MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnextbij Structured version   Visualization version   GIF version

Theorem wwlksnextbij 27594
Description: There is a bijection between the extensions of a walk (as word) by an edge and the set of vertices being connected to the trailing vertex of the walk. (Contributed by Alexander van der Vekens, 21-Aug-2018.) (Revised by AV, 18-Apr-2021.) (Revised by AV, 27-Oct-2022.)
Hypotheses
Ref Expression
wwlksnextbij.v 𝑉 = (Vtx‘𝐺)
wwlksnextbij.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
wwlksnextbij (𝑊 ∈ (𝑁 WWalksN 𝐺) → ∃𝑓 𝑓:{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}–1-1-onto→{𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸})
Distinct variable groups:   𝑓,𝐸,𝑛,𝑤   𝑓,𝐺,𝑤   𝑓,𝑁,𝑤   𝑓,𝑉,𝑛,𝑤   𝑓,𝑊,𝑛,𝑤
Allowed substitution hints:   𝐺(𝑛)   𝑁(𝑛)

Proof of Theorem wwlksnextbij
Dummy variables 𝑝 𝑡 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovexd 7183 . . 3 (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((𝑁 + 1) WWalksN 𝐺) ∈ V)
2 rabexg 5231 . . 3 (((𝑁 + 1) WWalksN 𝐺) ∈ V → {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ∈ V)
3 mptexg 6979 . . 3 ({𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ∈ V → (𝑥 ∈ {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)) ∈ V)
41, 2, 33syl 18 . 2 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑥 ∈ {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)) ∈ V)
5 wwlksnextbij.v . . . 4 𝑉 = (Vtx‘𝐺)
6 wwlksnextbij.e . . . 4 𝐸 = (Edg‘𝐺)
7 eqid 2826 . . . 4 {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}
8 preq2 4669 . . . . . 6 (𝑛 = 𝑝 → {(lastS‘𝑊), 𝑛} = {(lastS‘𝑊), 𝑝})
98eleq1d 2902 . . . . 5 (𝑛 = 𝑝 → ({(lastS‘𝑊), 𝑛} ∈ 𝐸 ↔ {(lastS‘𝑊), 𝑝} ∈ 𝐸))
109cbvrabv 3497 . . . 4 {𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸} = {𝑝𝑉 ∣ {(lastS‘𝑊), 𝑝} ∈ 𝐸}
11 fveqeq2 6676 . . . . . . 7 (𝑡 = 𝑤 → ((♯‘𝑡) = (𝑁 + 2) ↔ (♯‘𝑤) = (𝑁 + 2)))
12 oveq1 7155 . . . . . . . 8 (𝑡 = 𝑤 → (𝑡 prefix (𝑁 + 1)) = (𝑤 prefix (𝑁 + 1)))
1312eqeq1d 2828 . . . . . . 7 (𝑡 = 𝑤 → ((𝑡 prefix (𝑁 + 1)) = 𝑊 ↔ (𝑤 prefix (𝑁 + 1)) = 𝑊))
14 fveq2 6667 . . . . . . . . 9 (𝑡 = 𝑤 → (lastS‘𝑡) = (lastS‘𝑤))
1514preq2d 4675 . . . . . . . 8 (𝑡 = 𝑤 → {(lastS‘𝑊), (lastS‘𝑡)} = {(lastS‘𝑊), (lastS‘𝑤)})
1615eleq1d 2902 . . . . . . 7 (𝑡 = 𝑤 → ({(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸 ↔ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))
1711, 13, 163anbi123d 1429 . . . . . 6 (𝑡 = 𝑤 → (((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸) ↔ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)))
1817cbvrabv 3497 . . . . 5 {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}
1918mpteq1i 5153 . . . 4 (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)) = (𝑥 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} ↦ (lastS‘𝑥))
205, 6, 7, 10, 19wwlksnextbij0 27593 . . 3 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)):{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}–1-1-onto→{𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸})
21 eqid 2826 . . . . . . 7 {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} = {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)}
225, 6, 21wwlksnextwrd 27589 . . . . . 6 (𝑊 ∈ (𝑁 WWalksN 𝐺) → {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} = {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)})
2322eqcomd 2832 . . . . 5 (𝑊 ∈ (𝑁 WWalksN 𝐺) → {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} = {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)})
2423mpteq1d 5152 . . . 4 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑥 ∈ {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)) = (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)))
255, 6, 7wwlksnextwrd 27589 . . . . 5 (𝑊 ∈ (𝑁 WWalksN 𝐺) → {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)})
2625eqcomd 2832 . . . 4 (𝑊 ∈ (𝑁 WWalksN 𝐺) → {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)})
27 eqidd 2827 . . . 4 (𝑊 ∈ (𝑁 WWalksN 𝐺) → {𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸} = {𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸})
2824, 26, 27f1oeq123d 6607 . . 3 (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((𝑥 ∈ {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)):{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}–1-1-onto→{𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸} ↔ (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)):{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}–1-1-onto→{𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸}))
2920, 28mpbird 258 . 2 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑥 ∈ {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)):{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}–1-1-onto→{𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸})
30 f1oeq1 6601 . 2 (𝑓 = (𝑥 ∈ {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)) → (𝑓:{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}–1-1-onto→{𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸} ↔ (𝑥 ∈ {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)):{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}–1-1-onto→{𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸}))
314, 29, 30elabd 3672 1 (𝑊 ∈ (𝑁 WWalksN 𝐺) → ∃𝑓 𝑓:{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}–1-1-onto→{𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1081   = wceq 1530  wex 1773  wcel 2107  {crab 3147  Vcvv 3500  {cpr 4566  cmpt 5143  1-1-ontowf1o 6351  cfv 6352  (class class class)co 7148  1c1 10527   + caddc 10529  2c2 11681  chash 13680  Word cword 13851  lastSclsw 13904   prefix cpfx 14022  Vtxcvtx 26695  Edgcedg 26746   WWalksN cwwlksn 27518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-map 8398  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-2 11689  df-n0 11887  df-xnn0 11957  df-z 11971  df-uz 12233  df-rp 12380  df-fz 12883  df-fzo 13024  df-hash 13681  df-word 13852  df-lsw 13905  df-concat 13913  df-s1 13940  df-substr 13993  df-pfx 14023  df-wwlks 27522  df-wwlksn 27523
This theorem is referenced by:  wwlksnexthasheq  27595
  Copyright terms: Public domain W3C validator