MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlknwwlksnbij Structured version   Visualization version   GIF version

Theorem wlknwwlksnbij 28261
Description: The mapping (𝑡𝑇 ↦ (2nd𝑡)) is a bijection between the set of walks of a fixed length and the set of walks represented by words of the same length in a simple pseudograph. (Contributed by Alexander van der Vekens, 25-Aug-2018.) (Revised by AV, 5-Aug-2022.)
Hypotheses
Ref Expression
wlknwwlksnbij.t 𝑇 = {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁}
wlknwwlksnbij.w 𝑊 = (𝑁 WWalksN 𝐺)
wlknwwlksnbij.f 𝐹 = (𝑡𝑇 ↦ (2nd𝑡))
Assertion
Ref Expression
wlknwwlksnbij ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → 𝐹:𝑇1-1-onto𝑊)
Distinct variable groups:   𝐺,𝑝,𝑡   𝑁,𝑝,𝑡   𝑡,𝑇
Allowed substitution hints:   𝑇(𝑝)   𝐹(𝑡,𝑝)   𝑊(𝑡,𝑝)

Proof of Theorem wlknwwlksnbij
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (𝑝 ∈ (Walks‘𝐺) ↦ (2nd𝑝)) = (𝑝 ∈ (Walks‘𝐺) ↦ (2nd𝑝))
21wlkswwlksf1o 28252 . . . 4 (𝐺 ∈ USPGraph → (𝑝 ∈ (Walks‘𝐺) ↦ (2nd𝑝)):(Walks‘𝐺)–1-1-onto→(WWalks‘𝐺))
32adantr 481 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → (𝑝 ∈ (Walks‘𝐺) ↦ (2nd𝑝)):(Walks‘𝐺)–1-1-onto→(WWalks‘𝐺))
4 fveqeq2 6775 . . . . 5 (𝑞 = (2nd𝑝) → ((♯‘𝑞) = (𝑁 + 1) ↔ (♯‘(2nd𝑝)) = (𝑁 + 1)))
543ad2ant3 1134 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ 𝑝 ∈ (Walks‘𝐺) ∧ 𝑞 = (2nd𝑝)) → ((♯‘𝑞) = (𝑁 + 1) ↔ (♯‘(2nd𝑝)) = (𝑁 + 1)))
6 wlkcpr 28005 . . . . . . 7 (𝑝 ∈ (Walks‘𝐺) ↔ (1st𝑝)(Walks‘𝐺)(2nd𝑝))
7 wlklenvp1 27995 . . . . . . . 8 ((1st𝑝)(Walks‘𝐺)(2nd𝑝) → (♯‘(2nd𝑝)) = ((♯‘(1st𝑝)) + 1))
8 eqeq1 2742 . . . . . . . . . 10 ((♯‘(2nd𝑝)) = ((♯‘(1st𝑝)) + 1) → ((♯‘(2nd𝑝)) = (𝑁 + 1) ↔ ((♯‘(1st𝑝)) + 1) = (𝑁 + 1)))
9 wlkcl 27992 . . . . . . . . . . . . 13 ((1st𝑝)(Walks‘𝐺)(2nd𝑝) → (♯‘(1st𝑝)) ∈ ℕ0)
109nn0cnd 12305 . . . . . . . . . . . 12 ((1st𝑝)(Walks‘𝐺)(2nd𝑝) → (♯‘(1st𝑝)) ∈ ℂ)
1110adantr 481 . . . . . . . . . . 11 (((1st𝑝)(Walks‘𝐺)(2nd𝑝) ∧ (𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0)) → (♯‘(1st𝑝)) ∈ ℂ)
12 nn0cn 12253 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
1312adantl 482 . . . . . . . . . . . 12 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
1413adantl 482 . . . . . . . . . . 11 (((1st𝑝)(Walks‘𝐺)(2nd𝑝) ∧ (𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0)) → 𝑁 ∈ ℂ)
15 1cnd 10980 . . . . . . . . . . 11 (((1st𝑝)(Walks‘𝐺)(2nd𝑝) ∧ (𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0)) → 1 ∈ ℂ)
1611, 14, 15addcan2d 11189 . . . . . . . . . 10 (((1st𝑝)(Walks‘𝐺)(2nd𝑝) ∧ (𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0)) → (((♯‘(1st𝑝)) + 1) = (𝑁 + 1) ↔ (♯‘(1st𝑝)) = 𝑁))
178, 16sylan9bbr 511 . . . . . . . . 9 ((((1st𝑝)(Walks‘𝐺)(2nd𝑝) ∧ (𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0)) ∧ (♯‘(2nd𝑝)) = ((♯‘(1st𝑝)) + 1)) → ((♯‘(2nd𝑝)) = (𝑁 + 1) ↔ (♯‘(1st𝑝)) = 𝑁))
1817exp31 420 . . . . . . . 8 ((1st𝑝)(Walks‘𝐺)(2nd𝑝) → ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → ((♯‘(2nd𝑝)) = ((♯‘(1st𝑝)) + 1) → ((♯‘(2nd𝑝)) = (𝑁 + 1) ↔ (♯‘(1st𝑝)) = 𝑁))))
197, 18mpid 44 . . . . . . 7 ((1st𝑝)(Walks‘𝐺)(2nd𝑝) → ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → ((♯‘(2nd𝑝)) = (𝑁 + 1) ↔ (♯‘(1st𝑝)) = 𝑁)))
206, 19sylbi 216 . . . . . 6 (𝑝 ∈ (Walks‘𝐺) → ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → ((♯‘(2nd𝑝)) = (𝑁 + 1) ↔ (♯‘(1st𝑝)) = 𝑁)))
2120impcom 408 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ 𝑝 ∈ (Walks‘𝐺)) → ((♯‘(2nd𝑝)) = (𝑁 + 1) ↔ (♯‘(1st𝑝)) = 𝑁))
22213adant3 1131 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ 𝑝 ∈ (Walks‘𝐺) ∧ 𝑞 = (2nd𝑝)) → ((♯‘(2nd𝑝)) = (𝑁 + 1) ↔ (♯‘(1st𝑝)) = 𝑁))
235, 22bitrd 278 . . 3 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ 𝑝 ∈ (Walks‘𝐺) ∧ 𝑞 = (2nd𝑝)) → ((♯‘𝑞) = (𝑁 + 1) ↔ (♯‘(1st𝑝)) = 𝑁))
241, 3, 23f1oresrab 6991 . 2 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → ((𝑝 ∈ (Walks‘𝐺) ↦ (2nd𝑝)) ↾ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁}):{𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁}–1-1-onto→{𝑞 ∈ (WWalks‘𝐺) ∣ (♯‘𝑞) = (𝑁 + 1)})
25 wlknwwlksnbij.f . . . 4 𝐹 = (𝑡𝑇 ↦ (2nd𝑡))
26 wlknwwlksnbij.t . . . . . . 7 𝑇 = {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁}
2726mpteq1i 5169 . . . . . 6 (𝑡𝑇 ↦ (2nd𝑡)) = (𝑡 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁} ↦ (2nd𝑡))
28 ssrab2 4012 . . . . . . 7 {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁} ⊆ (Walks‘𝐺)
29 resmpt 5938 . . . . . . 7 ({𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁} ⊆ (Walks‘𝐺) → ((𝑡 ∈ (Walks‘𝐺) ↦ (2nd𝑡)) ↾ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁}) = (𝑡 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁} ↦ (2nd𝑡)))
3028, 29ax-mp 5 . . . . . 6 ((𝑡 ∈ (Walks‘𝐺) ↦ (2nd𝑡)) ↾ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁}) = (𝑡 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁} ↦ (2nd𝑡))
31 fveq2 6766 . . . . . . . 8 (𝑡 = 𝑝 → (2nd𝑡) = (2nd𝑝))
3231cbvmptv 5186 . . . . . . 7 (𝑡 ∈ (Walks‘𝐺) ↦ (2nd𝑡)) = (𝑝 ∈ (Walks‘𝐺) ↦ (2nd𝑝))
3332reseq1i 5880 . . . . . 6 ((𝑡 ∈ (Walks‘𝐺) ↦ (2nd𝑡)) ↾ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁}) = ((𝑝 ∈ (Walks‘𝐺) ↦ (2nd𝑝)) ↾ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁})
3427, 30, 333eqtr2i 2772 . . . . 5 (𝑡𝑇 ↦ (2nd𝑡)) = ((𝑝 ∈ (Walks‘𝐺) ↦ (2nd𝑝)) ↾ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁})
3534a1i 11 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → (𝑡𝑇 ↦ (2nd𝑡)) = ((𝑝 ∈ (Walks‘𝐺) ↦ (2nd𝑝)) ↾ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁}))
3625, 35eqtrid 2790 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → 𝐹 = ((𝑝 ∈ (Walks‘𝐺) ↦ (2nd𝑝)) ↾ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁}))
3726a1i 11 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → 𝑇 = {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁})
38 wlknwwlksnbij.w . . . 4 𝑊 = (𝑁 WWalksN 𝐺)
39 wwlksn 28210 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑞 ∈ (WWalks‘𝐺) ∣ (♯‘𝑞) = (𝑁 + 1)})
4039adantl 482 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → (𝑁 WWalksN 𝐺) = {𝑞 ∈ (WWalks‘𝐺) ∣ (♯‘𝑞) = (𝑁 + 1)})
4138, 40eqtrid 2790 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → 𝑊 = {𝑞 ∈ (WWalks‘𝐺) ∣ (♯‘𝑞) = (𝑁 + 1)})
4236, 37, 41f1oeq123d 6702 . 2 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → (𝐹:𝑇1-1-onto𝑊 ↔ ((𝑝 ∈ (Walks‘𝐺) ↦ (2nd𝑝)) ↾ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁}):{𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁}–1-1-onto→{𝑞 ∈ (WWalks‘𝐺) ∣ (♯‘𝑞) = (𝑁 + 1)}))
4324, 42mpbird 256 1 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → 𝐹:𝑇1-1-onto𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  {crab 3068  wss 3886   class class class wbr 5073  cmpt 5156  cres 5586  1-1-ontowf1o 6425  cfv 6426  (class class class)co 7267  1st c1st 7818  2nd c2nd 7819  cc 10879  1c1 10882   + caddc 10884  0cn0 12243  chash 14054  USPGraphcuspgr 27528  Walkscwlks 27973  WWalkscwwlks 28198   WWalksN cwwlksn 28199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-cnex 10937  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-pre-mulgt0 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-om 7703  df-1st 7820  df-2nd 7821  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-1o 8284  df-2o 8285  df-oadd 8288  df-er 8485  df-map 8604  df-pm 8605  df-en 8721  df-dom 8722  df-sdom 8723  df-fin 8724  df-dju 9669  df-card 9707  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-sub 11217  df-neg 11218  df-nn 11984  df-2 12046  df-n0 12244  df-xnn0 12316  df-z 12330  df-uz 12593  df-fz 13250  df-fzo 13393  df-hash 14055  df-word 14228  df-edg 27428  df-uhgr 27438  df-upgr 27462  df-uspgr 27530  df-wlks 27976  df-wwlks 28203  df-wwlksn 28204
This theorem is referenced by:  wlknwwlksnen  28262  wlksnwwlknvbij  28281
  Copyright terms: Public domain W3C validator