Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . 3
⊢ (𝑝 ∈ (Walks‘𝐺) ↦ (2nd
‘𝑝)) = (𝑝 ∈ (Walks‘𝐺) ↦ (2nd
‘𝑝)) |
2 | 1 | wlkswwlksf1o 28145 |
. . . 4
⊢ (𝐺 ∈ USPGraph → (𝑝 ∈ (Walks‘𝐺) ↦ (2nd
‘𝑝)):(Walks‘𝐺)–1-1-onto→(WWalks‘𝐺)) |
3 | 2 | adantr 480 |
. . 3
⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0)
→ (𝑝 ∈
(Walks‘𝐺) ↦
(2nd ‘𝑝)):(Walks‘𝐺)–1-1-onto→(WWalks‘𝐺)) |
4 | | fveqeq2 6765 |
. . . . 5
⊢ (𝑞 = (2nd ‘𝑝) → ((♯‘𝑞) = (𝑁 + 1) ↔ (♯‘(2nd
‘𝑝)) = (𝑁 + 1))) |
5 | 4 | 3ad2ant3 1133 |
. . . 4
⊢ (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0)
∧ 𝑝 ∈
(Walks‘𝐺) ∧ 𝑞 = (2nd ‘𝑝)) → ((♯‘𝑞) = (𝑁 + 1) ↔ (♯‘(2nd
‘𝑝)) = (𝑁 + 1))) |
6 | | wlkcpr 27898 |
. . . . . . 7
⊢ (𝑝 ∈ (Walks‘𝐺) ↔ (1st
‘𝑝)(Walks‘𝐺)(2nd ‘𝑝)) |
7 | | wlklenvp1 27888 |
. . . . . . . 8
⊢
((1st ‘𝑝)(Walks‘𝐺)(2nd ‘𝑝) → (♯‘(2nd
‘𝑝)) =
((♯‘(1st ‘𝑝)) + 1)) |
8 | | eqeq1 2742 |
. . . . . . . . . 10
⊢
((♯‘(2nd ‘𝑝)) = ((♯‘(1st
‘𝑝)) + 1) →
((♯‘(2nd ‘𝑝)) = (𝑁 + 1) ↔ ((♯‘(1st
‘𝑝)) + 1) = (𝑁 + 1))) |
9 | | wlkcl 27885 |
. . . . . . . . . . . . 13
⊢
((1st ‘𝑝)(Walks‘𝐺)(2nd ‘𝑝) → (♯‘(1st
‘𝑝)) ∈
ℕ0) |
10 | 9 | nn0cnd 12225 |
. . . . . . . . . . . 12
⊢
((1st ‘𝑝)(Walks‘𝐺)(2nd ‘𝑝) → (♯‘(1st
‘𝑝)) ∈
ℂ) |
11 | 10 | adantr 480 |
. . . . . . . . . . 11
⊢
(((1st ‘𝑝)(Walks‘𝐺)(2nd ‘𝑝) ∧ (𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0)) →
(♯‘(1st ‘𝑝)) ∈ ℂ) |
12 | | nn0cn 12173 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℂ) |
13 | 12 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0)
→ 𝑁 ∈
ℂ) |
14 | 13 | adantl 481 |
. . . . . . . . . . 11
⊢
(((1st ‘𝑝)(Walks‘𝐺)(2nd ‘𝑝) ∧ (𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0)) → 𝑁 ∈
ℂ) |
15 | | 1cnd 10901 |
. . . . . . . . . . 11
⊢
(((1st ‘𝑝)(Walks‘𝐺)(2nd ‘𝑝) ∧ (𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0)) → 1
∈ ℂ) |
16 | 11, 14, 15 | addcan2d 11109 |
. . . . . . . . . 10
⊢
(((1st ‘𝑝)(Walks‘𝐺)(2nd ‘𝑝) ∧ (𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0)) →
(((♯‘(1st ‘𝑝)) + 1) = (𝑁 + 1) ↔ (♯‘(1st
‘𝑝)) = 𝑁)) |
17 | 8, 16 | sylan9bbr 510 |
. . . . . . . . 9
⊢
((((1st ‘𝑝)(Walks‘𝐺)(2nd ‘𝑝) ∧ (𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0)) ∧
(♯‘(2nd ‘𝑝)) = ((♯‘(1st
‘𝑝)) + 1)) →
((♯‘(2nd ‘𝑝)) = (𝑁 + 1) ↔ (♯‘(1st
‘𝑝)) = 𝑁)) |
18 | 17 | exp31 419 |
. . . . . . . 8
⊢
((1st ‘𝑝)(Walks‘𝐺)(2nd ‘𝑝) → ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) →
((♯‘(2nd ‘𝑝)) = ((♯‘(1st
‘𝑝)) + 1) →
((♯‘(2nd ‘𝑝)) = (𝑁 + 1) ↔ (♯‘(1st
‘𝑝)) = 𝑁)))) |
19 | 7, 18 | mpid 44 |
. . . . . . 7
⊢
((1st ‘𝑝)(Walks‘𝐺)(2nd ‘𝑝) → ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) →
((♯‘(2nd ‘𝑝)) = (𝑁 + 1) ↔ (♯‘(1st
‘𝑝)) = 𝑁))) |
20 | 6, 19 | sylbi 216 |
. . . . . 6
⊢ (𝑝 ∈ (Walks‘𝐺) → ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) →
((♯‘(2nd ‘𝑝)) = (𝑁 + 1) ↔ (♯‘(1st
‘𝑝)) = 𝑁))) |
21 | 20 | impcom 407 |
. . . . 5
⊢ (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0)
∧ 𝑝 ∈
(Walks‘𝐺)) →
((♯‘(2nd ‘𝑝)) = (𝑁 + 1) ↔ (♯‘(1st
‘𝑝)) = 𝑁)) |
22 | 21 | 3adant3 1130 |
. . . 4
⊢ (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0)
∧ 𝑝 ∈
(Walks‘𝐺) ∧ 𝑞 = (2nd ‘𝑝)) →
((♯‘(2nd ‘𝑝)) = (𝑁 + 1) ↔ (♯‘(1st
‘𝑝)) = 𝑁)) |
23 | 5, 22 | bitrd 278 |
. . 3
⊢ (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0)
∧ 𝑝 ∈
(Walks‘𝐺) ∧ 𝑞 = (2nd ‘𝑝)) → ((♯‘𝑞) = (𝑁 + 1) ↔ (♯‘(1st
‘𝑝)) = 𝑁)) |
24 | 1, 3, 23 | f1oresrab 6981 |
. 2
⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0)
→ ((𝑝 ∈
(Walks‘𝐺) ↦
(2nd ‘𝑝))
↾ {𝑝 ∈
(Walks‘𝐺) ∣
(♯‘(1st ‘𝑝)) = 𝑁}):{𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st
‘𝑝)) = 𝑁}–1-1-onto→{𝑞 ∈ (WWalks‘𝐺) ∣ (♯‘𝑞) = (𝑁 + 1)}) |
25 | | wlknwwlksnbij.f |
. . . 4
⊢ 𝐹 = (𝑡 ∈ 𝑇 ↦ (2nd ‘𝑡)) |
26 | | wlknwwlksnbij.t |
. . . . . . 7
⊢ 𝑇 = {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st
‘𝑝)) = 𝑁} |
27 | 26 | mpteq1i 5166 |
. . . . . 6
⊢ (𝑡 ∈ 𝑇 ↦ (2nd ‘𝑡)) = (𝑡 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st
‘𝑝)) = 𝑁} ↦ (2nd
‘𝑡)) |
28 | | ssrab2 4009 |
. . . . . . 7
⊢ {𝑝 ∈ (Walks‘𝐺) ∣
(♯‘(1st ‘𝑝)) = 𝑁} ⊆ (Walks‘𝐺) |
29 | | resmpt 5934 |
. . . . . . 7
⊢ ({𝑝 ∈ (Walks‘𝐺) ∣
(♯‘(1st ‘𝑝)) = 𝑁} ⊆ (Walks‘𝐺) → ((𝑡 ∈ (Walks‘𝐺) ↦ (2nd ‘𝑡)) ↾ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st
‘𝑝)) = 𝑁}) = (𝑡 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st
‘𝑝)) = 𝑁} ↦ (2nd
‘𝑡))) |
30 | 28, 29 | ax-mp 5 |
. . . . . 6
⊢ ((𝑡 ∈ (Walks‘𝐺) ↦ (2nd
‘𝑡)) ↾ {𝑝 ∈ (Walks‘𝐺) ∣
(♯‘(1st ‘𝑝)) = 𝑁}) = (𝑡 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st
‘𝑝)) = 𝑁} ↦ (2nd
‘𝑡)) |
31 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑡 = 𝑝 → (2nd ‘𝑡) = (2nd ‘𝑝)) |
32 | 31 | cbvmptv 5183 |
. . . . . . 7
⊢ (𝑡 ∈ (Walks‘𝐺) ↦ (2nd
‘𝑡)) = (𝑝 ∈ (Walks‘𝐺) ↦ (2nd
‘𝑝)) |
33 | 32 | reseq1i 5876 |
. . . . . 6
⊢ ((𝑡 ∈ (Walks‘𝐺) ↦ (2nd
‘𝑡)) ↾ {𝑝 ∈ (Walks‘𝐺) ∣
(♯‘(1st ‘𝑝)) = 𝑁}) = ((𝑝 ∈ (Walks‘𝐺) ↦ (2nd ‘𝑝)) ↾ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st
‘𝑝)) = 𝑁}) |
34 | 27, 30, 33 | 3eqtr2i 2772 |
. . . . 5
⊢ (𝑡 ∈ 𝑇 ↦ (2nd ‘𝑡)) = ((𝑝 ∈ (Walks‘𝐺) ↦ (2nd ‘𝑝)) ↾ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st
‘𝑝)) = 𝑁}) |
35 | 34 | a1i 11 |
. . . 4
⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0)
→ (𝑡 ∈ 𝑇 ↦ (2nd
‘𝑡)) = ((𝑝 ∈ (Walks‘𝐺) ↦ (2nd
‘𝑝)) ↾ {𝑝 ∈ (Walks‘𝐺) ∣
(♯‘(1st ‘𝑝)) = 𝑁})) |
36 | 25, 35 | syl5eq 2791 |
. . 3
⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0)
→ 𝐹 = ((𝑝 ∈ (Walks‘𝐺) ↦ (2nd
‘𝑝)) ↾ {𝑝 ∈ (Walks‘𝐺) ∣
(♯‘(1st ‘𝑝)) = 𝑁})) |
37 | 26 | a1i 11 |
. . 3
⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0)
→ 𝑇 = {𝑝 ∈ (Walks‘𝐺) ∣
(♯‘(1st ‘𝑝)) = 𝑁}) |
38 | | wlknwwlksnbij.w |
. . . 4
⊢ 𝑊 = (𝑁 WWalksN 𝐺) |
39 | | wwlksn 28103 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (𝑁 WWalksN 𝐺) = {𝑞 ∈ (WWalks‘𝐺) ∣ (♯‘𝑞) = (𝑁 + 1)}) |
40 | 39 | adantl 481 |
. . . 4
⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0)
→ (𝑁 WWalksN 𝐺) = {𝑞 ∈ (WWalks‘𝐺) ∣ (♯‘𝑞) = (𝑁 + 1)}) |
41 | 38, 40 | syl5eq 2791 |
. . 3
⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0)
→ 𝑊 = {𝑞 ∈ (WWalks‘𝐺) ∣ (♯‘𝑞) = (𝑁 + 1)}) |
42 | 36, 37, 41 | f1oeq123d 6694 |
. 2
⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0)
→ (𝐹:𝑇–1-1-onto→𝑊 ↔ ((𝑝 ∈ (Walks‘𝐺) ↦ (2nd ‘𝑝)) ↾ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st
‘𝑝)) = 𝑁}):{𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st
‘𝑝)) = 𝑁}–1-1-onto→{𝑞 ∈ (WWalks‘𝐺) ∣ (♯‘𝑞) = (𝑁 + 1)})) |
43 | 24, 42 | mpbird 256 |
1
⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0)
→ 𝐹:𝑇–1-1-onto→𝑊) |