| Step | Hyp | Ref
| Expression |
| 1 | | trlset.r |
. . 3
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| 2 | | trlset.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
| 3 | | trlset.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
| 4 | | trlset.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
| 5 | | trlset.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
| 6 | | trlset.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
| 7 | | trlset.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
| 8 | 2, 3, 4, 5, 6, 7 | trlfset 40162 |
. . . 4
⊢ (𝐾 ∈ 𝐶 → (trL‘𝐾) = (𝑤 ∈ 𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑤 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑤)))))) |
| 9 | 8 | fveq1d 6908 |
. . 3
⊢ (𝐾 ∈ 𝐶 → ((trL‘𝐾)‘𝑊) = ((𝑤 ∈ 𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑤 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑤)))))‘𝑊)) |
| 10 | 1, 9 | eqtrid 2789 |
. 2
⊢ (𝐾 ∈ 𝐶 → 𝑅 = ((𝑤 ∈ 𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑤 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑤)))))‘𝑊)) |
| 11 | | fveq2 6906 |
. . . . 5
⊢ (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = ((LTrn‘𝐾)‘𝑊)) |
| 12 | | breq2 5147 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → (𝑝 ≤ 𝑤 ↔ 𝑝 ≤ 𝑊)) |
| 13 | 12 | notbid 318 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → (¬ 𝑝 ≤ 𝑤 ↔ ¬ 𝑝 ≤ 𝑊)) |
| 14 | | oveq2 7439 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑤) = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊)) |
| 15 | 14 | eqeq2d 2748 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → (𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑤) ↔ 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊))) |
| 16 | 13, 15 | imbi12d 344 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → ((¬ 𝑝 ≤ 𝑤 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑤)) ↔ (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊)))) |
| 17 | 16 | ralbidv 3178 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑤 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑤)) ↔ ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊)))) |
| 18 | 17 | riotabidv 7390 |
. . . . 5
⊢ (𝑤 = 𝑊 → (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑤 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑤))) = (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊)))) |
| 19 | 11, 18 | mpteq12dv 5233 |
. . . 4
⊢ (𝑤 = 𝑊 → (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑤 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑤)))) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊))))) |
| 20 | | eqid 2737 |
. . . 4
⊢ (𝑤 ∈ 𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑤 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑤))))) = (𝑤 ∈ 𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑤 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑤))))) |
| 21 | | fvex 6919 |
. . . . 5
⊢
((LTrn‘𝐾)‘𝑊) ∈ V |
| 22 | 21 | mptex 7243 |
. . . 4
⊢ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊)))) ∈ V |
| 23 | 19, 20, 22 | fvmpt 7016 |
. . 3
⊢ (𝑊 ∈ 𝐻 → ((𝑤 ∈ 𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑤 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑤)))))‘𝑊) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊))))) |
| 24 | | trlset.t |
. . . 4
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| 25 | 24 | mpteq1i 5238 |
. . 3
⊢ (𝑓 ∈ 𝑇 ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊)))) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊)))) |
| 26 | 23, 25 | eqtr4di 2795 |
. 2
⊢ (𝑊 ∈ 𝐻 → ((𝑤 ∈ 𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑤 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑤)))))‘𝑊) = (𝑓 ∈ 𝑇 ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊))))) |
| 27 | 10, 26 | sylan9eq 2797 |
1
⊢ ((𝐾 ∈ 𝐶 ∧ 𝑊 ∈ 𝐻) → 𝑅 = (𝑓 ∈ 𝑇 ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊))))) |