MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnextbij Structured version   Visualization version   GIF version

Theorem wwlksnextbij 29752
Description: There is a bijection between the extensions of a walk (as word) by an edge and the set of vertices being connected to the trailing vertex of the walk. (Contributed by Alexander van der Vekens, 21-Aug-2018.) (Revised by AV, 18-Apr-2021.) (Revised by AV, 27-Oct-2022.)
Hypotheses
Ref Expression
wwlksnextbij.v 𝑉 = (Vtxβ€˜πΊ)
wwlksnextbij.e 𝐸 = (Edgβ€˜πΊ)
Assertion
Ref Expression
wwlksnextbij (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ βˆƒπ‘“ 𝑓:{𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)}–1-1-ontoβ†’{𝑛 ∈ 𝑉 ∣ {(lastSβ€˜π‘Š), 𝑛} ∈ 𝐸})
Distinct variable groups:   𝑓,𝐸,𝑛,𝑀   𝑓,𝐺,𝑀   𝑓,𝑁,𝑀   𝑓,𝑉,𝑛,𝑀   𝑓,π‘Š,𝑛,𝑀
Allowed substitution hints:   𝐺(𝑛)   𝑁(𝑛)

Proof of Theorem wwlksnextbij
Dummy variables 𝑝 𝑑 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovexd 7448 . . 3 (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ ((𝑁 + 1) WWalksN 𝐺) ∈ V)
2 rabexg 5329 . . 3 (((𝑁 + 1) WWalksN 𝐺) ∈ V β†’ {𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)} ∈ V)
3 mptexg 7227 . . 3 ({𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)} ∈ V β†’ (π‘₯ ∈ {𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)} ↦ (lastSβ€˜π‘₯)) ∈ V)
41, 2, 33syl 18 . 2 (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ (π‘₯ ∈ {𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)} ↦ (lastSβ€˜π‘₯)) ∈ V)
5 wwlksnextbij.v . . . 4 𝑉 = (Vtxβ€˜πΊ)
6 wwlksnextbij.e . . . 4 𝐸 = (Edgβ€˜πΊ)
7 eqid 2725 . . . 4 {𝑀 ∈ Word 𝑉 ∣ ((β™―β€˜π‘€) = (𝑁 + 2) ∧ (𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)} = {𝑀 ∈ Word 𝑉 ∣ ((β™―β€˜π‘€) = (𝑁 + 2) ∧ (𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)}
8 preq2 4735 . . . . . 6 (𝑛 = 𝑝 β†’ {(lastSβ€˜π‘Š), 𝑛} = {(lastSβ€˜π‘Š), 𝑝})
98eleq1d 2810 . . . . 5 (𝑛 = 𝑝 β†’ ({(lastSβ€˜π‘Š), 𝑛} ∈ 𝐸 ↔ {(lastSβ€˜π‘Š), 𝑝} ∈ 𝐸))
109cbvrabv 3430 . . . 4 {𝑛 ∈ 𝑉 ∣ {(lastSβ€˜π‘Š), 𝑛} ∈ 𝐸} = {𝑝 ∈ 𝑉 ∣ {(lastSβ€˜π‘Š), 𝑝} ∈ 𝐸}
11 fveqeq2 6899 . . . . . . 7 (𝑑 = 𝑀 β†’ ((β™―β€˜π‘‘) = (𝑁 + 2) ↔ (β™―β€˜π‘€) = (𝑁 + 2)))
12 oveq1 7420 . . . . . . . 8 (𝑑 = 𝑀 β†’ (𝑑 prefix (𝑁 + 1)) = (𝑀 prefix (𝑁 + 1)))
1312eqeq1d 2727 . . . . . . 7 (𝑑 = 𝑀 β†’ ((𝑑 prefix (𝑁 + 1)) = π‘Š ↔ (𝑀 prefix (𝑁 + 1)) = π‘Š))
14 fveq2 6890 . . . . . . . . 9 (𝑑 = 𝑀 β†’ (lastSβ€˜π‘‘) = (lastSβ€˜π‘€))
1514preq2d 4741 . . . . . . . 8 (𝑑 = 𝑀 β†’ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} = {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)})
1615eleq1d 2810 . . . . . . 7 (𝑑 = 𝑀 β†’ ({(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸 ↔ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸))
1711, 13, 163anbi123d 1432 . . . . . 6 (𝑑 = 𝑀 β†’ (((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸) ↔ ((β™―β€˜π‘€) = (𝑁 + 2) ∧ (𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)))
1817cbvrabv 3430 . . . . 5 {𝑑 ∈ Word 𝑉 ∣ ((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)} = {𝑀 ∈ Word 𝑉 ∣ ((β™―β€˜π‘€) = (𝑁 + 2) ∧ (𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)}
1918mpteq1i 5240 . . . 4 (π‘₯ ∈ {𝑑 ∈ Word 𝑉 ∣ ((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)} ↦ (lastSβ€˜π‘₯)) = (π‘₯ ∈ {𝑀 ∈ Word 𝑉 ∣ ((β™―β€˜π‘€) = (𝑁 + 2) ∧ (𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)} ↦ (lastSβ€˜π‘₯))
205, 6, 7, 10, 19wwlksnextbij0 29751 . . 3 (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ (π‘₯ ∈ {𝑑 ∈ Word 𝑉 ∣ ((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)} ↦ (lastSβ€˜π‘₯)):{𝑀 ∈ Word 𝑉 ∣ ((β™―β€˜π‘€) = (𝑁 + 2) ∧ (𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)}–1-1-ontoβ†’{𝑛 ∈ 𝑉 ∣ {(lastSβ€˜π‘Š), 𝑛} ∈ 𝐸})
21 eqid 2725 . . . . . . 7 {𝑑 ∈ Word 𝑉 ∣ ((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)} = {𝑑 ∈ Word 𝑉 ∣ ((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)}
225, 6, 21wwlksnextwrd 29747 . . . . . 6 (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ {𝑑 ∈ Word 𝑉 ∣ ((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)} = {𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)})
2322eqcomd 2731 . . . . 5 (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ {𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)} = {𝑑 ∈ Word 𝑉 ∣ ((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)})
2423mpteq1d 5239 . . . 4 (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ (π‘₯ ∈ {𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)} ↦ (lastSβ€˜π‘₯)) = (π‘₯ ∈ {𝑑 ∈ Word 𝑉 ∣ ((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)} ↦ (lastSβ€˜π‘₯)))
255, 6, 7wwlksnextwrd 29747 . . . . 5 (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ {𝑀 ∈ Word 𝑉 ∣ ((β™―β€˜π‘€) = (𝑁 + 2) ∧ (𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)} = {𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)})
2625eqcomd 2731 . . . 4 (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ {𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)} = {𝑀 ∈ Word 𝑉 ∣ ((β™―β€˜π‘€) = (𝑁 + 2) ∧ (𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)})
27 eqidd 2726 . . . 4 (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ {𝑛 ∈ 𝑉 ∣ {(lastSβ€˜π‘Š), 𝑛} ∈ 𝐸} = {𝑛 ∈ 𝑉 ∣ {(lastSβ€˜π‘Š), 𝑛} ∈ 𝐸})
2824, 26, 27f1oeq123d 6826 . . 3 (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ ((π‘₯ ∈ {𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)} ↦ (lastSβ€˜π‘₯)):{𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)}–1-1-ontoβ†’{𝑛 ∈ 𝑉 ∣ {(lastSβ€˜π‘Š), 𝑛} ∈ 𝐸} ↔ (π‘₯ ∈ {𝑑 ∈ Word 𝑉 ∣ ((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)} ↦ (lastSβ€˜π‘₯)):{𝑀 ∈ Word 𝑉 ∣ ((β™―β€˜π‘€) = (𝑁 + 2) ∧ (𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)}–1-1-ontoβ†’{𝑛 ∈ 𝑉 ∣ {(lastSβ€˜π‘Š), 𝑛} ∈ 𝐸}))
2920, 28mpbird 256 . 2 (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ (π‘₯ ∈ {𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)} ↦ (lastSβ€˜π‘₯)):{𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)}–1-1-ontoβ†’{𝑛 ∈ 𝑉 ∣ {(lastSβ€˜π‘Š), 𝑛} ∈ 𝐸})
30 f1oeq1 6820 . 2 (𝑓 = (π‘₯ ∈ {𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)} ↦ (lastSβ€˜π‘₯)) β†’ (𝑓:{𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)}–1-1-ontoβ†’{𝑛 ∈ 𝑉 ∣ {(lastSβ€˜π‘Š), 𝑛} ∈ 𝐸} ↔ (π‘₯ ∈ {𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)} ↦ (lastSβ€˜π‘₯)):{𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)}–1-1-ontoβ†’{𝑛 ∈ 𝑉 ∣ {(lastSβ€˜π‘Š), 𝑛} ∈ 𝐸}))
314, 29, 30spcedv 3579 1 (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ βˆƒπ‘“ 𝑓:{𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)}–1-1-ontoβ†’{𝑛 ∈ 𝑉 ∣ {(lastSβ€˜π‘Š), 𝑛} ∈ 𝐸})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533  βˆƒwex 1773   ∈ wcel 2098  {crab 3419  Vcvv 3463  {cpr 4627   ↦ cmpt 5227  β€“1-1-ontoβ†’wf1o 6542  β€˜cfv 6543  (class class class)co 7413  1c1 11134   + caddc 11136  2c2 12292  β™―chash 14316  Word cword 14491  lastSclsw 14539   prefix cpfx 14647  Vtxcvtx 28848  Edgcedg 28899   WWalksN cwwlksn 29676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-card 9957  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-2 12300  df-n0 12498  df-xnn0 12570  df-z 12584  df-uz 12848  df-rp 13002  df-fz 13512  df-fzo 13655  df-hash 14317  df-word 14492  df-lsw 14540  df-concat 14548  df-s1 14573  df-substr 14618  df-pfx 14648  df-wwlks 29680  df-wwlksn 29681
This theorem is referenced by:  wwlksnexthasheq  29753
  Copyright terms: Public domain W3C validator