MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlknwwlksnbij Structured version   Visualization version   GIF version

Theorem wlknwwlksnbij 28154
Description: The mapping (𝑡𝑇 ↦ (2nd𝑡)) is a bijection between the set of walks of a fixed length and the set of walks represented by words of the same length in a simple pseudograph. (Contributed by Alexander van der Vekens, 25-Aug-2018.) (Revised by AV, 5-Aug-2022.)
Hypotheses
Ref Expression
wlknwwlksnbij.t 𝑇 = {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁}
wlknwwlksnbij.w 𝑊 = (𝑁 WWalksN 𝐺)
wlknwwlksnbij.f 𝐹 = (𝑡𝑇 ↦ (2nd𝑡))
Assertion
Ref Expression
wlknwwlksnbij ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → 𝐹:𝑇1-1-onto𝑊)
Distinct variable groups:   𝐺,𝑝,𝑡   𝑁,𝑝,𝑡   𝑡,𝑇
Allowed substitution hints:   𝑇(𝑝)   𝐹(𝑡,𝑝)   𝑊(𝑡,𝑝)

Proof of Theorem wlknwwlksnbij
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (𝑝 ∈ (Walks‘𝐺) ↦ (2nd𝑝)) = (𝑝 ∈ (Walks‘𝐺) ↦ (2nd𝑝))
21wlkswwlksf1o 28145 . . . 4 (𝐺 ∈ USPGraph → (𝑝 ∈ (Walks‘𝐺) ↦ (2nd𝑝)):(Walks‘𝐺)–1-1-onto→(WWalks‘𝐺))
32adantr 480 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → (𝑝 ∈ (Walks‘𝐺) ↦ (2nd𝑝)):(Walks‘𝐺)–1-1-onto→(WWalks‘𝐺))
4 fveqeq2 6765 . . . . 5 (𝑞 = (2nd𝑝) → ((♯‘𝑞) = (𝑁 + 1) ↔ (♯‘(2nd𝑝)) = (𝑁 + 1)))
543ad2ant3 1133 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ 𝑝 ∈ (Walks‘𝐺) ∧ 𝑞 = (2nd𝑝)) → ((♯‘𝑞) = (𝑁 + 1) ↔ (♯‘(2nd𝑝)) = (𝑁 + 1)))
6 wlkcpr 27898 . . . . . . 7 (𝑝 ∈ (Walks‘𝐺) ↔ (1st𝑝)(Walks‘𝐺)(2nd𝑝))
7 wlklenvp1 27888 . . . . . . . 8 ((1st𝑝)(Walks‘𝐺)(2nd𝑝) → (♯‘(2nd𝑝)) = ((♯‘(1st𝑝)) + 1))
8 eqeq1 2742 . . . . . . . . . 10 ((♯‘(2nd𝑝)) = ((♯‘(1st𝑝)) + 1) → ((♯‘(2nd𝑝)) = (𝑁 + 1) ↔ ((♯‘(1st𝑝)) + 1) = (𝑁 + 1)))
9 wlkcl 27885 . . . . . . . . . . . . 13 ((1st𝑝)(Walks‘𝐺)(2nd𝑝) → (♯‘(1st𝑝)) ∈ ℕ0)
109nn0cnd 12225 . . . . . . . . . . . 12 ((1st𝑝)(Walks‘𝐺)(2nd𝑝) → (♯‘(1st𝑝)) ∈ ℂ)
1110adantr 480 . . . . . . . . . . 11 (((1st𝑝)(Walks‘𝐺)(2nd𝑝) ∧ (𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0)) → (♯‘(1st𝑝)) ∈ ℂ)
12 nn0cn 12173 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
1312adantl 481 . . . . . . . . . . . 12 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
1413adantl 481 . . . . . . . . . . 11 (((1st𝑝)(Walks‘𝐺)(2nd𝑝) ∧ (𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0)) → 𝑁 ∈ ℂ)
15 1cnd 10901 . . . . . . . . . . 11 (((1st𝑝)(Walks‘𝐺)(2nd𝑝) ∧ (𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0)) → 1 ∈ ℂ)
1611, 14, 15addcan2d 11109 . . . . . . . . . 10 (((1st𝑝)(Walks‘𝐺)(2nd𝑝) ∧ (𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0)) → (((♯‘(1st𝑝)) + 1) = (𝑁 + 1) ↔ (♯‘(1st𝑝)) = 𝑁))
178, 16sylan9bbr 510 . . . . . . . . 9 ((((1st𝑝)(Walks‘𝐺)(2nd𝑝) ∧ (𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0)) ∧ (♯‘(2nd𝑝)) = ((♯‘(1st𝑝)) + 1)) → ((♯‘(2nd𝑝)) = (𝑁 + 1) ↔ (♯‘(1st𝑝)) = 𝑁))
1817exp31 419 . . . . . . . 8 ((1st𝑝)(Walks‘𝐺)(2nd𝑝) → ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → ((♯‘(2nd𝑝)) = ((♯‘(1st𝑝)) + 1) → ((♯‘(2nd𝑝)) = (𝑁 + 1) ↔ (♯‘(1st𝑝)) = 𝑁))))
197, 18mpid 44 . . . . . . 7 ((1st𝑝)(Walks‘𝐺)(2nd𝑝) → ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → ((♯‘(2nd𝑝)) = (𝑁 + 1) ↔ (♯‘(1st𝑝)) = 𝑁)))
206, 19sylbi 216 . . . . . 6 (𝑝 ∈ (Walks‘𝐺) → ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → ((♯‘(2nd𝑝)) = (𝑁 + 1) ↔ (♯‘(1st𝑝)) = 𝑁)))
2120impcom 407 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ 𝑝 ∈ (Walks‘𝐺)) → ((♯‘(2nd𝑝)) = (𝑁 + 1) ↔ (♯‘(1st𝑝)) = 𝑁))
22213adant3 1130 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ 𝑝 ∈ (Walks‘𝐺) ∧ 𝑞 = (2nd𝑝)) → ((♯‘(2nd𝑝)) = (𝑁 + 1) ↔ (♯‘(1st𝑝)) = 𝑁))
235, 22bitrd 278 . . 3 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ 𝑝 ∈ (Walks‘𝐺) ∧ 𝑞 = (2nd𝑝)) → ((♯‘𝑞) = (𝑁 + 1) ↔ (♯‘(1st𝑝)) = 𝑁))
241, 3, 23f1oresrab 6981 . 2 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → ((𝑝 ∈ (Walks‘𝐺) ↦ (2nd𝑝)) ↾ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁}):{𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁}–1-1-onto→{𝑞 ∈ (WWalks‘𝐺) ∣ (♯‘𝑞) = (𝑁 + 1)})
25 wlknwwlksnbij.f . . . 4 𝐹 = (𝑡𝑇 ↦ (2nd𝑡))
26 wlknwwlksnbij.t . . . . . . 7 𝑇 = {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁}
2726mpteq1i 5166 . . . . . 6 (𝑡𝑇 ↦ (2nd𝑡)) = (𝑡 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁} ↦ (2nd𝑡))
28 ssrab2 4009 . . . . . . 7 {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁} ⊆ (Walks‘𝐺)
29 resmpt 5934 . . . . . . 7 ({𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁} ⊆ (Walks‘𝐺) → ((𝑡 ∈ (Walks‘𝐺) ↦ (2nd𝑡)) ↾ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁}) = (𝑡 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁} ↦ (2nd𝑡)))
3028, 29ax-mp 5 . . . . . 6 ((𝑡 ∈ (Walks‘𝐺) ↦ (2nd𝑡)) ↾ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁}) = (𝑡 ∈ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁} ↦ (2nd𝑡))
31 fveq2 6756 . . . . . . . 8 (𝑡 = 𝑝 → (2nd𝑡) = (2nd𝑝))
3231cbvmptv 5183 . . . . . . 7 (𝑡 ∈ (Walks‘𝐺) ↦ (2nd𝑡)) = (𝑝 ∈ (Walks‘𝐺) ↦ (2nd𝑝))
3332reseq1i 5876 . . . . . 6 ((𝑡 ∈ (Walks‘𝐺) ↦ (2nd𝑡)) ↾ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁}) = ((𝑝 ∈ (Walks‘𝐺) ↦ (2nd𝑝)) ↾ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁})
3427, 30, 333eqtr2i 2772 . . . . 5 (𝑡𝑇 ↦ (2nd𝑡)) = ((𝑝 ∈ (Walks‘𝐺) ↦ (2nd𝑝)) ↾ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁})
3534a1i 11 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → (𝑡𝑇 ↦ (2nd𝑡)) = ((𝑝 ∈ (Walks‘𝐺) ↦ (2nd𝑝)) ↾ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁}))
3625, 35syl5eq 2791 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → 𝐹 = ((𝑝 ∈ (Walks‘𝐺) ↦ (2nd𝑝)) ↾ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁}))
3726a1i 11 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → 𝑇 = {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁})
38 wlknwwlksnbij.w . . . 4 𝑊 = (𝑁 WWalksN 𝐺)
39 wwlksn 28103 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑞 ∈ (WWalks‘𝐺) ∣ (♯‘𝑞) = (𝑁 + 1)})
4039adantl 481 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → (𝑁 WWalksN 𝐺) = {𝑞 ∈ (WWalks‘𝐺) ∣ (♯‘𝑞) = (𝑁 + 1)})
4138, 40syl5eq 2791 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → 𝑊 = {𝑞 ∈ (WWalks‘𝐺) ∣ (♯‘𝑞) = (𝑁 + 1)})
4236, 37, 41f1oeq123d 6694 . 2 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → (𝐹:𝑇1-1-onto𝑊 ↔ ((𝑝 ∈ (Walks‘𝐺) ↦ (2nd𝑝)) ↾ {𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁}):{𝑝 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑝)) = 𝑁}–1-1-onto→{𝑞 ∈ (WWalks‘𝐺) ∣ (♯‘𝑞) = (𝑁 + 1)}))
4324, 42mpbird 256 1 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → 𝐹:𝑇1-1-onto𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  {crab 3067  wss 3883   class class class wbr 5070  cmpt 5153  cres 5582  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  cc 10800  1c1 10803   + caddc 10805  0cn0 12163  chash 13972  USPGraphcuspgr 27421  Walkscwlks 27866  WWalkscwwlks 28091   WWalksN cwwlksn 28092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-edg 27321  df-uhgr 27331  df-upgr 27355  df-uspgr 27423  df-wlks 27869  df-wwlks 28096  df-wwlksn 28097
This theorem is referenced by:  wlknwwlksnen  28155  wlksnwwlknvbij  28174
  Copyright terms: Public domain W3C validator