MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m2detleiblem4 Structured version   Visualization version   GIF version

Theorem m2detleiblem4 22538
Description: Lemma 4 for m2detleib 22539. (Contributed by AV, 20-Dec-2018.) (Proof shortened by AV, 2-Jan-2019.)
Hypotheses
Ref Expression
m2detleiblem2.n 𝑁 = {1, 2}
m2detleiblem2.p 𝑃 = (Base‘(SymGrp‘𝑁))
m2detleiblem2.a 𝐴 = (𝑁 Mat 𝑅)
m2detleiblem2.b 𝐵 = (Base‘𝐴)
m2detleiblem2.g 𝐺 = (mulGrp‘𝑅)
m2detleiblem3.m · = (+g𝐺)
Assertion
Ref Expression
m2detleiblem4 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → (𝐺 Σg (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))) = ((2𝑀1) · (1𝑀2)))
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑃,𝑛   𝑄,𝑛   𝑅,𝑛
Allowed substitution hints:   𝐴(𝑛)   · (𝑛)   𝐺(𝑛)

Proof of Theorem m2detleiblem4
StepHypRef Expression
1 m2detleiblem2.g . . . 4 𝐺 = (mulGrp‘𝑅)
2 eqid 2730 . . . 4 (Base‘𝑅) = (Base‘𝑅)
31, 2mgpbas 20056 . . 3 (Base‘𝑅) = (Base‘𝐺)
4 m2detleiblem3.m . . 3 · = (+g𝐺)
51fvexi 6831 . . . 4 𝐺 ∈ V
65a1i 11 . . 3 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → 𝐺 ∈ V)
7 1ex 11100 . . . . . . 7 1 ∈ V
8 2nn 12190 . . . . . . 7 2 ∈ ℕ
9 prex 5373 . . . . . . . . 9 {⟨1, 2⟩, ⟨2, 1⟩} ∈ V
109prid2 4714 . . . . . . . 8 {⟨1, 2⟩, ⟨2, 1⟩} ∈ {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}}
11 eqid 2730 . . . . . . . . 9 (SymGrp‘𝑁) = (SymGrp‘𝑁)
12 m2detleiblem2.p . . . . . . . . 9 𝑃 = (Base‘(SymGrp‘𝑁))
13 m2detleiblem2.n . . . . . . . . 9 𝑁 = {1, 2}
1411, 12, 13symg2bas 19298 . . . . . . . 8 ((1 ∈ V ∧ 2 ∈ ℕ) → 𝑃 = {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}})
1510, 14eleqtrrid 2836 . . . . . . 7 ((1 ∈ V ∧ 2 ∈ ℕ) → {⟨1, 2⟩, ⟨2, 1⟩} ∈ 𝑃)
167, 8, 15mp2an 692 . . . . . 6 {⟨1, 2⟩, ⟨2, 1⟩} ∈ 𝑃
17 eleq1 2817 . . . . . 6 (𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} → (𝑄𝑃 ↔ {⟨1, 2⟩, ⟨2, 1⟩} ∈ 𝑃))
1816, 17mpbiri 258 . . . . 5 (𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} → 𝑄𝑃)
19 m2detleiblem2.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
2013oveq1i 7351 . . . . . . 7 (𝑁 Mat 𝑅) = ({1, 2} Mat 𝑅)
2119, 20eqtri 2753 . . . . . 6 𝐴 = ({1, 2} Mat 𝑅)
22 m2detleiblem2.b . . . . . 6 𝐵 = (Base‘𝐴)
2313fveq2i 6820 . . . . . . . 8 (SymGrp‘𝑁) = (SymGrp‘{1, 2})
2423fveq2i 6820 . . . . . . 7 (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘{1, 2}))
2512, 24eqtri 2753 . . . . . 6 𝑃 = (Base‘(SymGrp‘{1, 2}))
2621, 22, 25matepmcl 22370 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑄𝑃𝑀𝐵) → ∀𝑛 ∈ {1, 2} ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅))
2718, 26syl3an2 1164 . . . 4 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → ∀𝑛 ∈ {1, 2} ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅))
2813mpteq1i 5180 . . . . 5 (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛)) = (𝑛 ∈ {1, 2} ↦ ((𝑄𝑛)𝑀𝑛))
2928fmpt 7038 . . . 4 (∀𝑛 ∈ {1, 2} ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅) ↔ (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛)):{1, 2}⟶(Base‘𝑅))
3027, 29sylib 218 . . 3 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛)):{1, 2}⟶(Base‘𝑅))
313, 4, 6, 30gsumpr12val 18589 . 2 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → (𝐺 Σg (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))) = (((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘1) · ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘2)))
327prid1 4713 . . . . . 6 1 ∈ {1, 2}
3332, 13eleqtrri 2828 . . . . 5 1 ∈ 𝑁
3419, 22, 12matepmcl 22370 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑄𝑃𝑀𝐵) → ∀𝑛𝑁 ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅))
3518, 34syl3an2 1164 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → ∀𝑛𝑁 ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅))
36 fveq2 6817 . . . . . . . . 9 (𝑛 = 1 → (𝑄𝑛) = (𝑄‘1))
37 id 22 . . . . . . . . 9 (𝑛 = 1 → 𝑛 = 1)
3836, 37oveq12d 7359 . . . . . . . 8 (𝑛 = 1 → ((𝑄𝑛)𝑀𝑛) = ((𝑄‘1)𝑀1))
3938eleq1d 2814 . . . . . . 7 (𝑛 = 1 → (((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅) ↔ ((𝑄‘1)𝑀1) ∈ (Base‘𝑅)))
4039rspcva 3573 . . . . . 6 ((1 ∈ 𝑁 ∧ ∀𝑛𝑁 ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅)) → ((𝑄‘1)𝑀1) ∈ (Base‘𝑅))
4133, 35, 40sylancr 587 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → ((𝑄‘1)𝑀1) ∈ (Base‘𝑅))
42 eqid 2730 . . . . . 6 (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛)) = (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))
4338, 42fvmptg 6922 . . . . 5 ((1 ∈ 𝑁 ∧ ((𝑄‘1)𝑀1) ∈ (Base‘𝑅)) → ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘1) = ((𝑄‘1)𝑀1))
4433, 41, 43sylancr 587 . . . 4 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘1) = ((𝑄‘1)𝑀1))
45 fveq1 6816 . . . . . . 7 (𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} → (𝑄‘1) = ({⟨1, 2⟩, ⟨2, 1⟩}‘1))
46 1ne2 12320 . . . . . . . 8 1 ≠ 2
47 2ex 12194 . . . . . . . . 9 2 ∈ V
487, 47fvpr1 7121 . . . . . . . 8 (1 ≠ 2 → ({⟨1, 2⟩, ⟨2, 1⟩}‘1) = 2)
4946, 48ax-mp 5 . . . . . . 7 ({⟨1, 2⟩, ⟨2, 1⟩}‘1) = 2
5045, 49eqtrdi 2781 . . . . . 6 (𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} → (𝑄‘1) = 2)
51503ad2ant2 1134 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → (𝑄‘1) = 2)
5251oveq1d 7356 . . . 4 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → ((𝑄‘1)𝑀1) = (2𝑀1))
5344, 52eqtrd 2765 . . 3 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘1) = (2𝑀1))
5447prid2 4714 . . . . . 6 2 ∈ {1, 2}
5554, 13eleqtrri 2828 . . . . 5 2 ∈ 𝑁
56 fveq2 6817 . . . . . . . . 9 (𝑛 = 2 → (𝑄𝑛) = (𝑄‘2))
57 id 22 . . . . . . . . 9 (𝑛 = 2 → 𝑛 = 2)
5856, 57oveq12d 7359 . . . . . . . 8 (𝑛 = 2 → ((𝑄𝑛)𝑀𝑛) = ((𝑄‘2)𝑀2))
5958eleq1d 2814 . . . . . . 7 (𝑛 = 2 → (((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅) ↔ ((𝑄‘2)𝑀2) ∈ (Base‘𝑅)))
6059rspcva 3573 . . . . . 6 ((2 ∈ 𝑁 ∧ ∀𝑛𝑁 ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅)) → ((𝑄‘2)𝑀2) ∈ (Base‘𝑅))
6155, 35, 60sylancr 587 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → ((𝑄‘2)𝑀2) ∈ (Base‘𝑅))
6258, 42fvmptg 6922 . . . . 5 ((2 ∈ 𝑁 ∧ ((𝑄‘2)𝑀2) ∈ (Base‘𝑅)) → ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘2) = ((𝑄‘2)𝑀2))
6355, 61, 62sylancr 587 . . . 4 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘2) = ((𝑄‘2)𝑀2))
64 fveq1 6816 . . . . . . 7 (𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} → (𝑄‘2) = ({⟨1, 2⟩, ⟨2, 1⟩}‘2))
6547, 7fvpr2 7122 . . . . . . . 8 (1 ≠ 2 → ({⟨1, 2⟩, ⟨2, 1⟩}‘2) = 1)
6646, 65ax-mp 5 . . . . . . 7 ({⟨1, 2⟩, ⟨2, 1⟩}‘2) = 1
6764, 66eqtrdi 2781 . . . . . 6 (𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} → (𝑄‘2) = 1)
68673ad2ant2 1134 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → (𝑄‘2) = 1)
6968oveq1d 7356 . . . 4 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → ((𝑄‘2)𝑀2) = (1𝑀2))
7063, 69eqtrd 2765 . . 3 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘2) = (1𝑀2))
7153, 70oveq12d 7359 . 2 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → (((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘1) · ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘2)) = ((2𝑀1) · (1𝑀2)))
7231, 71eqtrd 2765 1 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → (𝐺 Σg (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))) = ((2𝑀1) · (1𝑀2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2110  wne 2926  wral 3045  Vcvv 3434  {cpr 4576  cop 4580  cmpt 5170  wf 6473  cfv 6477  (class class class)co 7341  1c1 10999  cn 12117  2c2 12172  Basecbs 17112  +gcplusg 17153   Σg cgsu 17336  SymGrpcsymg 19274  mulGrpcmgp 20051  Ringcrg 20144   Mat cmat 22315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-ot 4583  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-sup 9321  df-dju 9786  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-xnn0 12447  df-z 12461  df-dec 12581  df-uz 12725  df-fz 13400  df-seq 13901  df-fac 14173  df-bc 14202  df-hash 14230  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-hom 17177  df-cco 17178  df-0g 17337  df-gsum 17338  df-prds 17343  df-pws 17345  df-efmnd 18769  df-symg 19275  df-mgp 20052  df-sra 21100  df-rgmod 21101  df-dsmm 21662  df-frlm 21677  df-mat 22316
This theorem is referenced by:  m2detleib  22539
  Copyright terms: Public domain W3C validator