MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrd2f1tovbij Structured version   Visualization version   GIF version

Theorem wrd2f1tovbij 14082
Description: There is a bijection between words of length two with a fixed first symbol contained in a pair and the symbols contained in a pair together with the fixed symbol. (Contributed by Alexander van der Vekens, 28-Jul-2018.)
Assertion
Ref Expression
wrd2f1tovbij ((𝑉𝑌𝑃𝑉) → ∃𝑓 𝑓:{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}–1-1-onto→{𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋})
Distinct variable groups:   𝑃,𝑓,𝑛,𝑤   𝑓,𝑉,𝑛,𝑤   𝑓,𝑋,𝑛,𝑤
Allowed substitution hints:   𝑌(𝑤,𝑓,𝑛)

Proof of Theorem wrd2f1tovbij
Dummy variables 𝑝 𝑡 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wrdexg 13584 . . . 4 (𝑉𝑌 → Word 𝑉 ∈ V)
21adantr 474 . . 3 ((𝑉𝑌𝑃𝑉) → Word 𝑉 ∈ V)
3 rabexg 5036 . . 3 (Word 𝑉 ∈ V → {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} ∈ V)
4 mptexg 6740 . . 3 ({𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} ∈ V → (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} ↦ (𝑥‘1)) ∈ V)
52, 3, 43syl 18 . 2 ((𝑉𝑌𝑃𝑉) → (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} ↦ (𝑥‘1)) ∈ V)
6 fveqeq2 6442 . . . . . 6 (𝑤 = 𝑢 → ((♯‘𝑤) = 2 ↔ (♯‘𝑢) = 2))
7 fveq1 6432 . . . . . . 7 (𝑤 = 𝑢 → (𝑤‘0) = (𝑢‘0))
87eqeq1d 2827 . . . . . 6 (𝑤 = 𝑢 → ((𝑤‘0) = 𝑃 ↔ (𝑢‘0) = 𝑃))
9 fveq1 6432 . . . . . . . 8 (𝑤 = 𝑢 → (𝑤‘1) = (𝑢‘1))
107, 9preq12d 4494 . . . . . . 7 (𝑤 = 𝑢 → {(𝑤‘0), (𝑤‘1)} = {(𝑢‘0), (𝑢‘1)})
1110eleq1d 2891 . . . . . 6 (𝑤 = 𝑢 → ({(𝑤‘0), (𝑤‘1)} ∈ 𝑋 ↔ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋))
126, 8, 113anbi123d 1566 . . . . 5 (𝑤 = 𝑢 → (((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋) ↔ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)))
1312cbvrabv 3412 . . . 4 {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} = {𝑢 ∈ Word 𝑉 ∣ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)}
14 preq2 4487 . . . . . 6 (𝑛 = 𝑝 → {𝑃, 𝑛} = {𝑃, 𝑝})
1514eleq1d 2891 . . . . 5 (𝑛 = 𝑝 → ({𝑃, 𝑛} ∈ 𝑋 ↔ {𝑃, 𝑝} ∈ 𝑋))
1615cbvrabv 3412 . . . 4 {𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋} = {𝑝𝑉 ∣ {𝑃, 𝑝} ∈ 𝑋}
17 fveqeq2 6442 . . . . . . 7 (𝑡 = 𝑤 → ((♯‘𝑡) = 2 ↔ (♯‘𝑤) = 2))
18 fveq1 6432 . . . . . . . 8 (𝑡 = 𝑤 → (𝑡‘0) = (𝑤‘0))
1918eqeq1d 2827 . . . . . . 7 (𝑡 = 𝑤 → ((𝑡‘0) = 𝑃 ↔ (𝑤‘0) = 𝑃))
20 fveq1 6432 . . . . . . . . 9 (𝑡 = 𝑤 → (𝑡‘1) = (𝑤‘1))
2118, 20preq12d 4494 . . . . . . . 8 (𝑡 = 𝑤 → {(𝑡‘0), (𝑡‘1)} = {(𝑤‘0), (𝑤‘1)})
2221eleq1d 2891 . . . . . . 7 (𝑡 = 𝑤 → ({(𝑡‘0), (𝑡‘1)} ∈ 𝑋 ↔ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋))
2317, 19, 223anbi123d 1566 . . . . . 6 (𝑡 = 𝑤 → (((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋) ↔ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)))
2423cbvrabv 3412 . . . . 5 {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}
25 mpteq1 4960 . . . . 5 ({𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} → (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} ↦ (𝑥‘1)) = (𝑥 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} ↦ (𝑥‘1)))
2624, 25ax-mp 5 . . . 4 (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} ↦ (𝑥‘1)) = (𝑥 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} ↦ (𝑥‘1))
2713, 16, 26wwlktovf1o 14081 . . 3 (𝑃𝑉 → (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} ↦ (𝑥‘1)):{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}–1-1-onto→{𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋})
2827adantl 475 . 2 ((𝑉𝑌𝑃𝑉) → (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} ↦ (𝑥‘1)):{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}–1-1-onto→{𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋})
29 f1oeq1 6367 . . 3 (𝑓 = (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} ↦ (𝑥‘1)) → (𝑓:{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}–1-1-onto→{𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋} ↔ (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} ↦ (𝑥‘1)):{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}–1-1-onto→{𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋}))
3029spcegv 3511 . 2 ((𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} ↦ (𝑥‘1)) ∈ V → ((𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} ↦ (𝑥‘1)):{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}–1-1-onto→{𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋} → ∃𝑓 𝑓:{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}–1-1-onto→{𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋}))
315, 28, 30sylc 65 1 ((𝑉𝑌𝑃𝑉) → ∃𝑓 𝑓:{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}–1-1-onto→{𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1113   = wceq 1658  wex 1880  wcel 2166  {crab 3121  Vcvv 3414  {cpr 4399  cmpt 4952  1-1-ontowf1o 6122  cfv 6123  0cc0 10252  1c1 10253  2c2 11406  chash 13410  Word cword 13574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-map 8124  df-pm 8125  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-card 9078  df-cda 9305  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-n0 11619  df-z 11705  df-uz 11969  df-fz 12620  df-fzo 12761  df-hash 13411  df-word 13575
This theorem is referenced by:  rusgrnumwrdl2  26884
  Copyright terms: Public domain W3C validator