MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofmpteq Structured version   Visualization version   GIF version

Theorem ofmpteq 7676
Description: Value of a pointwise operation on two functions defined using maps-to notation. (Contributed by Stefan O'Rear, 5-Oct-2014.)
Assertion
Ref Expression
ofmpteq ((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) → ((𝑥𝐴𝐵) ∘f 𝑅(𝑥𝐴𝐶)) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem ofmpteq
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) → 𝐴𝑉)
2 simpr 484 . . . 4 (((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) ∧ 𝑎𝐴) → 𝑎𝐴)
3 simpl2 1193 . . . . 5 (((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) ∧ 𝑎𝐴) → (𝑥𝐴𝐵) Fn 𝐴)
4 eqid 2729 . . . . . 6 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
54mptfng 6657 . . . . 5 (∀𝑥𝐴 𝐵 ∈ V ↔ (𝑥𝐴𝐵) Fn 𝐴)
63, 5sylibr 234 . . . 4 (((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) ∧ 𝑎𝐴) → ∀𝑥𝐴 𝐵 ∈ V)
7 nfcsb1v 3886 . . . . . 6 𝑥𝑎 / 𝑥𝐵
87nfel1 2908 . . . . 5 𝑥𝑎 / 𝑥𝐵 ∈ V
9 csbeq1a 3876 . . . . . 6 (𝑥 = 𝑎𝐵 = 𝑎 / 𝑥𝐵)
109eleq1d 2813 . . . . 5 (𝑥 = 𝑎 → (𝐵 ∈ V ↔ 𝑎 / 𝑥𝐵 ∈ V))
118, 10rspc 3576 . . . 4 (𝑎𝐴 → (∀𝑥𝐴 𝐵 ∈ V → 𝑎 / 𝑥𝐵 ∈ V))
122, 6, 11sylc 65 . . 3 (((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) ∧ 𝑎𝐴) → 𝑎 / 𝑥𝐵 ∈ V)
13 simpl3 1194 . . . . 5 (((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) ∧ 𝑎𝐴) → (𝑥𝐴𝐶) Fn 𝐴)
14 eqid 2729 . . . . . 6 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
1514mptfng 6657 . . . . 5 (∀𝑥𝐴 𝐶 ∈ V ↔ (𝑥𝐴𝐶) Fn 𝐴)
1613, 15sylibr 234 . . . 4 (((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) ∧ 𝑎𝐴) → ∀𝑥𝐴 𝐶 ∈ V)
17 nfcsb1v 3886 . . . . . 6 𝑥𝑎 / 𝑥𝐶
1817nfel1 2908 . . . . 5 𝑥𝑎 / 𝑥𝐶 ∈ V
19 csbeq1a 3876 . . . . . 6 (𝑥 = 𝑎𝐶 = 𝑎 / 𝑥𝐶)
2019eleq1d 2813 . . . . 5 (𝑥 = 𝑎 → (𝐶 ∈ V ↔ 𝑎 / 𝑥𝐶 ∈ V))
2118, 20rspc 3576 . . . 4 (𝑎𝐴 → (∀𝑥𝐴 𝐶 ∈ V → 𝑎 / 𝑥𝐶 ∈ V))
222, 16, 21sylc 65 . . 3 (((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) ∧ 𝑎𝐴) → 𝑎 / 𝑥𝐶 ∈ V)
23 nfcv 2891 . . . . 5 𝑎𝐵
2423, 7, 9cbvmpt 5209 . . . 4 (𝑥𝐴𝐵) = (𝑎𝐴𝑎 / 𝑥𝐵)
2524a1i 11 . . 3 ((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) → (𝑥𝐴𝐵) = (𝑎𝐴𝑎 / 𝑥𝐵))
26 nfcv 2891 . . . . 5 𝑎𝐶
2726, 17, 19cbvmpt 5209 . . . 4 (𝑥𝐴𝐶) = (𝑎𝐴𝑎 / 𝑥𝐶)
2827a1i 11 . . 3 ((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) → (𝑥𝐴𝐶) = (𝑎𝐴𝑎 / 𝑥𝐶))
291, 12, 22, 25, 28offval2 7673 . 2 ((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) → ((𝑥𝐴𝐵) ∘f 𝑅(𝑥𝐴𝐶)) = (𝑎𝐴 ↦ (𝑎 / 𝑥𝐵𝑅𝑎 / 𝑥𝐶)))
30 nfcv 2891 . . 3 𝑎(𝐵𝑅𝐶)
31 nfcv 2891 . . . 4 𝑥𝑅
327, 31, 17nfov 7417 . . 3 𝑥(𝑎 / 𝑥𝐵𝑅𝑎 / 𝑥𝐶)
339, 19oveq12d 7405 . . 3 (𝑥 = 𝑎 → (𝐵𝑅𝐶) = (𝑎 / 𝑥𝐵𝑅𝑎 / 𝑥𝐶))
3430, 32, 33cbvmpt 5209 . 2 (𝑥𝐴 ↦ (𝐵𝑅𝐶)) = (𝑎𝐴 ↦ (𝑎 / 𝑥𝐵𝑅𝑎 / 𝑥𝐶))
3529, 34eqtr4di 2782 1 ((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) → ((𝑥𝐴𝐵) ∘f 𝑅(𝑥𝐴𝐶)) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  csb 3862  cmpt 5188   Fn wfn 6506  (class class class)co 7387  f cof 7651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653
This theorem is referenced by:  mdetrlin  22489  mzpaddmpt  42729  mzpmulmpt  42730  mzpcompact2lem  42739
  Copyright terms: Public domain W3C validator