MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnextbij Structured version   Visualization version   GIF version

Theorem wwlksnextbij 29922
Description: There is a bijection between the extensions of a walk (as word) by an edge and the set of vertices being connected to the trailing vertex of the walk. (Contributed by Alexander van der Vekens, 21-Aug-2018.) (Revised by AV, 18-Apr-2021.) (Revised by AV, 27-Oct-2022.)
Hypotheses
Ref Expression
wwlksnextbij.v 𝑉 = (Vtx‘𝐺)
wwlksnextbij.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
wwlksnextbij (𝑊 ∈ (𝑁 WWalksN 𝐺) → ∃𝑓 𝑓:{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}–1-1-onto→{𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸})
Distinct variable groups:   𝑓,𝐸,𝑛,𝑤   𝑓,𝐺,𝑤   𝑓,𝑁,𝑤   𝑓,𝑉,𝑛,𝑤   𝑓,𝑊,𝑛,𝑤
Allowed substitution hints:   𝐺(𝑛)   𝑁(𝑛)

Proof of Theorem wwlksnextbij
Dummy variables 𝑝 𝑡 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovexd 7466 . . 3 (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((𝑁 + 1) WWalksN 𝐺) ∈ V)
2 rabexg 5337 . . 3 (((𝑁 + 1) WWalksN 𝐺) ∈ V → {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ∈ V)
3 mptexg 7241 . . 3 ({𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ∈ V → (𝑥 ∈ {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)) ∈ V)
41, 2, 33syl 18 . 2 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑥 ∈ {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)) ∈ V)
5 wwlksnextbij.v . . . 4 𝑉 = (Vtx‘𝐺)
6 wwlksnextbij.e . . . 4 𝐸 = (Edg‘𝐺)
7 eqid 2737 . . . 4 {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}
8 preq2 4734 . . . . . 6 (𝑛 = 𝑝 → {(lastS‘𝑊), 𝑛} = {(lastS‘𝑊), 𝑝})
98eleq1d 2826 . . . . 5 (𝑛 = 𝑝 → ({(lastS‘𝑊), 𝑛} ∈ 𝐸 ↔ {(lastS‘𝑊), 𝑝} ∈ 𝐸))
109cbvrabv 3447 . . . 4 {𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸} = {𝑝𝑉 ∣ {(lastS‘𝑊), 𝑝} ∈ 𝐸}
11 fveqeq2 6915 . . . . . . 7 (𝑡 = 𝑤 → ((♯‘𝑡) = (𝑁 + 2) ↔ (♯‘𝑤) = (𝑁 + 2)))
12 oveq1 7438 . . . . . . . 8 (𝑡 = 𝑤 → (𝑡 prefix (𝑁 + 1)) = (𝑤 prefix (𝑁 + 1)))
1312eqeq1d 2739 . . . . . . 7 (𝑡 = 𝑤 → ((𝑡 prefix (𝑁 + 1)) = 𝑊 ↔ (𝑤 prefix (𝑁 + 1)) = 𝑊))
14 fveq2 6906 . . . . . . . . 9 (𝑡 = 𝑤 → (lastS‘𝑡) = (lastS‘𝑤))
1514preq2d 4740 . . . . . . . 8 (𝑡 = 𝑤 → {(lastS‘𝑊), (lastS‘𝑡)} = {(lastS‘𝑊), (lastS‘𝑤)})
1615eleq1d 2826 . . . . . . 7 (𝑡 = 𝑤 → ({(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸 ↔ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))
1711, 13, 163anbi123d 1438 . . . . . 6 (𝑡 = 𝑤 → (((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸) ↔ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)))
1817cbvrabv 3447 . . . . 5 {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}
1918mpteq1i 5238 . . . 4 (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)) = (𝑥 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} ↦ (lastS‘𝑥))
205, 6, 7, 10, 19wwlksnextbij0 29921 . . 3 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)):{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}–1-1-onto→{𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸})
21 eqid 2737 . . . . . . 7 {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} = {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)}
225, 6, 21wwlksnextwrd 29917 . . . . . 6 (𝑊 ∈ (𝑁 WWalksN 𝐺) → {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} = {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)})
2322eqcomd 2743 . . . . 5 (𝑊 ∈ (𝑁 WWalksN 𝐺) → {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} = {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)})
2423mpteq1d 5237 . . . 4 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑥 ∈ {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)) = (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)))
255, 6, 7wwlksnextwrd 29917 . . . . 5 (𝑊 ∈ (𝑁 WWalksN 𝐺) → {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)})
2625eqcomd 2743 . . . 4 (𝑊 ∈ (𝑁 WWalksN 𝐺) → {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)})
27 eqidd 2738 . . . 4 (𝑊 ∈ (𝑁 WWalksN 𝐺) → {𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸} = {𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸})
2824, 26, 27f1oeq123d 6842 . . 3 (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((𝑥 ∈ {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)):{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}–1-1-onto→{𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸} ↔ (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)):{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}–1-1-onto→{𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸}))
2920, 28mpbird 257 . 2 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑥 ∈ {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)):{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}–1-1-onto→{𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸})
30 f1oeq1 6836 . 2 (𝑓 = (𝑥 ∈ {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)) → (𝑓:{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}–1-1-onto→{𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸} ↔ (𝑥 ∈ {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)):{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}–1-1-onto→{𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸}))
314, 29, 30spcedv 3598 1 (𝑊 ∈ (𝑁 WWalksN 𝐺) → ∃𝑓 𝑓:{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}–1-1-onto→{𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wex 1779  wcel 2108  {crab 3436  Vcvv 3480  {cpr 4628  cmpt 5225  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  1c1 11156   + caddc 11158  2c2 12321  chash 14369  Word cword 14552  lastSclsw 14600   prefix cpfx 14708  Vtxcvtx 29013  Edgcedg 29064   WWalksN cwwlksn 29846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-lsw 14601  df-concat 14609  df-s1 14634  df-substr 14679  df-pfx 14709  df-wwlks 29850  df-wwlksn 29851
This theorem is referenced by:  wwlksnexthasheq  29923
  Copyright terms: Public domain W3C validator