MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlknwwlksnbij Structured version   Visualization version   GIF version

Theorem wlknwwlksnbij 29868
Description: The mapping (𝑡𝑇 ↦ (2nd𝑡)) is a bijection between the set of walks of a fixed length and the set of walks represented by words of the same length in a simple pseudograph. (Contributed by Alexander van der Vekens, 25-Aug-2018.) (Revised by AV, 5-Aug-2022.)
Hypotheses
Ref Expression
wlknwwlksnbij.t 𝑇 = {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁}
wlknwwlksnbij.w 𝑊 = (𝑁 WWalksN 𝐺)
wlknwwlksnbij.f 𝐹 = (𝑡𝑇 ↦ (2nd𝑡))
Assertion
Ref Expression
wlknwwlksnbij ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → 𝐹:𝑇1-1-onto𝑊)
Distinct variable groups:   𝐺,𝑝,𝑡   𝑁,𝑝,𝑡   𝑡,𝑇
Allowed substitution hints:   𝑇(𝑝)   𝐹(𝑡,𝑝)   𝑊(𝑡,𝑝)

Proof of Theorem wlknwwlksnbij
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (𝑝 ∈ (Walks‘𝐺) ↦ (2nd𝑝)) = (𝑝 ∈ (Walks‘𝐺) ↦ (2nd𝑝))
21wlkswwlksf1o 29859 . . . 4 (𝐺 ∈ USPGraph → (𝑝 ∈ (Walks‘𝐺) ↦ (2nd𝑝)):(Walks‘𝐺)–1-1-onto→(WWalks‘𝐺))
32adantr 480 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → (𝑝 ∈ (Walks‘𝐺) ↦ (2nd𝑝)):(Walks‘𝐺)–1-1-onto→(WWalks‘𝐺))
4 fveqeq2 6849 . . . . 5 (𝑞 = (2nd𝑝) → ((♯‘𝑞) = (𝑁 + 1) ↔ (♯‘(2nd𝑝)) = (𝑁 + 1)))
543ad2ant3 1135 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ 𝑝 ∈ (Walks‘𝐺) ∧ 𝑞 = (2nd𝑝)) → ((♯‘𝑞) = (𝑁 + 1) ↔ (♯‘(2nd𝑝)) = (𝑁 + 1)))
6 wlkcpr 29609 . . . . . . 7 (𝑝 ∈ (Walks‘𝐺) ↔ (1st𝑝)(Walks‘𝐺)(2nd𝑝))
7 wlklenvp1 29599 . . . . . . . 8 ((1st𝑝)(Walks‘𝐺)(2nd𝑝) → (♯‘(2nd𝑝)) = ((♯‘(1st𝑝)) + 1))
8 eqeq1 2733 . . . . . . . . . 10 ((♯‘(2nd𝑝)) = ((♯‘(1st𝑝)) + 1) → ((♯‘(2nd𝑝)) = (𝑁 + 1) ↔ ((♯‘(1st𝑝)) + 1) = (𝑁 + 1)))
9 wlkcl 29596 . . . . . . . . . . . . 13 ((1st𝑝)(Walks‘𝐺)(2nd𝑝) → (♯‘(1st𝑝)) ∈ ℕ0)
109nn0cnd 12481 . . . . . . . . . . . 12 ((1st𝑝)(Walks‘𝐺)(2nd𝑝) → (♯‘(1st𝑝)) ∈ ℂ)
1110adantr 480 . . . . . . . . . . 11 (((1st𝑝)(Walks‘𝐺)(2nd𝑝) ∧ (𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0)) → (♯‘(1st𝑝)) ∈ ℂ)
12 nn0cn 12428 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
1312adantl 481 . . . . . . . . . . . 12 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
1413adantl 481 . . . . . . . . . . 11 (((1st𝑝)(Walks‘𝐺)(2nd𝑝) ∧ (𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0)) → 𝑁 ∈ ℂ)
15 1cnd 11145 . . . . . . . . . . 11 (((1st𝑝)(Walks‘𝐺)(2nd𝑝) ∧ (𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0)) → 1 ∈ ℂ)
1611, 14, 15addcan2d 11354 . . . . . . . . . 10 (((1st𝑝)(Walks‘𝐺)(2nd𝑝) ∧ (𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0)) → (((♯‘(1st𝑝)) + 1) = (𝑁 + 1) ↔ (♯‘(1st𝑝)) = 𝑁))
178, 16sylan9bbr 510 . . . . . . . . 9 ((((1st𝑝)(Walks‘𝐺)(2nd𝑝) ∧ (𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0)) ∧ (♯‘(2nd𝑝)) = ((♯‘(1st𝑝)) + 1)) → ((♯‘(2nd𝑝)) = (𝑁 + 1) ↔ (♯‘(1st𝑝)) = 𝑁))
1817exp31 419 . . . . . . . 8 ((1st𝑝)(Walks‘𝐺)(2nd𝑝) → ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → ((♯‘(2nd𝑝)) = ((♯‘(1st𝑝)) + 1) → ((♯‘(2nd𝑝)) = (𝑁 + 1) ↔ (♯‘(1st𝑝)) = 𝑁))))
197, 18mpid 44 . . . . . . 7 ((1st𝑝)(Walks‘𝐺)(2nd𝑝) → ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → ((♯‘(2nd𝑝)) = (𝑁 + 1) ↔ (♯‘(1st𝑝)) = 𝑁)))
206, 19sylbi 217 . . . . . 6 (𝑝 ∈ (Walks‘𝐺) → ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → ((♯‘(2nd𝑝)) = (𝑁 + 1) ↔ (♯‘(1st𝑝)) = 𝑁)))
2120impcom 407 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ 𝑝 ∈ (Walks‘𝐺)) → ((♯‘(2nd𝑝)) = (𝑁 + 1) ↔ (♯‘(1st𝑝)) = 𝑁))
22213adant3 1132 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ 𝑝 ∈ (Walks‘𝐺) ∧ 𝑞 = (2nd𝑝)) → ((♯‘(2nd𝑝)) = (𝑁 + 1) ↔ (♯‘(1st𝑝)) = 𝑁))
235, 22bitrd 279 . . 3 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ 𝑝 ∈ (Walks‘𝐺) ∧ 𝑞 = (2nd𝑝)) → ((♯‘𝑞) = (𝑁 + 1) ↔ (♯‘(1st𝑝)) = 𝑁))
241, 3, 23f1oresrab 7081 . 2 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → ((𝑝 ∈ (Walks‘𝐺) ↦ (2nd𝑝)) ↾ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁}):{𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁}–1-1-onto→{𝑞 ∈ (WWalks‘𝐺) ∣ (♯‘𝑞) = (𝑁 + 1)})
25 wlknwwlksnbij.f . . . 4 𝐹 = (𝑡𝑇 ↦ (2nd𝑡))
26 wlknwwlksnbij.t . . . . . . 7 𝑇 = {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁}
2726mpteq1i 5193 . . . . . 6 (𝑡𝑇 ↦ (2nd𝑡)) = (𝑡 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁} ↦ (2nd𝑡))
28 ssrab2 4039 . . . . . . 7 {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁} ⊆ (Walks‘𝐺)
29 resmpt 5997 . . . . . . 7 ({𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁} ⊆ (Walks‘𝐺) → ((𝑡 ∈ (Walks‘𝐺) ↦ (2nd𝑡)) ↾ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁}) = (𝑡 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁} ↦ (2nd𝑡)))
3028, 29ax-mp 5 . . . . . 6 ((𝑡 ∈ (Walks‘𝐺) ↦ (2nd𝑡)) ↾ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁}) = (𝑡 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁} ↦ (2nd𝑡))
31 fveq2 6840 . . . . . . . 8 (𝑡 = 𝑝 → (2nd𝑡) = (2nd𝑝))
3231cbvmptv 5206 . . . . . . 7 (𝑡 ∈ (Walks‘𝐺) ↦ (2nd𝑡)) = (𝑝 ∈ (Walks‘𝐺) ↦ (2nd𝑝))
3332reseq1i 5935 . . . . . 6 ((𝑡 ∈ (Walks‘𝐺) ↦ (2nd𝑡)) ↾ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁}) = ((𝑝 ∈ (Walks‘𝐺) ↦ (2nd𝑝)) ↾ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁})
3427, 30, 333eqtr2i 2758 . . . . 5 (𝑡𝑇 ↦ (2nd𝑡)) = ((𝑝 ∈ (Walks‘𝐺) ↦ (2nd𝑝)) ↾ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁})
3534a1i 11 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → (𝑡𝑇 ↦ (2nd𝑡)) = ((𝑝 ∈ (Walks‘𝐺) ↦ (2nd𝑝)) ↾ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁}))
3625, 35eqtrid 2776 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → 𝐹 = ((𝑝 ∈ (Walks‘𝐺) ↦ (2nd𝑝)) ↾ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁}))
3726a1i 11 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → 𝑇 = {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁})
38 wlknwwlksnbij.w . . . 4 𝑊 = (𝑁 WWalksN 𝐺)
39 wwlksn 29817 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑞 ∈ (WWalks‘𝐺) ∣ (♯‘𝑞) = (𝑁 + 1)})
4039adantl 481 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → (𝑁 WWalksN 𝐺) = {𝑞 ∈ (WWalks‘𝐺) ∣ (♯‘𝑞) = (𝑁 + 1)})
4138, 40eqtrid 2776 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → 𝑊 = {𝑞 ∈ (WWalks‘𝐺) ∣ (♯‘𝑞) = (𝑁 + 1)})
4236, 37, 41f1oeq123d 6776 . 2 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → (𝐹:𝑇1-1-onto𝑊 ↔ ((𝑝 ∈ (Walks‘𝐺) ↦ (2nd𝑝)) ↾ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁}):{𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁}–1-1-onto→{𝑞 ∈ (WWalks‘𝐺) ∣ (♯‘𝑞) = (𝑁 + 1)}))
4324, 42mpbird 257 1 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → 𝐹:𝑇1-1-onto𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3402  wss 3911   class class class wbr 5102  cmpt 5183  cres 5633  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  1st c1st 7945  2nd c2nd 7946  cc 11042  1c1 11045   + caddc 11047  0cn0 12418  chash 14271  USPGraphcuspgr 29128  Walkscwlks 29577  WWalkscwwlks 29805   WWalksN cwwlksn 29806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-hash 14272  df-word 14455  df-edg 29028  df-uhgr 29038  df-upgr 29062  df-uspgr 29130  df-wlks 29580  df-wwlks 29810  df-wwlksn 29811
This theorem is referenced by:  wlknwwlksnen  29869  wlksnwwlknvbij  29888
  Copyright terms: Public domain W3C validator