‘𝐾)
7 trlset.h . . . . 5 𝐻 = (LHyp‘𝐾)
82, 3, 4, 5, 6, 7trlfset 40117 . . . 4 (𝐾𝐶 → (trL‘𝐾) = (𝑤𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤))))))
98fveq1d 6922 . . 3 (𝐾𝐶 → ((trL‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤)))))‘𝑊))
101, 9eqtrid 2792 . 2 (𝐾𝐶𝑅 = ((𝑤𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤)))))‘𝑊))
11 fveq2 6920 . . . . 5 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = ((LTrn‘𝐾)‘𝑊))
12 breq2 5170 . . . . . . . . 9 (𝑤 = 𝑊 → (𝑝 𝑤𝑝 𝑊))
1312notbid 318 . . . . . . . 8 (𝑤 = 𝑊 → (¬ 𝑝 𝑤 ↔ ¬ 𝑝 𝑊))
14 oveq2 7456 . . . . . . . . 9 (𝑤 = 𝑊 → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑝 (𝑓𝑝)) 𝑊))
1514eqeq2d 2751 . . . . . . . 8 (𝑤 = 𝑊 → (𝑥 = ((𝑝 (𝑓𝑝)) 𝑤) ↔ 𝑥 = ((𝑝 (𝑓𝑝)) 𝑊)))
1613, 15imbi12d 344 . . . . . . 7 (𝑤 = 𝑊 → ((¬ 𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤)) ↔ (¬ 𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊))))
1716ralbidv 3184 . . . . . 6 (𝑤 = 𝑊 → (∀𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤)) ↔ ∀𝑝𝐴𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊))))
1817riotabidv 7406 . . . . 5 (𝑤 = 𝑊 → (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤))) = (𝑥𝐵𝑝𝐴𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊))))
1911, 18mpteq12dv 5257 . . . 4 (𝑤 = 𝑊 → (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤)))) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊)))))
20 eqid 2740 . . . 4 (𝑤𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤))))) = (𝑤𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤)))))
21 fvex 6933 . . . . 5 ((LTrn‘𝐾)‘𝑊) ∈ V
2221mptex 7260 . . . 4 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊)))) ∈ V
2319, 20, 22fvmpt 7029 . . 3 (𝑊𝐻 → ((𝑤𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤)))))‘𝑊) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊)))))
24 trlset.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
2524mpteq1i 5262 . . 3 (𝑓𝑇 ↦ (𝑥𝐵𝑝𝐴𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊)))) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊))))
2623, 25eqtr4di 2798 . 2 (𝑊𝐻 → ((𝑤𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤)))))‘𝑊) = (𝑓𝑇 ↦ (𝑥𝐵𝑝𝐴𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊)))))
2710, 26sylan9eq 2800 1 ((𝐾𝐶𝑊𝐻) → 𝑅 = (𝑓𝑇 ↦ (𝑥𝐵𝑝𝐴𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067   class class class wbr 5166  cmpt 5249  cfv 6573  crio 7403  (class class class)co 7448  Basecbs 17258  lecple 17318  joincjn 18381  meetcmee 18382  Atomscatm 39219  LHypclh 39941  LTrncltrn 40058  trLctrl 40115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-trl 40116
This theorem is referenced by:  trlval  40119
  Copyright terms: Public domain W3C validator