MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlknwwlksnbij Structured version   Visualization version   GIF version

Theorem wlknwwlksnbij 28930
Description: The mapping (𝑑 ∈ 𝑇 ↦ (2nd β€˜π‘‘)) is a bijection between the set of walks of a fixed length and the set of walks represented by words of the same length in a simple pseudograph. (Contributed by Alexander van der Vekens, 25-Aug-2018.) (Revised by AV, 5-Aug-2022.)
Hypotheses
Ref Expression
wlknwwlksnbij.t 𝑇 = {𝑝 ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁}
wlknwwlksnbij.w π‘Š = (𝑁 WWalksN 𝐺)
wlknwwlksnbij.f 𝐹 = (𝑑 ∈ 𝑇 ↦ (2nd β€˜π‘‘))
Assertion
Ref Expression
wlknwwlksnbij ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) β†’ 𝐹:𝑇–1-1-ontoβ†’π‘Š)
Distinct variable groups:   𝐺,𝑝,𝑑   𝑁,𝑝,𝑑   𝑑,𝑇
Allowed substitution hints:   𝑇(𝑝)   𝐹(𝑑,𝑝)   π‘Š(𝑑,𝑝)

Proof of Theorem wlknwwlksnbij
Dummy variable π‘ž is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (𝑝 ∈ (Walksβ€˜πΊ) ↦ (2nd β€˜π‘)) = (𝑝 ∈ (Walksβ€˜πΊ) ↦ (2nd β€˜π‘))
21wlkswwlksf1o 28921 . . . 4 (𝐺 ∈ USPGraph β†’ (𝑝 ∈ (Walksβ€˜πΊ) ↦ (2nd β€˜π‘)):(Walksβ€˜πΊ)–1-1-ontoβ†’(WWalksβ€˜πΊ))
32adantr 481 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) β†’ (𝑝 ∈ (Walksβ€˜πΊ) ↦ (2nd β€˜π‘)):(Walksβ€˜πΊ)–1-1-ontoβ†’(WWalksβ€˜πΊ))
4 fveqeq2 6871 . . . . 5 (π‘ž = (2nd β€˜π‘) β†’ ((β™―β€˜π‘ž) = (𝑁 + 1) ↔ (β™―β€˜(2nd β€˜π‘)) = (𝑁 + 1)))
543ad2ant3 1135 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) ∧ 𝑝 ∈ (Walksβ€˜πΊ) ∧ π‘ž = (2nd β€˜π‘)) β†’ ((β™―β€˜π‘ž) = (𝑁 + 1) ↔ (β™―β€˜(2nd β€˜π‘)) = (𝑁 + 1)))
6 wlkcpr 28674 . . . . . . 7 (𝑝 ∈ (Walksβ€˜πΊ) ↔ (1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘))
7 wlklenvp1 28663 . . . . . . . 8 ((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) β†’ (β™―β€˜(2nd β€˜π‘)) = ((β™―β€˜(1st β€˜π‘)) + 1))
8 eqeq1 2735 . . . . . . . . . 10 ((β™―β€˜(2nd β€˜π‘)) = ((β™―β€˜(1st β€˜π‘)) + 1) β†’ ((β™―β€˜(2nd β€˜π‘)) = (𝑁 + 1) ↔ ((β™―β€˜(1st β€˜π‘)) + 1) = (𝑁 + 1)))
9 wlkcl 28660 . . . . . . . . . . . . 13 ((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) β†’ (β™―β€˜(1st β€˜π‘)) ∈ β„•0)
109nn0cnd 12499 . . . . . . . . . . . 12 ((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) β†’ (β™―β€˜(1st β€˜π‘)) ∈ β„‚)
1110adantr 481 . . . . . . . . . . 11 (((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) ∧ (𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0)) β†’ (β™―β€˜(1st β€˜π‘)) ∈ β„‚)
12 nn0cn 12447 . . . . . . . . . . . . 13 (𝑁 ∈ β„•0 β†’ 𝑁 ∈ β„‚)
1312adantl 482 . . . . . . . . . . . 12 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) β†’ 𝑁 ∈ β„‚)
1413adantl 482 . . . . . . . . . . 11 (((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) ∧ (𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0)) β†’ 𝑁 ∈ β„‚)
15 1cnd 11174 . . . . . . . . . . 11 (((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) ∧ (𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0)) β†’ 1 ∈ β„‚)
1611, 14, 15addcan2d 11383 . . . . . . . . . 10 (((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) ∧ (𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0)) β†’ (((β™―β€˜(1st β€˜π‘)) + 1) = (𝑁 + 1) ↔ (β™―β€˜(1st β€˜π‘)) = 𝑁))
178, 16sylan9bbr 511 . . . . . . . . 9 ((((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) ∧ (𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0)) ∧ (β™―β€˜(2nd β€˜π‘)) = ((β™―β€˜(1st β€˜π‘)) + 1)) β†’ ((β™―β€˜(2nd β€˜π‘)) = (𝑁 + 1) ↔ (β™―β€˜(1st β€˜π‘)) = 𝑁))
1817exp31 420 . . . . . . . 8 ((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) β†’ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) β†’ ((β™―β€˜(2nd β€˜π‘)) = ((β™―β€˜(1st β€˜π‘)) + 1) β†’ ((β™―β€˜(2nd β€˜π‘)) = (𝑁 + 1) ↔ (β™―β€˜(1st β€˜π‘)) = 𝑁))))
197, 18mpid 44 . . . . . . 7 ((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) β†’ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) β†’ ((β™―β€˜(2nd β€˜π‘)) = (𝑁 + 1) ↔ (β™―β€˜(1st β€˜π‘)) = 𝑁)))
206, 19sylbi 216 . . . . . 6 (𝑝 ∈ (Walksβ€˜πΊ) β†’ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) β†’ ((β™―β€˜(2nd β€˜π‘)) = (𝑁 + 1) ↔ (β™―β€˜(1st β€˜π‘)) = 𝑁)))
2120impcom 408 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) ∧ 𝑝 ∈ (Walksβ€˜πΊ)) β†’ ((β™―β€˜(2nd β€˜π‘)) = (𝑁 + 1) ↔ (β™―β€˜(1st β€˜π‘)) = 𝑁))
22213adant3 1132 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) ∧ 𝑝 ∈ (Walksβ€˜πΊ) ∧ π‘ž = (2nd β€˜π‘)) β†’ ((β™―β€˜(2nd β€˜π‘)) = (𝑁 + 1) ↔ (β™―β€˜(1st β€˜π‘)) = 𝑁))
235, 22bitrd 278 . . 3 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) ∧ 𝑝 ∈ (Walksβ€˜πΊ) ∧ π‘ž = (2nd β€˜π‘)) β†’ ((β™―β€˜π‘ž) = (𝑁 + 1) ↔ (β™―β€˜(1st β€˜π‘)) = 𝑁))
241, 3, 23f1oresrab 7093 . 2 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) β†’ ((𝑝 ∈ (Walksβ€˜πΊ) ↦ (2nd β€˜π‘)) β†Ύ {𝑝 ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁}):{𝑝 ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁}–1-1-ontoβ†’{π‘ž ∈ (WWalksβ€˜πΊ) ∣ (β™―β€˜π‘ž) = (𝑁 + 1)})
25 wlknwwlksnbij.f . . . 4 𝐹 = (𝑑 ∈ 𝑇 ↦ (2nd β€˜π‘‘))
26 wlknwwlksnbij.t . . . . . . 7 𝑇 = {𝑝 ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁}
2726mpteq1i 5221 . . . . . 6 (𝑑 ∈ 𝑇 ↦ (2nd β€˜π‘‘)) = (𝑑 ∈ {𝑝 ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁} ↦ (2nd β€˜π‘‘))
28 ssrab2 4057 . . . . . . 7 {𝑝 ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁} βŠ† (Walksβ€˜πΊ)
29 resmpt 6011 . . . . . . 7 ({𝑝 ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁} βŠ† (Walksβ€˜πΊ) β†’ ((𝑑 ∈ (Walksβ€˜πΊ) ↦ (2nd β€˜π‘‘)) β†Ύ {𝑝 ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁}) = (𝑑 ∈ {𝑝 ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁} ↦ (2nd β€˜π‘‘)))
3028, 29ax-mp 5 . . . . . 6 ((𝑑 ∈ (Walksβ€˜πΊ) ↦ (2nd β€˜π‘‘)) β†Ύ {𝑝 ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁}) = (𝑑 ∈ {𝑝 ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁} ↦ (2nd β€˜π‘‘))
31 fveq2 6862 . . . . . . . 8 (𝑑 = 𝑝 β†’ (2nd β€˜π‘‘) = (2nd β€˜π‘))
3231cbvmptv 5238 . . . . . . 7 (𝑑 ∈ (Walksβ€˜πΊ) ↦ (2nd β€˜π‘‘)) = (𝑝 ∈ (Walksβ€˜πΊ) ↦ (2nd β€˜π‘))
3332reseq1i 5953 . . . . . 6 ((𝑑 ∈ (Walksβ€˜πΊ) ↦ (2nd β€˜π‘‘)) β†Ύ {𝑝 ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁}) = ((𝑝 ∈ (Walksβ€˜πΊ) ↦ (2nd β€˜π‘)) β†Ύ {𝑝 ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁})
3427, 30, 333eqtr2i 2765 . . . . 5 (𝑑 ∈ 𝑇 ↦ (2nd β€˜π‘‘)) = ((𝑝 ∈ (Walksβ€˜πΊ) ↦ (2nd β€˜π‘)) β†Ύ {𝑝 ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁})
3534a1i 11 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) β†’ (𝑑 ∈ 𝑇 ↦ (2nd β€˜π‘‘)) = ((𝑝 ∈ (Walksβ€˜πΊ) ↦ (2nd β€˜π‘)) β†Ύ {𝑝 ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁}))
3625, 35eqtrid 2783 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) β†’ 𝐹 = ((𝑝 ∈ (Walksβ€˜πΊ) ↦ (2nd β€˜π‘)) β†Ύ {𝑝 ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁}))
3726a1i 11 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) β†’ 𝑇 = {𝑝 ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁})
38 wlknwwlksnbij.w . . . 4 π‘Š = (𝑁 WWalksN 𝐺)
39 wwlksn 28879 . . . . 5 (𝑁 ∈ β„•0 β†’ (𝑁 WWalksN 𝐺) = {π‘ž ∈ (WWalksβ€˜πΊ) ∣ (β™―β€˜π‘ž) = (𝑁 + 1)})
4039adantl 482 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) β†’ (𝑁 WWalksN 𝐺) = {π‘ž ∈ (WWalksβ€˜πΊ) ∣ (β™―β€˜π‘ž) = (𝑁 + 1)})
4138, 40eqtrid 2783 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) β†’ π‘Š = {π‘ž ∈ (WWalksβ€˜πΊ) ∣ (β™―β€˜π‘ž) = (𝑁 + 1)})
4236, 37, 41f1oeq123d 6798 . 2 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) β†’ (𝐹:𝑇–1-1-ontoβ†’π‘Š ↔ ((𝑝 ∈ (Walksβ€˜πΊ) ↦ (2nd β€˜π‘)) β†Ύ {𝑝 ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁}):{𝑝 ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁}–1-1-ontoβ†’{π‘ž ∈ (WWalksβ€˜πΊ) ∣ (β™―β€˜π‘ž) = (𝑁 + 1)}))
4324, 42mpbird 256 1 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) β†’ 𝐹:𝑇–1-1-ontoβ†’π‘Š)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  {crab 3418   βŠ† wss 3928   class class class wbr 5125   ↦ cmpt 5208   β†Ύ cres 5655  β€“1-1-ontoβ†’wf1o 6515  β€˜cfv 6516  (class class class)co 7377  1st c1st 7939  2nd c2nd 7940  β„‚cc 11073  1c1 11076   + caddc 11078  β„•0cn0 12437  β™―chash 14255  USPGraphcuspgr 28196  Walkscwlks 28641  WWalkscwwlks 28867   WWalksN cwwlksn 28868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5262  ax-sep 5276  ax-nul 5283  ax-pow 5340  ax-pr 5404  ax-un 7692  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ifp 1062  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3365  df-rab 3419  df-v 3461  df-sbc 3758  df-csb 3874  df-dif 3931  df-un 3933  df-in 3935  df-ss 3945  df-pss 3947  df-nul 4303  df-if 4507  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4886  df-int 4928  df-iun 4976  df-br 5126  df-opab 5188  df-mpt 5209  df-tr 5243  df-id 5551  df-eprel 5557  df-po 5565  df-so 5566  df-fr 5608  df-we 5610  df-xp 5659  df-rel 5660  df-cnv 5661  df-co 5662  df-dm 5663  df-rn 5664  df-res 5665  df-ima 5666  df-pred 6273  df-ord 6340  df-on 6341  df-lim 6342  df-suc 6343  df-iota 6468  df-fun 6518  df-fn 6519  df-f 6520  df-f1 6521  df-fo 6522  df-f1o 6523  df-fv 6524  df-riota 7333  df-ov 7380  df-oprab 7381  df-mpo 7382  df-om 7823  df-1st 7941  df-2nd 7942  df-frecs 8232  df-wrecs 8263  df-recs 8337  df-rdg 8376  df-1o 8432  df-2o 8433  df-oadd 8436  df-er 8670  df-map 8789  df-pm 8790  df-en 8906  df-dom 8907  df-sdom 8908  df-fin 8909  df-dju 9861  df-card 9899  df-pnf 11215  df-mnf 11216  df-xr 11217  df-ltxr 11218  df-le 11219  df-sub 11411  df-neg 11412  df-nn 12178  df-2 12240  df-n0 12438  df-xnn0 12510  df-z 12524  df-uz 12788  df-fz 13450  df-fzo 13593  df-hash 14256  df-word 14430  df-edg 28096  df-uhgr 28106  df-upgr 28130  df-uspgr 28198  df-wlks 28644  df-wwlks 28872  df-wwlksn 28873
This theorem is referenced by:  wlknwwlksnen  28931  wlksnwwlknvbij  28950
  Copyright terms: Public domain W3C validator