MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofmpteq Structured version   Visualization version   GIF version

Theorem ofmpteq 7694
Description: Value of a pointwise operation on two functions defined using maps-to notation. (Contributed by Stefan O'Rear, 5-Oct-2014.)
Assertion
Ref Expression
ofmpteq ((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) → ((𝑥𝐴𝐵) ∘f 𝑅(𝑥𝐴𝐶)) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem ofmpteq
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) → 𝐴𝑉)
2 simpr 485 . . . 4 (((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) ∧ 𝑎𝐴) → 𝑎𝐴)
3 simpl2 1192 . . . . 5 (((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) ∧ 𝑎𝐴) → (𝑥𝐴𝐵) Fn 𝐴)
4 eqid 2732 . . . . . 6 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
54mptfng 6689 . . . . 5 (∀𝑥𝐴 𝐵 ∈ V ↔ (𝑥𝐴𝐵) Fn 𝐴)
63, 5sylibr 233 . . . 4 (((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) ∧ 𝑎𝐴) → ∀𝑥𝐴 𝐵 ∈ V)
7 nfcsb1v 3918 . . . . . 6 𝑥𝑎 / 𝑥𝐵
87nfel1 2919 . . . . 5 𝑥𝑎 / 𝑥𝐵 ∈ V
9 csbeq1a 3907 . . . . . 6 (𝑥 = 𝑎𝐵 = 𝑎 / 𝑥𝐵)
109eleq1d 2818 . . . . 5 (𝑥 = 𝑎 → (𝐵 ∈ V ↔ 𝑎 / 𝑥𝐵 ∈ V))
118, 10rspc 3600 . . . 4 (𝑎𝐴 → (∀𝑥𝐴 𝐵 ∈ V → 𝑎 / 𝑥𝐵 ∈ V))
122, 6, 11sylc 65 . . 3 (((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) ∧ 𝑎𝐴) → 𝑎 / 𝑥𝐵 ∈ V)
13 simpl3 1193 . . . . 5 (((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) ∧ 𝑎𝐴) → (𝑥𝐴𝐶) Fn 𝐴)
14 eqid 2732 . . . . . 6 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
1514mptfng 6689 . . . . 5 (∀𝑥𝐴 𝐶 ∈ V ↔ (𝑥𝐴𝐶) Fn 𝐴)
1613, 15sylibr 233 . . . 4 (((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) ∧ 𝑎𝐴) → ∀𝑥𝐴 𝐶 ∈ V)
17 nfcsb1v 3918 . . . . . 6 𝑥𝑎 / 𝑥𝐶
1817nfel1 2919 . . . . 5 𝑥𝑎 / 𝑥𝐶 ∈ V
19 csbeq1a 3907 . . . . . 6 (𝑥 = 𝑎𝐶 = 𝑎 / 𝑥𝐶)
2019eleq1d 2818 . . . . 5 (𝑥 = 𝑎 → (𝐶 ∈ V ↔ 𝑎 / 𝑥𝐶 ∈ V))
2118, 20rspc 3600 . . . 4 (𝑎𝐴 → (∀𝑥𝐴 𝐶 ∈ V → 𝑎 / 𝑥𝐶 ∈ V))
222, 16, 21sylc 65 . . 3 (((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) ∧ 𝑎𝐴) → 𝑎 / 𝑥𝐶 ∈ V)
23 nfcv 2903 . . . . 5 𝑎𝐵
2423, 7, 9cbvmpt 5259 . . . 4 (𝑥𝐴𝐵) = (𝑎𝐴𝑎 / 𝑥𝐵)
2524a1i 11 . . 3 ((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) → (𝑥𝐴𝐵) = (𝑎𝐴𝑎 / 𝑥𝐵))
26 nfcv 2903 . . . . 5 𝑎𝐶
2726, 17, 19cbvmpt 5259 . . . 4 (𝑥𝐴𝐶) = (𝑎𝐴𝑎 / 𝑥𝐶)
2827a1i 11 . . 3 ((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) → (𝑥𝐴𝐶) = (𝑎𝐴𝑎 / 𝑥𝐶))
291, 12, 22, 25, 28offval2 7692 . 2 ((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) → ((𝑥𝐴𝐵) ∘f 𝑅(𝑥𝐴𝐶)) = (𝑎𝐴 ↦ (𝑎 / 𝑥𝐵𝑅𝑎 / 𝑥𝐶)))
30 nfcv 2903 . . 3 𝑎(𝐵𝑅𝐶)
31 nfcv 2903 . . . 4 𝑥𝑅
327, 31, 17nfov 7441 . . 3 𝑥(𝑎 / 𝑥𝐵𝑅𝑎 / 𝑥𝐶)
339, 19oveq12d 7429 . . 3 (𝑥 = 𝑎 → (𝐵𝑅𝐶) = (𝑎 / 𝑥𝐵𝑅𝑎 / 𝑥𝐶))
3430, 32, 33cbvmpt 5259 . 2 (𝑥𝐴 ↦ (𝐵𝑅𝐶)) = (𝑎𝐴 ↦ (𝑎 / 𝑥𝐵𝑅𝑎 / 𝑥𝐶))
3529, 34eqtr4di 2790 1 ((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) → ((𝑥𝐴𝐵) ∘f 𝑅(𝑥𝐴𝐶)) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3061  Vcvv 3474  csb 3893  cmpt 5231   Fn wfn 6538  (class class class)co 7411  f cof 7670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672
This theorem is referenced by:  mdetrlin  22324  mzpaddmpt  41781  mzpmulmpt  41782  mzpcompact2lem  41791
  Copyright terms: Public domain W3C validator