Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlset Structured version   Visualization version   GIF version

Theorem trlset 38154
Description: The set of traces of lattice translations for a fiducial co-atom 𝑊. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
trlset.b 𝐵 = (Base‘𝐾)
trlset.l = (le‘𝐾)
trlset.j = (join‘𝐾)
trlset.m = (meet‘𝐾)
trlset.a 𝐴 = (Atoms‘𝐾)
trlset.h 𝐻 = (LHyp‘𝐾)
trlset.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlset.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlset ((𝐾𝐶𝑊𝐻) → 𝑅 = (𝑓𝑇 ↦ (𝑥𝐵𝑝𝐴𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊)))))
Distinct variable groups:   𝐴,𝑝   𝑥,𝐵   𝑓,𝑝,𝑥,𝐾   𝑇,𝑓   𝑓,𝑊,𝑝,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑓)   𝐵(𝑓,𝑝)   𝐶(𝑥,𝑓,𝑝)   𝑅(𝑥,𝑓,𝑝)   𝑇(𝑥,𝑝)   𝐻(𝑥,𝑓,𝑝)   (𝑥,𝑓,𝑝)   (𝑥,𝑓,𝑝)   (𝑥,𝑓,𝑝)

Proof of Theorem trlset
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 trlset.r . . 3 𝑅 = ((trL‘𝐾)‘𝑊)
2 trlset.b . . . . 5 𝐵 = (Base‘𝐾)
3 trlset.l . . . . 5 = (le‘𝐾)
4 trlset.j . . . . 5 = (join‘𝐾)
5 trlset.m . . . . 5 = (meet‘𝐾)
6 trlset.a . . . . 5 𝐴 = (Atoms‘𝐾)
7 trlset.h . . . . 5 𝐻 = (LHyp‘𝐾)
82, 3, 4, 5, 6, 7trlfset 38153 . . . 4 (𝐾𝐶 → (trL‘𝐾) = (𝑤𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤))))))
98fveq1d 6770 . . 3 (𝐾𝐶 → ((trL‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤)))))‘𝑊))
101, 9eqtrid 2791 . 2 (𝐾𝐶𝑅 = ((𝑤𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤)))))‘𝑊))
11 fveq2 6768 . . . . 5 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = ((LTrn‘𝐾)‘𝑊))
12 breq2 5082 . . . . . . . . 9 (𝑤 = 𝑊 → (𝑝 𝑤𝑝 𝑊))
1312notbid 317 . . . . . . . 8 (𝑤 = 𝑊 → (¬ 𝑝 𝑤 ↔ ¬ 𝑝 𝑊))
14 oveq2 7276 . . . . . . . . 9 (𝑤 = 𝑊 → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑝 (𝑓𝑝)) 𝑊))
1514eqeq2d 2750 . . . . . . . 8 (𝑤 = 𝑊 → (𝑥 = ((𝑝 (𝑓𝑝)) 𝑤) ↔ 𝑥 = ((𝑝 (𝑓𝑝)) 𝑊)))
1613, 15imbi12d 344 . . . . . . 7 (𝑤 = 𝑊 → ((¬ 𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤)) ↔ (¬ 𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊))))
1716ralbidv 3122 . . . . . 6 (𝑤 = 𝑊 → (∀𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤)) ↔ ∀𝑝𝐴𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊))))
1817riotabidv 7227 . . . . 5 (𝑤 = 𝑊 → (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤))) = (𝑥𝐵𝑝𝐴𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊))))
1911, 18mpteq12dv 5169 . . . 4 (𝑤 = 𝑊 → (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤)))) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊)))))
20 eqid 2739 . . . 4 (𝑤𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤))))) = (𝑤𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤)))))
21 fvex 6781 . . . . 5 ((LTrn‘𝐾)‘𝑊) ∈ V
2221mptex 7093 . . . 4 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊)))) ∈ V
2319, 20, 22fvmpt 6869 . . 3 (𝑊𝐻 → ((𝑤𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤)))))‘𝑊) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊)))))
24 trlset.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
2524mpteq1i 5174 . . 3 (𝑓𝑇 ↦ (𝑥𝐵𝑝𝐴𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊)))) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊))))
2623, 25eqtr4di 2797 . 2 (𝑊𝐻 → ((𝑤𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤)))))‘𝑊) = (𝑓𝑇 ↦ (𝑥𝐵𝑝𝐴𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊)))))
2710, 26sylan9eq 2799 1 ((𝐾𝐶𝑊𝐻) → 𝑅 = (𝑓𝑇 ↦ (𝑥𝐵𝑝𝐴𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2109  wral 3065   class class class wbr 5078  cmpt 5161  cfv 6430  crio 7224  (class class class)co 7268  Basecbs 16893  lecple 16950  joincjn 18010  meetcmee 18011  Atomscatm 37256  LHypclh 37977  LTrncltrn 38094  trLctrl 38151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-trl 38152
This theorem is referenced by:  trlval  38155
  Copyright terms: Public domain W3C validator