Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnmpt | Structured version Visualization version GIF version |
Description: The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013.) |
Ref | Expression |
---|---|
mptfng.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
fnmpt | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐹 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3450 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
2 | 1 | ralimi 3087 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 𝐵 ∈ V) |
3 | mptfng.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 3 | mptfng 6572 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V ↔ 𝐹 Fn 𝐴) |
5 | 2, 4 | sylib 217 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐹 Fn 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ↦ cmpt 5157 Fn wfn 6428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-fun 6435 df-fn 6436 |
This theorem is referenced by: fnmptd 6574 mpt0 6575 fnmptfvd 6918 ralrnmptw 6970 ralrnmpt 6972 fmpt 6984 fmpt2d 6997 f1ocnvd 7520 offval2 7553 ofrfval2 7554 fsplitfpar 7959 mptelixpg 8723 fifo 9191 cantnflem1 9447 infmap2 9974 compssiso 10130 gruiun 10555 mptnn0fsupp 13717 mptnn0fsuppr 13719 seqof 13780 rlimi2 15223 prdsbas3 17192 prdsbascl 17194 prdsdsval2 17195 quslem 17254 fnmrc 17316 isofn 17487 pmtrrn 19065 pmtrfrn 19066 pmtrdifwrdellem2 19090 gsummptcl 19568 mptscmfsupp0 20188 ofco2 21600 pmatcollpw2lem 21926 neif 22251 tgrest 22310 cmpfi 22559 elptr2 22725 xkoptsub 22805 ptcmplem2 23204 ptcmplem3 23205 prdsxmetlem 23521 prdsxmslem2 23685 bcth3 24495 uniioombllem6 24752 itg2const 24905 ellimc2 25041 dvrec 25119 dvmptres3 25120 ulmss 25556 ulmdvlem1 25559 ulmdvlem2 25560 ulmdvlem3 25561 itgulm2 25568 psercn 25585 tgjustr 26835 f1o3d 30962 f1od2 31056 psgnfzto1stlem 31367 frlmdim 31694 rmulccn 31878 esumnul 32016 esum0 32017 gsumesum 32027 ofcfval2 32072 signsplypnf 32529 signsply0 32530 hgt750lemb 32636 matunitlindflem1 35773 matunitlindflem2 35774 cdlemk56 38985 dicfnN 39197 hbtlem7 40950 refsumcn 42573 wessf1ornlem 42722 choicefi 42740 axccdom 42762 fsumsermpt 43120 liminfval2 43309 stoweidlem31 43572 stoweidlem59 43600 stirlinglem13 43627 dirkercncflem2 43645 fourierdlem62 43709 subsaliuncllem 43896 subsaliuncl 43897 hoidmvlelem3 44135 dfafn5b 44653 fundcmpsurinjlem2 44851 lincresunit2 45819 |
Copyright terms: Public domain | W3C validator |