MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnextbij Structured version   Visualization version   GIF version

Theorem wwlksnextbij 27683
Description: There is a bijection between the extensions of a walk (as word) by an edge and the set of vertices being connected to the trailing vertex of the walk. (Contributed by Alexander van der Vekens, 21-Aug-2018.) (Revised by AV, 18-Apr-2021.) (Revised by AV, 27-Oct-2022.)
Hypotheses
Ref Expression
wwlksnextbij.v 𝑉 = (Vtx‘𝐺)
wwlksnextbij.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
wwlksnextbij (𝑊 ∈ (𝑁 WWalksN 𝐺) → ∃𝑓 𝑓:{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}–1-1-onto→{𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸})
Distinct variable groups:   𝑓,𝐸,𝑛,𝑤   𝑓,𝐺,𝑤   𝑓,𝑁,𝑤   𝑓,𝑉,𝑛,𝑤   𝑓,𝑊,𝑛,𝑤
Allowed substitution hints:   𝐺(𝑛)   𝑁(𝑛)

Proof of Theorem wwlksnextbij
Dummy variables 𝑝 𝑡 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovexd 7194 . . 3 (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((𝑁 + 1) WWalksN 𝐺) ∈ V)
2 rabexg 5237 . . 3 (((𝑁 + 1) WWalksN 𝐺) ∈ V → {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ∈ V)
3 mptexg 6987 . . 3 ({𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ∈ V → (𝑥 ∈ {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)) ∈ V)
41, 2, 33syl 18 . 2 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑥 ∈ {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)) ∈ V)
5 wwlksnextbij.v . . . 4 𝑉 = (Vtx‘𝐺)
6 wwlksnextbij.e . . . 4 𝐸 = (Edg‘𝐺)
7 eqid 2824 . . . 4 {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}
8 preq2 4673 . . . . . 6 (𝑛 = 𝑝 → {(lastS‘𝑊), 𝑛} = {(lastS‘𝑊), 𝑝})
98eleq1d 2900 . . . . 5 (𝑛 = 𝑝 → ({(lastS‘𝑊), 𝑛} ∈ 𝐸 ↔ {(lastS‘𝑊), 𝑝} ∈ 𝐸))
109cbvrabv 3494 . . . 4 {𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸} = {𝑝𝑉 ∣ {(lastS‘𝑊), 𝑝} ∈ 𝐸}
11 fveqeq2 6682 . . . . . . 7 (𝑡 = 𝑤 → ((♯‘𝑡) = (𝑁 + 2) ↔ (♯‘𝑤) = (𝑁 + 2)))
12 oveq1 7166 . . . . . . . 8 (𝑡 = 𝑤 → (𝑡 prefix (𝑁 + 1)) = (𝑤 prefix (𝑁 + 1)))
1312eqeq1d 2826 . . . . . . 7 (𝑡 = 𝑤 → ((𝑡 prefix (𝑁 + 1)) = 𝑊 ↔ (𝑤 prefix (𝑁 + 1)) = 𝑊))
14 fveq2 6673 . . . . . . . . 9 (𝑡 = 𝑤 → (lastS‘𝑡) = (lastS‘𝑤))
1514preq2d 4679 . . . . . . . 8 (𝑡 = 𝑤 → {(lastS‘𝑊), (lastS‘𝑡)} = {(lastS‘𝑊), (lastS‘𝑤)})
1615eleq1d 2900 . . . . . . 7 (𝑡 = 𝑤 → ({(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸 ↔ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))
1711, 13, 163anbi123d 1432 . . . . . 6 (𝑡 = 𝑤 → (((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸) ↔ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)))
1817cbvrabv 3494 . . . . 5 {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}
1918mpteq1i 5159 . . . 4 (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)) = (𝑥 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} ↦ (lastS‘𝑥))
205, 6, 7, 10, 19wwlksnextbij0 27682 . . 3 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)):{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}–1-1-onto→{𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸})
21 eqid 2824 . . . . . . 7 {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} = {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)}
225, 6, 21wwlksnextwrd 27678 . . . . . 6 (𝑊 ∈ (𝑁 WWalksN 𝐺) → {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} = {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)})
2322eqcomd 2830 . . . . 5 (𝑊 ∈ (𝑁 WWalksN 𝐺) → {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} = {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)})
2423mpteq1d 5158 . . . 4 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑥 ∈ {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)) = (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)))
255, 6, 7wwlksnextwrd 27678 . . . . 5 (𝑊 ∈ (𝑁 WWalksN 𝐺) → {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)})
2625eqcomd 2830 . . . 4 (𝑊 ∈ (𝑁 WWalksN 𝐺) → {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)})
27 eqidd 2825 . . . 4 (𝑊 ∈ (𝑁 WWalksN 𝐺) → {𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸} = {𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸})
2824, 26, 27f1oeq123d 6613 . . 3 (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((𝑥 ∈ {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)):{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}–1-1-onto→{𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸} ↔ (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)):{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}–1-1-onto→{𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸}))
2920, 28mpbird 259 . 2 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑥 ∈ {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)):{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}–1-1-onto→{𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸})
30 f1oeq1 6607 . 2 (𝑓 = (𝑥 ∈ {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)) → (𝑓:{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}–1-1-onto→{𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸} ↔ (𝑥 ∈ {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)):{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}–1-1-onto→{𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸}))
314, 29, 30spcedv 3602 1 (𝑊 ∈ (𝑁 WWalksN 𝐺) → ∃𝑓 𝑓:{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}–1-1-onto→{𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1536  wex 1779  wcel 2113  {crab 3145  Vcvv 3497  {cpr 4572  cmpt 5149  1-1-ontowf1o 6357  cfv 6358  (class class class)co 7159  1c1 10541   + caddc 10543  2c2 11695  chash 13693  Word cword 13864  lastSclsw 13917   prefix cpfx 14035  Vtxcvtx 26784  Edgcedg 26835   WWalksN cwwlksn 27607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-lsw 13918  df-concat 13926  df-s1 13953  df-substr 14006  df-pfx 14036  df-wwlks 27611  df-wwlksn 27612
This theorem is referenced by:  wwlksnexthasheq  27684
  Copyright terms: Public domain W3C validator