Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlset Structured version   Visualization version   GIF version

Theorem trlset 40280
Description: The set of traces of lattice translations for a fiducial co-atom 𝑊. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
trlset.b 𝐵 = (Base‘𝐾)
trlset.l = (le‘𝐾)
trlset.j = (join‘𝐾)
trlset.m = (meet‘𝐾)
trlset.a 𝐴 = (Atoms‘𝐾)
trlset.h 𝐻 = (LHyp‘𝐾)
trlset.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlset.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlset ((𝐾𝐶𝑊𝐻) → 𝑅 = (𝑓𝑇 ↦ (𝑥𝐵𝑝𝐴𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊)))))
Distinct variable groups:   𝐴,𝑝   𝑥,𝐵   𝑓,𝑝,𝑥,𝐾   𝑇,𝑓   𝑓,𝑊,𝑝,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑓)   𝐵(𝑓,𝑝)   𝐶(𝑥,𝑓,𝑝)   𝑅(𝑥,𝑓,𝑝)   𝑇(𝑥,𝑝)   𝐻(𝑥,𝑓,𝑝)   (𝑥,𝑓,𝑝)   (𝑥,𝑓,𝑝)   (𝑥,𝑓,𝑝)

Proof of Theorem trlset
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 trlset.r . . 3 𝑅 = ((trL‘𝐾)‘𝑊)
2 trlset.b . . . . 5 𝐵 = (Base‘𝐾)
3 trlset.l . . . . 5 = (le‘𝐾)
4 trlset.j . . . . 5 = (join‘𝐾)
5 trlset.m . . . . 5 = (meet‘𝐾)
6 trlset.a . . . . 5 𝐴 = (Atoms‘𝐾)
7 trlset.h . . . . 5 𝐻 = (LHyp‘𝐾)
82, 3, 4, 5, 6, 7trlfset 40279 . . . 4 (𝐾𝐶 → (trL‘𝐾) = (𝑤𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤))))))
98fveq1d 6830 . . 3 (𝐾𝐶 → ((trL‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤)))))‘𝑊))
101, 9eqtrid 2780 . 2 (𝐾𝐶𝑅 = ((𝑤𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤)))))‘𝑊))
11 fveq2 6828 . . . . 5 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = ((LTrn‘𝐾)‘𝑊))
12 breq2 5097 . . . . . . . . 9 (𝑤 = 𝑊 → (𝑝 𝑤𝑝 𝑊))
1312notbid 318 . . . . . . . 8 (𝑤 = 𝑊 → (¬ 𝑝 𝑤 ↔ ¬ 𝑝 𝑊))
14 oveq2 7360 . . . . . . . . 9 (𝑤 = 𝑊 → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑝 (𝑓𝑝)) 𝑊))
1514eqeq2d 2744 . . . . . . . 8 (𝑤 = 𝑊 → (𝑥 = ((𝑝 (𝑓𝑝)) 𝑤) ↔ 𝑥 = ((𝑝 (𝑓𝑝)) 𝑊)))
1613, 15imbi12d 344 . . . . . . 7 (𝑤 = 𝑊 → ((¬ 𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤)) ↔ (¬ 𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊))))
1716ralbidv 3156 . . . . . 6 (𝑤 = 𝑊 → (∀𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤)) ↔ ∀𝑝𝐴𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊))))
1817riotabidv 7311 . . . . 5 (𝑤 = 𝑊 → (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤))) = (𝑥𝐵𝑝𝐴𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊))))
1911, 18mpteq12dv 5180 . . . 4 (𝑤 = 𝑊 → (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤)))) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊)))))
20 eqid 2733 . . . 4 (𝑤𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤))))) = (𝑤𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤)))))
21 fvex 6841 . . . . 5 ((LTrn‘𝐾)‘𝑊) ∈ V
2221mptex 7163 . . . 4 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊)))) ∈ V
2319, 20, 22fvmpt 6935 . . 3 (𝑊𝐻 → ((𝑤𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤)))))‘𝑊) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊)))))
24 trlset.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
2524mpteq1i 5184 . . 3 (𝑓𝑇 ↦ (𝑥𝐵𝑝𝐴𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊)))) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊))))
2623, 25eqtr4di 2786 . 2 (𝑊𝐻 → ((𝑤𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑥𝐵𝑝𝐴𝑝 𝑤𝑥 = ((𝑝 (𝑓𝑝)) 𝑤)))))‘𝑊) = (𝑓𝑇 ↦ (𝑥𝐵𝑝𝐴𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊)))))
2710, 26sylan9eq 2788 1 ((𝐾𝐶𝑊𝐻) → 𝑅 = (𝑓𝑇 ↦ (𝑥𝐵𝑝𝐴𝑝 𝑊𝑥 = ((𝑝 (𝑓𝑝)) 𝑊)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048   class class class wbr 5093  cmpt 5174  cfv 6486  crio 7308  (class class class)co 7352  Basecbs 17122  lecple 17170  joincjn 18219  meetcmee 18220  Atomscatm 39382  LHypclh 40103  LTrncltrn 40220  trLctrl 40277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-trl 40278
This theorem is referenced by:  trlval  40281
  Copyright terms: Public domain W3C validator