MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnextbij Structured version   Visualization version   GIF version

Theorem wwlksnextbij 29625
Description: There is a bijection between the extensions of a walk (as word) by an edge and the set of vertices being connected to the trailing vertex of the walk. (Contributed by Alexander van der Vekens, 21-Aug-2018.) (Revised by AV, 18-Apr-2021.) (Revised by AV, 27-Oct-2022.)
Hypotheses
Ref Expression
wwlksnextbij.v 𝑉 = (Vtx‘𝐺)
wwlksnextbij.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
wwlksnextbij (𝑊 ∈ (𝑁 WWalksN 𝐺) → ∃𝑓 𝑓:{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}–1-1-onto→{𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸})
Distinct variable groups:   𝑓,𝐸,𝑛,𝑤   𝑓,𝐺,𝑤   𝑓,𝑁,𝑤   𝑓,𝑉,𝑛,𝑤   𝑓,𝑊,𝑛,𝑤
Allowed substitution hints:   𝐺(𝑛)   𝑁(𝑛)

Proof of Theorem wwlksnextbij
Dummy variables 𝑝 𝑡 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovexd 7436 . . 3 (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((𝑁 + 1) WWalksN 𝐺) ∈ V)
2 rabexg 5321 . . 3 (((𝑁 + 1) WWalksN 𝐺) ∈ V → {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ∈ V)
3 mptexg 7214 . . 3 ({𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ∈ V → (𝑥 ∈ {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)) ∈ V)
41, 2, 33syl 18 . 2 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑥 ∈ {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)) ∈ V)
5 wwlksnextbij.v . . . 4 𝑉 = (Vtx‘𝐺)
6 wwlksnextbij.e . . . 4 𝐸 = (Edg‘𝐺)
7 eqid 2724 . . . 4 {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}
8 preq2 4730 . . . . . 6 (𝑛 = 𝑝 → {(lastS‘𝑊), 𝑛} = {(lastS‘𝑊), 𝑝})
98eleq1d 2810 . . . . 5 (𝑛 = 𝑝 → ({(lastS‘𝑊), 𝑛} ∈ 𝐸 ↔ {(lastS‘𝑊), 𝑝} ∈ 𝐸))
109cbvrabv 3434 . . . 4 {𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸} = {𝑝𝑉 ∣ {(lastS‘𝑊), 𝑝} ∈ 𝐸}
11 fveqeq2 6890 . . . . . . 7 (𝑡 = 𝑤 → ((♯‘𝑡) = (𝑁 + 2) ↔ (♯‘𝑤) = (𝑁 + 2)))
12 oveq1 7408 . . . . . . . 8 (𝑡 = 𝑤 → (𝑡 prefix (𝑁 + 1)) = (𝑤 prefix (𝑁 + 1)))
1312eqeq1d 2726 . . . . . . 7 (𝑡 = 𝑤 → ((𝑡 prefix (𝑁 + 1)) = 𝑊 ↔ (𝑤 prefix (𝑁 + 1)) = 𝑊))
14 fveq2 6881 . . . . . . . . 9 (𝑡 = 𝑤 → (lastS‘𝑡) = (lastS‘𝑤))
1514preq2d 4736 . . . . . . . 8 (𝑡 = 𝑤 → {(lastS‘𝑊), (lastS‘𝑡)} = {(lastS‘𝑊), (lastS‘𝑤)})
1615eleq1d 2810 . . . . . . 7 (𝑡 = 𝑤 → ({(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸 ↔ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))
1711, 13, 163anbi123d 1432 . . . . . 6 (𝑡 = 𝑤 → (((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸) ↔ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)))
1817cbvrabv 3434 . . . . 5 {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}
1918mpteq1i 5234 . . . 4 (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)) = (𝑥 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} ↦ (lastS‘𝑥))
205, 6, 7, 10, 19wwlksnextbij0 29624 . . 3 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)):{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}–1-1-onto→{𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸})
21 eqid 2724 . . . . . . 7 {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} = {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)}
225, 6, 21wwlksnextwrd 29620 . . . . . 6 (𝑊 ∈ (𝑁 WWalksN 𝐺) → {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} = {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)})
2322eqcomd 2730 . . . . 5 (𝑊 ∈ (𝑁 WWalksN 𝐺) → {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} = {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)})
2423mpteq1d 5233 . . . 4 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑥 ∈ {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)) = (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)))
255, 6, 7wwlksnextwrd 29620 . . . . 5 (𝑊 ∈ (𝑁 WWalksN 𝐺) → {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)})
2625eqcomd 2730 . . . 4 (𝑊 ∈ (𝑁 WWalksN 𝐺) → {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)})
27 eqidd 2725 . . . 4 (𝑊 ∈ (𝑁 WWalksN 𝐺) → {𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸} = {𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸})
2824, 26, 27f1oeq123d 6817 . . 3 (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((𝑥 ∈ {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)):{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}–1-1-onto→{𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸} ↔ (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)):{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}–1-1-onto→{𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸}))
2920, 28mpbird 257 . 2 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑥 ∈ {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)):{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}–1-1-onto→{𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸})
30 f1oeq1 6811 . 2 (𝑓 = (𝑥 ∈ {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)) → (𝑓:{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}–1-1-onto→{𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸} ↔ (𝑥 ∈ {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)):{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}–1-1-onto→{𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸}))
314, 29, 30spcedv 3580 1 (𝑊 ∈ (𝑁 WWalksN 𝐺) → ∃𝑓 𝑓:{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}–1-1-onto→{𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084   = wceq 1533  wex 1773  wcel 2098  {crab 3424  Vcvv 3466  {cpr 4622  cmpt 5221  1-1-ontowf1o 6532  cfv 6533  (class class class)co 7401  1c1 11107   + caddc 11109  2c2 12264  chash 14287  Word cword 14461  lastSclsw 14509   prefix cpfx 14617  Vtxcvtx 28725  Edgcedg 28776   WWalksN cwwlksn 29549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-n0 12470  df-xnn0 12542  df-z 12556  df-uz 12820  df-rp 12972  df-fz 13482  df-fzo 13625  df-hash 14288  df-word 14462  df-lsw 14510  df-concat 14518  df-s1 14543  df-substr 14588  df-pfx 14618  df-wwlks 29553  df-wwlksn 29554
This theorem is referenced by:  wwlksnexthasheq  29626
  Copyright terms: Public domain W3C validator