Proof of Theorem m2detleiblem4
Step | Hyp | Ref
| Expression |
1 | | m2detleiblem2.g |
. . . 4
⊢ 𝐺 = (mulGrp‘𝑅) |
2 | | eqid 2738 |
. . . 4
⊢
(Base‘𝑅) =
(Base‘𝑅) |
3 | 1, 2 | mgpbas 19641 |
. . 3
⊢
(Base‘𝑅) =
(Base‘𝐺) |
4 | | m2detleiblem3.m |
. . 3
⊢ · =
(+g‘𝐺) |
5 | 1 | fvexi 6770 |
. . . 4
⊢ 𝐺 ∈ V |
6 | 5 | a1i 11 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2,
1〉} ∧ 𝑀 ∈
𝐵) → 𝐺 ∈ V) |
7 | | 1ex 10902 |
. . . . . . 7
⊢ 1 ∈
V |
8 | | 2nn 11976 |
. . . . . . 7
⊢ 2 ∈
ℕ |
9 | | prex 5350 |
. . . . . . . . 9
⊢ {〈1,
2〉, 〈2, 1〉} ∈ V |
10 | 9 | prid2 4696 |
. . . . . . . 8
⊢ {〈1,
2〉, 〈2, 1〉} ∈ {{〈1, 1〉, 〈2, 2〉},
{〈1, 2〉, 〈2, 1〉}} |
11 | | eqid 2738 |
. . . . . . . . 9
⊢
(SymGrp‘𝑁) =
(SymGrp‘𝑁) |
12 | | m2detleiblem2.p |
. . . . . . . . 9
⊢ 𝑃 =
(Base‘(SymGrp‘𝑁)) |
13 | | m2detleiblem2.n |
. . . . . . . . 9
⊢ 𝑁 = {1, 2} |
14 | 11, 12, 13 | symg2bas 18915 |
. . . . . . . 8
⊢ ((1
∈ V ∧ 2 ∈ ℕ) → 𝑃 = {{〈1, 1〉, 〈2, 2〉},
{〈1, 2〉, 〈2, 1〉}}) |
15 | 10, 14 | eleqtrrid 2846 |
. . . . . . 7
⊢ ((1
∈ V ∧ 2 ∈ ℕ) → {〈1, 2〉, 〈2, 1〉}
∈ 𝑃) |
16 | 7, 8, 15 | mp2an 688 |
. . . . . 6
⊢ {〈1,
2〉, 〈2, 1〉} ∈ 𝑃 |
17 | | eleq1 2826 |
. . . . . 6
⊢ (𝑄 = {〈1, 2〉, 〈2,
1〉} → (𝑄 ∈
𝑃 ↔ {〈1, 2〉,
〈2, 1〉} ∈ 𝑃)) |
18 | 16, 17 | mpbiri 257 |
. . . . 5
⊢ (𝑄 = {〈1, 2〉, 〈2,
1〉} → 𝑄 ∈
𝑃) |
19 | | m2detleiblem2.a |
. . . . . . 7
⊢ 𝐴 = (𝑁 Mat 𝑅) |
20 | 13 | oveq1i 7265 |
. . . . . . 7
⊢ (𝑁 Mat 𝑅) = ({1, 2} Mat 𝑅) |
21 | 19, 20 | eqtri 2766 |
. . . . . 6
⊢ 𝐴 = ({1, 2} Mat 𝑅) |
22 | | m2detleiblem2.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐴) |
23 | 13 | fveq2i 6759 |
. . . . . . . 8
⊢
(SymGrp‘𝑁) =
(SymGrp‘{1, 2}) |
24 | 23 | fveq2i 6759 |
. . . . . . 7
⊢
(Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘{1,
2})) |
25 | 12, 24 | eqtri 2766 |
. . . . . 6
⊢ 𝑃 = (Base‘(SymGrp‘{1,
2})) |
26 | 21, 22, 25 | matepmcl 21519 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) → ∀𝑛 ∈ {1, 2} ((𝑄‘𝑛)𝑀𝑛) ∈ (Base‘𝑅)) |
27 | 18, 26 | syl3an2 1162 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2,
1〉} ∧ 𝑀 ∈
𝐵) → ∀𝑛 ∈ {1, 2} ((𝑄‘𝑛)𝑀𝑛) ∈ (Base‘𝑅)) |
28 | 13 | mpteq1i 5166 |
. . . . 5
⊢ (𝑛 ∈ 𝑁 ↦ ((𝑄‘𝑛)𝑀𝑛)) = (𝑛 ∈ {1, 2} ↦ ((𝑄‘𝑛)𝑀𝑛)) |
29 | 28 | fmpt 6966 |
. . . 4
⊢
(∀𝑛 ∈
{1, 2} ((𝑄‘𝑛)𝑀𝑛) ∈ (Base‘𝑅) ↔ (𝑛 ∈ 𝑁 ↦ ((𝑄‘𝑛)𝑀𝑛)):{1, 2}⟶(Base‘𝑅)) |
30 | 27, 29 | sylib 217 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2,
1〉} ∧ 𝑀 ∈
𝐵) → (𝑛 ∈ 𝑁 ↦ ((𝑄‘𝑛)𝑀𝑛)):{1, 2}⟶(Base‘𝑅)) |
31 | 3, 4, 6, 30 | gsumpr12val 18288 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2,
1〉} ∧ 𝑀 ∈
𝐵) → (𝐺 Σg
(𝑛 ∈ 𝑁 ↦ ((𝑄‘𝑛)𝑀𝑛))) = (((𝑛 ∈ 𝑁 ↦ ((𝑄‘𝑛)𝑀𝑛))‘1) · ((𝑛 ∈ 𝑁 ↦ ((𝑄‘𝑛)𝑀𝑛))‘2))) |
32 | 7 | prid1 4695 |
. . . . . 6
⊢ 1 ∈
{1, 2} |
33 | 32, 13 | eleqtrri 2838 |
. . . . 5
⊢ 1 ∈
𝑁 |
34 | 19, 22, 12 | matepmcl 21519 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) → ∀𝑛 ∈ 𝑁 ((𝑄‘𝑛)𝑀𝑛) ∈ (Base‘𝑅)) |
35 | 18, 34 | syl3an2 1162 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2,
1〉} ∧ 𝑀 ∈
𝐵) → ∀𝑛 ∈ 𝑁 ((𝑄‘𝑛)𝑀𝑛) ∈ (Base‘𝑅)) |
36 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑛 = 1 → (𝑄‘𝑛) = (𝑄‘1)) |
37 | | id 22 |
. . . . . . . . 9
⊢ (𝑛 = 1 → 𝑛 = 1) |
38 | 36, 37 | oveq12d 7273 |
. . . . . . . 8
⊢ (𝑛 = 1 → ((𝑄‘𝑛)𝑀𝑛) = ((𝑄‘1)𝑀1)) |
39 | 38 | eleq1d 2823 |
. . . . . . 7
⊢ (𝑛 = 1 → (((𝑄‘𝑛)𝑀𝑛) ∈ (Base‘𝑅) ↔ ((𝑄‘1)𝑀1) ∈ (Base‘𝑅))) |
40 | 39 | rspcva 3550 |
. . . . . 6
⊢ ((1
∈ 𝑁 ∧
∀𝑛 ∈ 𝑁 ((𝑄‘𝑛)𝑀𝑛) ∈ (Base‘𝑅)) → ((𝑄‘1)𝑀1) ∈ (Base‘𝑅)) |
41 | 33, 35, 40 | sylancr 586 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2,
1〉} ∧ 𝑀 ∈
𝐵) → ((𝑄‘1)𝑀1) ∈ (Base‘𝑅)) |
42 | | eqid 2738 |
. . . . . 6
⊢ (𝑛 ∈ 𝑁 ↦ ((𝑄‘𝑛)𝑀𝑛)) = (𝑛 ∈ 𝑁 ↦ ((𝑄‘𝑛)𝑀𝑛)) |
43 | 38, 42 | fvmptg 6855 |
. . . . 5
⊢ ((1
∈ 𝑁 ∧ ((𝑄‘1)𝑀1) ∈ (Base‘𝑅)) → ((𝑛 ∈ 𝑁 ↦ ((𝑄‘𝑛)𝑀𝑛))‘1) = ((𝑄‘1)𝑀1)) |
44 | 33, 41, 43 | sylancr 586 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2,
1〉} ∧ 𝑀 ∈
𝐵) → ((𝑛 ∈ 𝑁 ↦ ((𝑄‘𝑛)𝑀𝑛))‘1) = ((𝑄‘1)𝑀1)) |
45 | | fveq1 6755 |
. . . . . . 7
⊢ (𝑄 = {〈1, 2〉, 〈2,
1〉} → (𝑄‘1)
= ({〈1, 2〉, 〈2, 1〉}‘1)) |
46 | | 1ne2 12111 |
. . . . . . . 8
⊢ 1 ≠
2 |
47 | | 2ex 11980 |
. . . . . . . . 9
⊢ 2 ∈
V |
48 | 7, 47 | fvpr1 7047 |
. . . . . . . 8
⊢ (1 ≠ 2
→ ({〈1, 2〉, 〈2, 1〉}‘1) = 2) |
49 | 46, 48 | ax-mp 5 |
. . . . . . 7
⊢
({〈1, 2〉, 〈2, 1〉}‘1) = 2 |
50 | 45, 49 | eqtrdi 2795 |
. . . . . 6
⊢ (𝑄 = {〈1, 2〉, 〈2,
1〉} → (𝑄‘1)
= 2) |
51 | 50 | 3ad2ant2 1132 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2,
1〉} ∧ 𝑀 ∈
𝐵) → (𝑄‘1) = 2) |
52 | 51 | oveq1d 7270 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2,
1〉} ∧ 𝑀 ∈
𝐵) → ((𝑄‘1)𝑀1) = (2𝑀1)) |
53 | 44, 52 | eqtrd 2778 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2,
1〉} ∧ 𝑀 ∈
𝐵) → ((𝑛 ∈ 𝑁 ↦ ((𝑄‘𝑛)𝑀𝑛))‘1) = (2𝑀1)) |
54 | 47 | prid2 4696 |
. . . . . 6
⊢ 2 ∈
{1, 2} |
55 | 54, 13 | eleqtrri 2838 |
. . . . 5
⊢ 2 ∈
𝑁 |
56 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑛 = 2 → (𝑄‘𝑛) = (𝑄‘2)) |
57 | | id 22 |
. . . . . . . . 9
⊢ (𝑛 = 2 → 𝑛 = 2) |
58 | 56, 57 | oveq12d 7273 |
. . . . . . . 8
⊢ (𝑛 = 2 → ((𝑄‘𝑛)𝑀𝑛) = ((𝑄‘2)𝑀2)) |
59 | 58 | eleq1d 2823 |
. . . . . . 7
⊢ (𝑛 = 2 → (((𝑄‘𝑛)𝑀𝑛) ∈ (Base‘𝑅) ↔ ((𝑄‘2)𝑀2) ∈ (Base‘𝑅))) |
60 | 59 | rspcva 3550 |
. . . . . 6
⊢ ((2
∈ 𝑁 ∧
∀𝑛 ∈ 𝑁 ((𝑄‘𝑛)𝑀𝑛) ∈ (Base‘𝑅)) → ((𝑄‘2)𝑀2) ∈ (Base‘𝑅)) |
61 | 55, 35, 60 | sylancr 586 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2,
1〉} ∧ 𝑀 ∈
𝐵) → ((𝑄‘2)𝑀2) ∈ (Base‘𝑅)) |
62 | 58, 42 | fvmptg 6855 |
. . . . 5
⊢ ((2
∈ 𝑁 ∧ ((𝑄‘2)𝑀2) ∈ (Base‘𝑅)) → ((𝑛 ∈ 𝑁 ↦ ((𝑄‘𝑛)𝑀𝑛))‘2) = ((𝑄‘2)𝑀2)) |
63 | 55, 61, 62 | sylancr 586 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2,
1〉} ∧ 𝑀 ∈
𝐵) → ((𝑛 ∈ 𝑁 ↦ ((𝑄‘𝑛)𝑀𝑛))‘2) = ((𝑄‘2)𝑀2)) |
64 | | fveq1 6755 |
. . . . . . 7
⊢ (𝑄 = {〈1, 2〉, 〈2,
1〉} → (𝑄‘2)
= ({〈1, 2〉, 〈2, 1〉}‘2)) |
65 | 47, 7 | fvpr2 7049 |
. . . . . . . 8
⊢ (1 ≠ 2
→ ({〈1, 2〉, 〈2, 1〉}‘2) = 1) |
66 | 46, 65 | ax-mp 5 |
. . . . . . 7
⊢
({〈1, 2〉, 〈2, 1〉}‘2) = 1 |
67 | 64, 66 | eqtrdi 2795 |
. . . . . 6
⊢ (𝑄 = {〈1, 2〉, 〈2,
1〉} → (𝑄‘2)
= 1) |
68 | 67 | 3ad2ant2 1132 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2,
1〉} ∧ 𝑀 ∈
𝐵) → (𝑄‘2) = 1) |
69 | 68 | oveq1d 7270 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2,
1〉} ∧ 𝑀 ∈
𝐵) → ((𝑄‘2)𝑀2) = (1𝑀2)) |
70 | 63, 69 | eqtrd 2778 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2,
1〉} ∧ 𝑀 ∈
𝐵) → ((𝑛 ∈ 𝑁 ↦ ((𝑄‘𝑛)𝑀𝑛))‘2) = (1𝑀2)) |
71 | 53, 70 | oveq12d 7273 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2,
1〉} ∧ 𝑀 ∈
𝐵) → (((𝑛 ∈ 𝑁 ↦ ((𝑄‘𝑛)𝑀𝑛))‘1) · ((𝑛 ∈ 𝑁 ↦ ((𝑄‘𝑛)𝑀𝑛))‘2)) = ((2𝑀1) · (1𝑀2))) |
72 | 31, 71 | eqtrd 2778 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2,
1〉} ∧ 𝑀 ∈
𝐵) → (𝐺 Σg
(𝑛 ∈ 𝑁 ↦ ((𝑄‘𝑛)𝑀𝑛))) = ((2𝑀1) · (1𝑀2))) |