MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrd2f1tovbij Structured version   Visualization version   GIF version

Theorem wrd2f1tovbij 14867
Description: There is a bijection between words of length two with a fixed first symbol contained in a pair and the symbols contained in a pair together with the fixed symbol. (Contributed by Alexander van der Vekens, 28-Jul-2018.)
Assertion
Ref Expression
wrd2f1tovbij ((𝑉𝑌𝑃𝑉) → ∃𝑓 𝑓:{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}–1-1-onto→{𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋})
Distinct variable groups:   𝑃,𝑓,𝑛,𝑤   𝑓,𝑉,𝑛,𝑤   𝑓,𝑋,𝑛,𝑤
Allowed substitution hints:   𝑌(𝑤,𝑓,𝑛)

Proof of Theorem wrd2f1tovbij
Dummy variables 𝑝 𝑡 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wrdexg 14431 . . . 4 (𝑉𝑌 → Word 𝑉 ∈ V)
21adantr 480 . . 3 ((𝑉𝑌𝑃𝑉) → Word 𝑉 ∈ V)
3 rabexg 5276 . . 3 (Word 𝑉 ∈ V → {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} ∈ V)
4 mptexg 7157 . . 3 ({𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} ∈ V → (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} ↦ (𝑥‘1)) ∈ V)
52, 3, 43syl 18 . 2 ((𝑉𝑌𝑃𝑉) → (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} ↦ (𝑥‘1)) ∈ V)
6 fveqeq2 6831 . . . . . 6 (𝑤 = 𝑢 → ((♯‘𝑤) = 2 ↔ (♯‘𝑢) = 2))
7 fveq1 6821 . . . . . . 7 (𝑤 = 𝑢 → (𝑤‘0) = (𝑢‘0))
87eqeq1d 2731 . . . . . 6 (𝑤 = 𝑢 → ((𝑤‘0) = 𝑃 ↔ (𝑢‘0) = 𝑃))
9 fveq1 6821 . . . . . . . 8 (𝑤 = 𝑢 → (𝑤‘1) = (𝑢‘1))
107, 9preq12d 4693 . . . . . . 7 (𝑤 = 𝑢 → {(𝑤‘0), (𝑤‘1)} = {(𝑢‘0), (𝑢‘1)})
1110eleq1d 2813 . . . . . 6 (𝑤 = 𝑢 → ({(𝑤‘0), (𝑤‘1)} ∈ 𝑋 ↔ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋))
126, 8, 113anbi123d 1438 . . . . 5 (𝑤 = 𝑢 → (((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋) ↔ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)))
1312cbvrabv 3405 . . . 4 {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} = {𝑢 ∈ Word 𝑉 ∣ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)}
14 preq2 4686 . . . . . 6 (𝑛 = 𝑝 → {𝑃, 𝑛} = {𝑃, 𝑝})
1514eleq1d 2813 . . . . 5 (𝑛 = 𝑝 → ({𝑃, 𝑛} ∈ 𝑋 ↔ {𝑃, 𝑝} ∈ 𝑋))
1615cbvrabv 3405 . . . 4 {𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋} = {𝑝𝑉 ∣ {𝑃, 𝑝} ∈ 𝑋}
17 fveqeq2 6831 . . . . . . 7 (𝑡 = 𝑤 → ((♯‘𝑡) = 2 ↔ (♯‘𝑤) = 2))
18 fveq1 6821 . . . . . . . 8 (𝑡 = 𝑤 → (𝑡‘0) = (𝑤‘0))
1918eqeq1d 2731 . . . . . . 7 (𝑡 = 𝑤 → ((𝑡‘0) = 𝑃 ↔ (𝑤‘0) = 𝑃))
20 fveq1 6821 . . . . . . . . 9 (𝑡 = 𝑤 → (𝑡‘1) = (𝑤‘1))
2118, 20preq12d 4693 . . . . . . . 8 (𝑡 = 𝑤 → {(𝑡‘0), (𝑡‘1)} = {(𝑤‘0), (𝑤‘1)})
2221eleq1d 2813 . . . . . . 7 (𝑡 = 𝑤 → ({(𝑡‘0), (𝑡‘1)} ∈ 𝑋 ↔ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋))
2317, 19, 223anbi123d 1438 . . . . . 6 (𝑡 = 𝑤 → (((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋) ↔ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)))
2423cbvrabv 3405 . . . . 5 {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}
2524mpteq1i 5183 . . . 4 (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} ↦ (𝑥‘1)) = (𝑥 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} ↦ (𝑥‘1))
2613, 16, 25wwlktovf1o 14866 . . 3 (𝑃𝑉 → (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} ↦ (𝑥‘1)):{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}–1-1-onto→{𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋})
2726adantl 481 . 2 ((𝑉𝑌𝑃𝑉) → (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} ↦ (𝑥‘1)):{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}–1-1-onto→{𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋})
28 f1oeq1 6752 . 2 (𝑓 = (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} ↦ (𝑥‘1)) → (𝑓:{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}–1-1-onto→{𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋} ↔ (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} ↦ (𝑥‘1)):{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}–1-1-onto→{𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋}))
295, 27, 28spcedv 3553 1 ((𝑉𝑌𝑃𝑉) → ∃𝑓 𝑓:{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}–1-1-onto→{𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {crab 3394  Vcvv 3436  {cpr 4579  cmpt 5173  1-1-ontowf1o 6481  cfv 6482  0cc0 11009  1c1 11010  2c2 12183  chash 14237  Word cword 14420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-hash 14238  df-word 14421
This theorem is referenced by:  rusgrnumwrdl2  29532
  Copyright terms: Public domain W3C validator