| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ovexd 7466 | . . 3
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((𝑁 + 1) WWalksN 𝐺) ∈ V) | 
| 2 |  | rabexg 5337 | . . 3
⊢ (((𝑁 + 1) WWalksN 𝐺) ∈ V → {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ∈ V) | 
| 3 |  | mptexg 7241 | . . 3
⊢ ({𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ∈ V → (𝑥 ∈ {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)) ∈ V) | 
| 4 | 1, 2, 3 | 3syl 18 | . 2
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑥 ∈ {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)) ∈ V) | 
| 5 |  | wwlksnextbij.v | . . . 4
⊢ 𝑉 = (Vtx‘𝐺) | 
| 6 |  | wwlksnextbij.e | . . . 4
⊢ 𝐸 = (Edg‘𝐺) | 
| 7 |  | eqid 2737 | . . . 4
⊢ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} | 
| 8 |  | preq2 4734 | . . . . . 6
⊢ (𝑛 = 𝑝 → {(lastS‘𝑊), 𝑛} = {(lastS‘𝑊), 𝑝}) | 
| 9 | 8 | eleq1d 2826 | . . . . 5
⊢ (𝑛 = 𝑝 → ({(lastS‘𝑊), 𝑛} ∈ 𝐸 ↔ {(lastS‘𝑊), 𝑝} ∈ 𝐸)) | 
| 10 | 9 | cbvrabv 3447 | . . . 4
⊢ {𝑛 ∈ 𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸} = {𝑝 ∈ 𝑉 ∣ {(lastS‘𝑊), 𝑝} ∈ 𝐸} | 
| 11 |  | fveqeq2 6915 | . . . . . . 7
⊢ (𝑡 = 𝑤 → ((♯‘𝑡) = (𝑁 + 2) ↔ (♯‘𝑤) = (𝑁 + 2))) | 
| 12 |  | oveq1 7438 | . . . . . . . 8
⊢ (𝑡 = 𝑤 → (𝑡 prefix (𝑁 + 1)) = (𝑤 prefix (𝑁 + 1))) | 
| 13 | 12 | eqeq1d 2739 | . . . . . . 7
⊢ (𝑡 = 𝑤 → ((𝑡 prefix (𝑁 + 1)) = 𝑊 ↔ (𝑤 prefix (𝑁 + 1)) = 𝑊)) | 
| 14 |  | fveq2 6906 | . . . . . . . . 9
⊢ (𝑡 = 𝑤 → (lastS‘𝑡) = (lastS‘𝑤)) | 
| 15 | 14 | preq2d 4740 | . . . . . . . 8
⊢ (𝑡 = 𝑤 → {(lastS‘𝑊), (lastS‘𝑡)} = {(lastS‘𝑊), (lastS‘𝑤)}) | 
| 16 | 15 | eleq1d 2826 | . . . . . . 7
⊢ (𝑡 = 𝑤 → ({(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸 ↔ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) | 
| 17 | 11, 13, 16 | 3anbi123d 1438 | . . . . . 6
⊢ (𝑡 = 𝑤 → (((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸) ↔ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))) | 
| 18 | 17 | cbvrabv 3447 | . . . . 5
⊢ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} | 
| 19 | 18 | mpteq1i 5238 | . . . 4
⊢ (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)) = (𝑥 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} ↦ (lastS‘𝑥)) | 
| 20 | 5, 6, 7, 10, 19 | wwlksnextbij0 29921 | . . 3
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)):{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}–1-1-onto→{𝑛 ∈ 𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸}) | 
| 21 |  | eqid 2737 | . . . . . . 7
⊢ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} = {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} | 
| 22 | 5, 6, 21 | wwlksnextwrd 29917 | . . . . . 6
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} = {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)}) | 
| 23 | 22 | eqcomd 2743 | . . . . 5
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} = {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)}) | 
| 24 | 23 | mpteq1d 5237 | . . . 4
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑥 ∈ {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)) = (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥))) | 
| 25 | 5, 6, 7 | wwlksnextwrd 29917 | . . . . 5
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}) | 
| 26 | 25 | eqcomd 2743 | . . . 4
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}) | 
| 27 |  | eqidd 2738 | . . . 4
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → {𝑛 ∈ 𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸} = {𝑛 ∈ 𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸}) | 
| 28 | 24, 26, 27 | f1oeq123d 6842 | . . 3
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((𝑥 ∈ {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)):{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}–1-1-onto→{𝑛 ∈ 𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸} ↔ (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)):{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}–1-1-onto→{𝑛 ∈ 𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸})) | 
| 29 | 20, 28 | mpbird 257 | . 2
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑥 ∈ {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)):{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}–1-1-onto→{𝑛 ∈ 𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸}) | 
| 30 |  | f1oeq1 6836 | . 2
⊢ (𝑓 = (𝑥 ∈ {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)) → (𝑓:{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}–1-1-onto→{𝑛 ∈ 𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸} ↔ (𝑥 ∈ {𝑡 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)} ↦ (lastS‘𝑥)):{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}–1-1-onto→{𝑛 ∈ 𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸})) | 
| 31 | 4, 29, 30 | spcedv 3598 | 1
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → ∃𝑓 𝑓:{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}–1-1-onto→{𝑛 ∈ 𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸}) |