| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | wrdexg 14563 | . . . 4
⊢ (𝑉 ∈ 𝑌 → Word 𝑉 ∈ V) | 
| 2 | 1 | adantr 480 | . . 3
⊢ ((𝑉 ∈ 𝑌 ∧ 𝑃 ∈ 𝑉) → Word 𝑉 ∈ V) | 
| 3 |  | rabexg 5336 | . . 3
⊢ (Word
𝑉 ∈ V → {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} ∈ V) | 
| 4 |  | mptexg 7242 | . . 3
⊢ ({𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} ∈ V → (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} ↦ (𝑥‘1)) ∈ V) | 
| 5 | 2, 3, 4 | 3syl 18 | . 2
⊢ ((𝑉 ∈ 𝑌 ∧ 𝑃 ∈ 𝑉) → (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} ↦ (𝑥‘1)) ∈ V) | 
| 6 |  | fveqeq2 6914 | . . . . . 6
⊢ (𝑤 = 𝑢 → ((♯‘𝑤) = 2 ↔ (♯‘𝑢) = 2)) | 
| 7 |  | fveq1 6904 | . . . . . . 7
⊢ (𝑤 = 𝑢 → (𝑤‘0) = (𝑢‘0)) | 
| 8 | 7 | eqeq1d 2738 | . . . . . 6
⊢ (𝑤 = 𝑢 → ((𝑤‘0) = 𝑃 ↔ (𝑢‘0) = 𝑃)) | 
| 9 |  | fveq1 6904 | . . . . . . . 8
⊢ (𝑤 = 𝑢 → (𝑤‘1) = (𝑢‘1)) | 
| 10 | 7, 9 | preq12d 4740 | . . . . . . 7
⊢ (𝑤 = 𝑢 → {(𝑤‘0), (𝑤‘1)} = {(𝑢‘0), (𝑢‘1)}) | 
| 11 | 10 | eleq1d 2825 | . . . . . 6
⊢ (𝑤 = 𝑢 → ({(𝑤‘0), (𝑤‘1)} ∈ 𝑋 ↔ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)) | 
| 12 | 6, 8, 11 | 3anbi123d 1437 | . . . . 5
⊢ (𝑤 = 𝑢 → (((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋) ↔ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋))) | 
| 13 | 12 | cbvrabv 3446 | . . . 4
⊢ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} = {𝑢 ∈ Word 𝑉 ∣ ((♯‘𝑢) = 2 ∧ (𝑢‘0) = 𝑃 ∧ {(𝑢‘0), (𝑢‘1)} ∈ 𝑋)} | 
| 14 |  | preq2 4733 | . . . . . 6
⊢ (𝑛 = 𝑝 → {𝑃, 𝑛} = {𝑃, 𝑝}) | 
| 15 | 14 | eleq1d 2825 | . . . . 5
⊢ (𝑛 = 𝑝 → ({𝑃, 𝑛} ∈ 𝑋 ↔ {𝑃, 𝑝} ∈ 𝑋)) | 
| 16 | 15 | cbvrabv 3446 | . . . 4
⊢ {𝑛 ∈ 𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋} = {𝑝 ∈ 𝑉 ∣ {𝑃, 𝑝} ∈ 𝑋} | 
| 17 |  | fveqeq2 6914 | . . . . . . 7
⊢ (𝑡 = 𝑤 → ((♯‘𝑡) = 2 ↔ (♯‘𝑤) = 2)) | 
| 18 |  | fveq1 6904 | . . . . . . . 8
⊢ (𝑡 = 𝑤 → (𝑡‘0) = (𝑤‘0)) | 
| 19 | 18 | eqeq1d 2738 | . . . . . . 7
⊢ (𝑡 = 𝑤 → ((𝑡‘0) = 𝑃 ↔ (𝑤‘0) = 𝑃)) | 
| 20 |  | fveq1 6904 | . . . . . . . . 9
⊢ (𝑡 = 𝑤 → (𝑡‘1) = (𝑤‘1)) | 
| 21 | 18, 20 | preq12d 4740 | . . . . . . . 8
⊢ (𝑡 = 𝑤 → {(𝑡‘0), (𝑡‘1)} = {(𝑤‘0), (𝑤‘1)}) | 
| 22 | 21 | eleq1d 2825 | . . . . . . 7
⊢ (𝑡 = 𝑤 → ({(𝑡‘0), (𝑡‘1)} ∈ 𝑋 ↔ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)) | 
| 23 | 17, 19, 22 | 3anbi123d 1437 | . . . . . 6
⊢ (𝑡 = 𝑤 → (((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋) ↔ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋))) | 
| 24 | 23 | cbvrabv 3446 | . . . . 5
⊢ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} | 
| 25 | 24 | mpteq1i 5237 | . . . 4
⊢ (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} ↦ (𝑥‘1)) = (𝑥 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} ↦ (𝑥‘1)) | 
| 26 | 13, 16, 25 | wwlktovf1o 14999 | . . 3
⊢ (𝑃 ∈ 𝑉 → (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} ↦ (𝑥‘1)):{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}–1-1-onto→{𝑛 ∈ 𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋}) | 
| 27 | 26 | adantl 481 | . 2
⊢ ((𝑉 ∈ 𝑌 ∧ 𝑃 ∈ 𝑉) → (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} ↦ (𝑥‘1)):{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}–1-1-onto→{𝑛 ∈ 𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋}) | 
| 28 |  | f1oeq1 6835 | . 2
⊢ (𝑓 = (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} ↦ (𝑥‘1)) → (𝑓:{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}–1-1-onto→{𝑛 ∈ 𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋} ↔ (𝑥 ∈ {𝑡 ∈ Word 𝑉 ∣ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)} ↦ (𝑥‘1)):{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}–1-1-onto→{𝑛 ∈ 𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋})) | 
| 29 | 5, 27, 28 | spcedv 3597 | 1
⊢ ((𝑉 ∈ 𝑌 ∧ 𝑃 ∈ 𝑉) → ∃𝑓 𝑓:{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}–1-1-onto→{𝑛 ∈ 𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋}) |