Step | Hyp | Ref
| Expression |
1 | | simp1 1136 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴 ∧ (𝑥 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) → 𝐴 ∈ 𝑉) |
2 | | simpr 486 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴 ∧ (𝑥 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ 𝐴) |
3 | | simpl2 1192 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴 ∧ (𝑥 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) ∧ 𝑎 ∈ 𝐴) → (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
4 | | eqid 2736 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
5 | 4 | mptfng 6602 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ V ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
6 | 3, 5 | sylibr 233 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴 ∧ (𝑥 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) ∧ 𝑎 ∈ 𝐴) → ∀𝑥 ∈ 𝐴 𝐵 ∈ V) |
7 | | nfcsb1v 3862 |
. . . . . 6
⊢
Ⅎ𝑥⦋𝑎 / 𝑥⦌𝐵 |
8 | 7 | nfel1 2921 |
. . . . 5
⊢
Ⅎ𝑥⦋𝑎 / 𝑥⦌𝐵 ∈ V |
9 | | csbeq1a 3851 |
. . . . . 6
⊢ (𝑥 = 𝑎 → 𝐵 = ⦋𝑎 / 𝑥⦌𝐵) |
10 | 9 | eleq1d 2821 |
. . . . 5
⊢ (𝑥 = 𝑎 → (𝐵 ∈ V ↔ ⦋𝑎 / 𝑥⦌𝐵 ∈ V)) |
11 | 8, 10 | rspc 3554 |
. . . 4
⊢ (𝑎 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝐵 ∈ V → ⦋𝑎 / 𝑥⦌𝐵 ∈ V)) |
12 | 2, 6, 11 | sylc 65 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴 ∧ (𝑥 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) ∧ 𝑎 ∈ 𝐴) → ⦋𝑎 / 𝑥⦌𝐵 ∈ V) |
13 | | simpl3 1193 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴 ∧ (𝑥 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) ∧ 𝑎 ∈ 𝐴) → (𝑥 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) |
14 | | eqid 2736 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
15 | 14 | mptfng 6602 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 𝐶 ∈ V ↔ (𝑥 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) |
16 | 13, 15 | sylibr 233 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴 ∧ (𝑥 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) ∧ 𝑎 ∈ 𝐴) → ∀𝑥 ∈ 𝐴 𝐶 ∈ V) |
17 | | nfcsb1v 3862 |
. . . . . 6
⊢
Ⅎ𝑥⦋𝑎 / 𝑥⦌𝐶 |
18 | 17 | nfel1 2921 |
. . . . 5
⊢
Ⅎ𝑥⦋𝑎 / 𝑥⦌𝐶 ∈ V |
19 | | csbeq1a 3851 |
. . . . . 6
⊢ (𝑥 = 𝑎 → 𝐶 = ⦋𝑎 / 𝑥⦌𝐶) |
20 | 19 | eleq1d 2821 |
. . . . 5
⊢ (𝑥 = 𝑎 → (𝐶 ∈ V ↔ ⦋𝑎 / 𝑥⦌𝐶 ∈ V)) |
21 | 18, 20 | rspc 3554 |
. . . 4
⊢ (𝑎 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝐶 ∈ V → ⦋𝑎 / 𝑥⦌𝐶 ∈ V)) |
22 | 2, 16, 21 | sylc 65 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴 ∧ (𝑥 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) ∧ 𝑎 ∈ 𝐴) → ⦋𝑎 / 𝑥⦌𝐶 ∈ V) |
23 | | nfcv 2905 |
. . . . 5
⊢
Ⅎ𝑎𝐵 |
24 | 23, 7, 9 | cbvmpt 5192 |
. . . 4
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑎 ∈ 𝐴 ↦ ⦋𝑎 / 𝑥⦌𝐵) |
25 | 24 | a1i 11 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴 ∧ (𝑥 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑎 ∈ 𝐴 ↦ ⦋𝑎 / 𝑥⦌𝐵)) |
26 | | nfcv 2905 |
. . . . 5
⊢
Ⅎ𝑎𝐶 |
27 | 26, 17, 19 | cbvmpt 5192 |
. . . 4
⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑎 ∈ 𝐴 ↦ ⦋𝑎 / 𝑥⦌𝐶) |
28 | 27 | a1i 11 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴 ∧ (𝑥 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑎 ∈ 𝐴 ↦ ⦋𝑎 / 𝑥⦌𝐶)) |
29 | 1, 12, 22, 25, 28 | offval2 7585 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴 ∧ (𝑥 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∘f 𝑅(𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝑎 ∈ 𝐴 ↦ (⦋𝑎 / 𝑥⦌𝐵𝑅⦋𝑎 / 𝑥⦌𝐶))) |
30 | | nfcv 2905 |
. . 3
⊢
Ⅎ𝑎(𝐵𝑅𝐶) |
31 | | nfcv 2905 |
. . . 4
⊢
Ⅎ𝑥𝑅 |
32 | 7, 31, 17 | nfov 7337 |
. . 3
⊢
Ⅎ𝑥(⦋𝑎 / 𝑥⦌𝐵𝑅⦋𝑎 / 𝑥⦌𝐶) |
33 | 9, 19 | oveq12d 7325 |
. . 3
⊢ (𝑥 = 𝑎 → (𝐵𝑅𝐶) = (⦋𝑎 / 𝑥⦌𝐵𝑅⦋𝑎 / 𝑥⦌𝐶)) |
34 | 30, 32, 33 | cbvmpt 5192 |
. 2
⊢ (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶)) = (𝑎 ∈ 𝐴 ↦ (⦋𝑎 / 𝑥⦌𝐵𝑅⦋𝑎 / 𝑥⦌𝐶)) |
35 | 29, 34 | eqtr4di 2794 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴 ∧ (𝑥 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∘f 𝑅(𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶))) |