MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofmpteq Structured version   Visualization version   GIF version

Theorem ofmpteq 7408
Description: Value of a pointwise operation on two functions defined using maps-to notation. (Contributed by Stefan O'Rear, 5-Oct-2014.)
Assertion
Ref Expression
ofmpteq ((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) → ((𝑥𝐴𝐵) ∘f 𝑅(𝑥𝐴𝐶)) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem ofmpteq
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simp1 1133 . . 3 ((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) → 𝐴𝑉)
2 simpr 488 . . . 4 (((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) ∧ 𝑎𝐴) → 𝑎𝐴)
3 simpl2 1189 . . . . 5 (((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) ∧ 𝑎𝐴) → (𝑥𝐴𝐵) Fn 𝐴)
4 eqid 2798 . . . . . 6 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
54mptfng 6459 . . . . 5 (∀𝑥𝐴 𝐵 ∈ V ↔ (𝑥𝐴𝐵) Fn 𝐴)
63, 5sylibr 237 . . . 4 (((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) ∧ 𝑎𝐴) → ∀𝑥𝐴 𝐵 ∈ V)
7 nfcsb1v 3852 . . . . . 6 𝑥𝑎 / 𝑥𝐵
87nfel1 2971 . . . . 5 𝑥𝑎 / 𝑥𝐵 ∈ V
9 csbeq1a 3842 . . . . . 6 (𝑥 = 𝑎𝐵 = 𝑎 / 𝑥𝐵)
109eleq1d 2874 . . . . 5 (𝑥 = 𝑎 → (𝐵 ∈ V ↔ 𝑎 / 𝑥𝐵 ∈ V))
118, 10rspc 3559 . . . 4 (𝑎𝐴 → (∀𝑥𝐴 𝐵 ∈ V → 𝑎 / 𝑥𝐵 ∈ V))
122, 6, 11sylc 65 . . 3 (((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) ∧ 𝑎𝐴) → 𝑎 / 𝑥𝐵 ∈ V)
13 simpl3 1190 . . . . 5 (((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) ∧ 𝑎𝐴) → (𝑥𝐴𝐶) Fn 𝐴)
14 eqid 2798 . . . . . 6 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
1514mptfng 6459 . . . . 5 (∀𝑥𝐴 𝐶 ∈ V ↔ (𝑥𝐴𝐶) Fn 𝐴)
1613, 15sylibr 237 . . . 4 (((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) ∧ 𝑎𝐴) → ∀𝑥𝐴 𝐶 ∈ V)
17 nfcsb1v 3852 . . . . . 6 𝑥𝑎 / 𝑥𝐶
1817nfel1 2971 . . . . 5 𝑥𝑎 / 𝑥𝐶 ∈ V
19 csbeq1a 3842 . . . . . 6 (𝑥 = 𝑎𝐶 = 𝑎 / 𝑥𝐶)
2019eleq1d 2874 . . . . 5 (𝑥 = 𝑎 → (𝐶 ∈ V ↔ 𝑎 / 𝑥𝐶 ∈ V))
2118, 20rspc 3559 . . . 4 (𝑎𝐴 → (∀𝑥𝐴 𝐶 ∈ V → 𝑎 / 𝑥𝐶 ∈ V))
222, 16, 21sylc 65 . . 3 (((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) ∧ 𝑎𝐴) → 𝑎 / 𝑥𝐶 ∈ V)
23 nfcv 2955 . . . . 5 𝑎𝐵
2423, 7, 9cbvmpt 5131 . . . 4 (𝑥𝐴𝐵) = (𝑎𝐴𝑎 / 𝑥𝐵)
2524a1i 11 . . 3 ((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) → (𝑥𝐴𝐵) = (𝑎𝐴𝑎 / 𝑥𝐵))
26 nfcv 2955 . . . . 5 𝑎𝐶
2726, 17, 19cbvmpt 5131 . . . 4 (𝑥𝐴𝐶) = (𝑎𝐴𝑎 / 𝑥𝐶)
2827a1i 11 . . 3 ((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) → (𝑥𝐴𝐶) = (𝑎𝐴𝑎 / 𝑥𝐶))
291, 12, 22, 25, 28offval2 7406 . 2 ((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) → ((𝑥𝐴𝐵) ∘f 𝑅(𝑥𝐴𝐶)) = (𝑎𝐴 ↦ (𝑎 / 𝑥𝐵𝑅𝑎 / 𝑥𝐶)))
30 nfcv 2955 . . 3 𝑎(𝐵𝑅𝐶)
31 nfcv 2955 . . . 4 𝑥𝑅
327, 31, 17nfov 7165 . . 3 𝑥(𝑎 / 𝑥𝐵𝑅𝑎 / 𝑥𝐶)
339, 19oveq12d 7153 . . 3 (𝑥 = 𝑎 → (𝐵𝑅𝐶) = (𝑎 / 𝑥𝐵𝑅𝑎 / 𝑥𝐶))
3430, 32, 33cbvmpt 5131 . 2 (𝑥𝐴 ↦ (𝐵𝑅𝐶)) = (𝑎𝐴 ↦ (𝑎 / 𝑥𝐵𝑅𝑎 / 𝑥𝐶))
3529, 34eqtr4di 2851 1 ((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) → ((𝑥𝐴𝐵) ∘f 𝑅(𝑥𝐴𝐶)) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  csb 3828  cmpt 5110   Fn wfn 6319  (class class class)co 7135  f cof 7387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389
This theorem is referenced by:  mdetrlin  21207  mzpaddmpt  39682  mzpmulmpt  39683  mzpcompact2lem  39692
  Copyright terms: Public domain W3C validator