Step | Hyp | Ref
| Expression |
1 | | trlset.r |
. . 3
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
2 | | trlset.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
3 | | trlset.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
4 | | trlset.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
5 | | trlset.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
6 | | trlset.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
7 | | trlset.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
8 | 2, 3, 4, 5, 6, 7 | trlfset 38153 |
. . . 4
⊢ (𝐾 ∈ 𝐶 → (trL‘𝐾) = (𝑤 ∈ 𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑤 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑤)))))) |
9 | 8 | fveq1d 6770 |
. . 3
⊢ (𝐾 ∈ 𝐶 → ((trL‘𝐾)‘𝑊) = ((𝑤 ∈ 𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑤 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑤)))))‘𝑊)) |
10 | 1, 9 | eqtrid 2791 |
. 2
⊢ (𝐾 ∈ 𝐶 → 𝑅 = ((𝑤 ∈ 𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑤 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑤)))))‘𝑊)) |
11 | | fveq2 6768 |
. . . . 5
⊢ (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = ((LTrn‘𝐾)‘𝑊)) |
12 | | breq2 5082 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → (𝑝 ≤ 𝑤 ↔ 𝑝 ≤ 𝑊)) |
13 | 12 | notbid 317 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → (¬ 𝑝 ≤ 𝑤 ↔ ¬ 𝑝 ≤ 𝑊)) |
14 | | oveq2 7276 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑤) = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊)) |
15 | 14 | eqeq2d 2750 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → (𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑤) ↔ 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊))) |
16 | 13, 15 | imbi12d 344 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → ((¬ 𝑝 ≤ 𝑤 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑤)) ↔ (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊)))) |
17 | 16 | ralbidv 3122 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑤 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑤)) ↔ ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊)))) |
18 | 17 | riotabidv 7227 |
. . . . 5
⊢ (𝑤 = 𝑊 → (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑤 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑤))) = (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊)))) |
19 | 11, 18 | mpteq12dv 5169 |
. . . 4
⊢ (𝑤 = 𝑊 → (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑤 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑤)))) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊))))) |
20 | | eqid 2739 |
. . . 4
⊢ (𝑤 ∈ 𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑤 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑤))))) = (𝑤 ∈ 𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑤 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑤))))) |
21 | | fvex 6781 |
. . . . 5
⊢
((LTrn‘𝐾)‘𝑊) ∈ V |
22 | 21 | mptex 7093 |
. . . 4
⊢ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊)))) ∈ V |
23 | 19, 20, 22 | fvmpt 6869 |
. . 3
⊢ (𝑊 ∈ 𝐻 → ((𝑤 ∈ 𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑤 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑤)))))‘𝑊) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊))))) |
24 | | trlset.t |
. . . 4
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
25 | 24 | mpteq1i 5174 |
. . 3
⊢ (𝑓 ∈ 𝑇 ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊)))) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊)))) |
26 | 23, 25 | eqtr4di 2797 |
. 2
⊢ (𝑊 ∈ 𝐻 → ((𝑤 ∈ 𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑤 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑤)))))‘𝑊) = (𝑓 ∈ 𝑇 ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊))))) |
27 | 10, 26 | sylan9eq 2799 |
1
⊢ ((𝐾 ∈ 𝐶 ∧ 𝑊 ∈ 𝐻) → 𝑅 = (𝑓 ∈ 𝑇 ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊))))) |