MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m2detleiblem4 Structured version   Visualization version   GIF version

Theorem m2detleiblem4 21687
Description: Lemma 4 for m2detleib 21688. (Contributed by AV, 20-Dec-2018.) (Proof shortened by AV, 2-Jan-2019.)
Hypotheses
Ref Expression
m2detleiblem2.n 𝑁 = {1, 2}
m2detleiblem2.p 𝑃 = (Base‘(SymGrp‘𝑁))
m2detleiblem2.a 𝐴 = (𝑁 Mat 𝑅)
m2detleiblem2.b 𝐵 = (Base‘𝐴)
m2detleiblem2.g 𝐺 = (mulGrp‘𝑅)
m2detleiblem3.m · = (+g𝐺)
Assertion
Ref Expression
m2detleiblem4 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → (𝐺 Σg (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))) = ((2𝑀1) · (1𝑀2)))
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑃,𝑛   𝑄,𝑛   𝑅,𝑛
Allowed substitution hints:   𝐴(𝑛)   · (𝑛)   𝐺(𝑛)

Proof of Theorem m2detleiblem4
StepHypRef Expression
1 m2detleiblem2.g . . . 4 𝐺 = (mulGrp‘𝑅)
2 eqid 2738 . . . 4 (Base‘𝑅) = (Base‘𝑅)
31, 2mgpbas 19641 . . 3 (Base‘𝑅) = (Base‘𝐺)
4 m2detleiblem3.m . . 3 · = (+g𝐺)
51fvexi 6770 . . . 4 𝐺 ∈ V
65a1i 11 . . 3 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → 𝐺 ∈ V)
7 1ex 10902 . . . . . . 7 1 ∈ V
8 2nn 11976 . . . . . . 7 2 ∈ ℕ
9 prex 5350 . . . . . . . . 9 {⟨1, 2⟩, ⟨2, 1⟩} ∈ V
109prid2 4696 . . . . . . . 8 {⟨1, 2⟩, ⟨2, 1⟩} ∈ {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}}
11 eqid 2738 . . . . . . . . 9 (SymGrp‘𝑁) = (SymGrp‘𝑁)
12 m2detleiblem2.p . . . . . . . . 9 𝑃 = (Base‘(SymGrp‘𝑁))
13 m2detleiblem2.n . . . . . . . . 9 𝑁 = {1, 2}
1411, 12, 13symg2bas 18915 . . . . . . . 8 ((1 ∈ V ∧ 2 ∈ ℕ) → 𝑃 = {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}})
1510, 14eleqtrrid 2846 . . . . . . 7 ((1 ∈ V ∧ 2 ∈ ℕ) → {⟨1, 2⟩, ⟨2, 1⟩} ∈ 𝑃)
167, 8, 15mp2an 688 . . . . . 6 {⟨1, 2⟩, ⟨2, 1⟩} ∈ 𝑃
17 eleq1 2826 . . . . . 6 (𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} → (𝑄𝑃 ↔ {⟨1, 2⟩, ⟨2, 1⟩} ∈ 𝑃))
1816, 17mpbiri 257 . . . . 5 (𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} → 𝑄𝑃)
19 m2detleiblem2.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
2013oveq1i 7265 . . . . . . 7 (𝑁 Mat 𝑅) = ({1, 2} Mat 𝑅)
2119, 20eqtri 2766 . . . . . 6 𝐴 = ({1, 2} Mat 𝑅)
22 m2detleiblem2.b . . . . . 6 𝐵 = (Base‘𝐴)
2313fveq2i 6759 . . . . . . . 8 (SymGrp‘𝑁) = (SymGrp‘{1, 2})
2423fveq2i 6759 . . . . . . 7 (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘{1, 2}))
2512, 24eqtri 2766 . . . . . 6 𝑃 = (Base‘(SymGrp‘{1, 2}))
2621, 22, 25matepmcl 21519 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑄𝑃𝑀𝐵) → ∀𝑛 ∈ {1, 2} ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅))
2718, 26syl3an2 1162 . . . 4 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → ∀𝑛 ∈ {1, 2} ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅))
2813mpteq1i 5166 . . . . 5 (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛)) = (𝑛 ∈ {1, 2} ↦ ((𝑄𝑛)𝑀𝑛))
2928fmpt 6966 . . . 4 (∀𝑛 ∈ {1, 2} ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅) ↔ (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛)):{1, 2}⟶(Base‘𝑅))
3027, 29sylib 217 . . 3 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛)):{1, 2}⟶(Base‘𝑅))
313, 4, 6, 30gsumpr12val 18288 . 2 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → (𝐺 Σg (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))) = (((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘1) · ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘2)))
327prid1 4695 . . . . . 6 1 ∈ {1, 2}
3332, 13eleqtrri 2838 . . . . 5 1 ∈ 𝑁
3419, 22, 12matepmcl 21519 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑄𝑃𝑀𝐵) → ∀𝑛𝑁 ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅))
3518, 34syl3an2 1162 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → ∀𝑛𝑁 ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅))
36 fveq2 6756 . . . . . . . . 9 (𝑛 = 1 → (𝑄𝑛) = (𝑄‘1))
37 id 22 . . . . . . . . 9 (𝑛 = 1 → 𝑛 = 1)
3836, 37oveq12d 7273 . . . . . . . 8 (𝑛 = 1 → ((𝑄𝑛)𝑀𝑛) = ((𝑄‘1)𝑀1))
3938eleq1d 2823 . . . . . . 7 (𝑛 = 1 → (((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅) ↔ ((𝑄‘1)𝑀1) ∈ (Base‘𝑅)))
4039rspcva 3550 . . . . . 6 ((1 ∈ 𝑁 ∧ ∀𝑛𝑁 ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅)) → ((𝑄‘1)𝑀1) ∈ (Base‘𝑅))
4133, 35, 40sylancr 586 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → ((𝑄‘1)𝑀1) ∈ (Base‘𝑅))
42 eqid 2738 . . . . . 6 (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛)) = (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))
4338, 42fvmptg 6855 . . . . 5 ((1 ∈ 𝑁 ∧ ((𝑄‘1)𝑀1) ∈ (Base‘𝑅)) → ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘1) = ((𝑄‘1)𝑀1))
4433, 41, 43sylancr 586 . . . 4 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘1) = ((𝑄‘1)𝑀1))
45 fveq1 6755 . . . . . . 7 (𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} → (𝑄‘1) = ({⟨1, 2⟩, ⟨2, 1⟩}‘1))
46 1ne2 12111 . . . . . . . 8 1 ≠ 2
47 2ex 11980 . . . . . . . . 9 2 ∈ V
487, 47fvpr1 7047 . . . . . . . 8 (1 ≠ 2 → ({⟨1, 2⟩, ⟨2, 1⟩}‘1) = 2)
4946, 48ax-mp 5 . . . . . . 7 ({⟨1, 2⟩, ⟨2, 1⟩}‘1) = 2
5045, 49eqtrdi 2795 . . . . . 6 (𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} → (𝑄‘1) = 2)
51503ad2ant2 1132 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → (𝑄‘1) = 2)
5251oveq1d 7270 . . . 4 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → ((𝑄‘1)𝑀1) = (2𝑀1))
5344, 52eqtrd 2778 . . 3 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘1) = (2𝑀1))
5447prid2 4696 . . . . . 6 2 ∈ {1, 2}
5554, 13eleqtrri 2838 . . . . 5 2 ∈ 𝑁
56 fveq2 6756 . . . . . . . . 9 (𝑛 = 2 → (𝑄𝑛) = (𝑄‘2))
57 id 22 . . . . . . . . 9 (𝑛 = 2 → 𝑛 = 2)
5856, 57oveq12d 7273 . . . . . . . 8 (𝑛 = 2 → ((𝑄𝑛)𝑀𝑛) = ((𝑄‘2)𝑀2))
5958eleq1d 2823 . . . . . . 7 (𝑛 = 2 → (((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅) ↔ ((𝑄‘2)𝑀2) ∈ (Base‘𝑅)))
6059rspcva 3550 . . . . . 6 ((2 ∈ 𝑁 ∧ ∀𝑛𝑁 ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅)) → ((𝑄‘2)𝑀2) ∈ (Base‘𝑅))
6155, 35, 60sylancr 586 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → ((𝑄‘2)𝑀2) ∈ (Base‘𝑅))
6258, 42fvmptg 6855 . . . . 5 ((2 ∈ 𝑁 ∧ ((𝑄‘2)𝑀2) ∈ (Base‘𝑅)) → ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘2) = ((𝑄‘2)𝑀2))
6355, 61, 62sylancr 586 . . . 4 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘2) = ((𝑄‘2)𝑀2))
64 fveq1 6755 . . . . . . 7 (𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} → (𝑄‘2) = ({⟨1, 2⟩, ⟨2, 1⟩}‘2))
6547, 7fvpr2 7049 . . . . . . . 8 (1 ≠ 2 → ({⟨1, 2⟩, ⟨2, 1⟩}‘2) = 1)
6646, 65ax-mp 5 . . . . . . 7 ({⟨1, 2⟩, ⟨2, 1⟩}‘2) = 1
6764, 66eqtrdi 2795 . . . . . 6 (𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} → (𝑄‘2) = 1)
68673ad2ant2 1132 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → (𝑄‘2) = 1)
6968oveq1d 7270 . . . 4 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → ((𝑄‘2)𝑀2) = (1𝑀2))
7063, 69eqtrd 2778 . . 3 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘2) = (1𝑀2))
7153, 70oveq12d 7273 . 2 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → (((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘1) · ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘2)) = ((2𝑀1) · (1𝑀2)))
7231, 71eqtrd 2778 1 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → (𝐺 Σg (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))) = ((2𝑀1) · (1𝑀2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  Vcvv 3422  {cpr 4560  cop 4564  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  1c1 10803  cn 11903  2c2 11958  Basecbs 16840  +gcplusg 16888   Σg cgsu 17068  SymGrpcsymg 18889  mulGrpcmgp 19635  Ringcrg 19698   Mat cmat 21464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-ot 4567  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-seq 13650  df-fac 13916  df-bc 13945  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-hom 16912  df-cco 16913  df-0g 17069  df-gsum 17070  df-prds 17075  df-pws 17077  df-efmnd 18423  df-symg 18890  df-mgp 19636  df-sra 20349  df-rgmod 20350  df-dsmm 20849  df-frlm 20864  df-mat 21465
This theorem is referenced by:  m2detleib  21688
  Copyright terms: Public domain W3C validator