| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnmpt | Structured version Visualization version GIF version | ||
| Description: The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013.) |
| Ref | Expression |
|---|---|
| mptfng.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fnmpt | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3457 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
| 2 | 1 | ralimi 3066 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 𝐵 ∈ V) |
| 3 | mptfng.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | 3 | mptfng 6621 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V ↔ 𝐹 Fn 𝐴) |
| 5 | 2, 4 | sylib 218 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐹 Fn 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3436 ↦ cmpt 5173 Fn wfn 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-fun 6484 df-fn 6485 |
| This theorem is referenced by: fnmptd 6623 mpt0 6624 fnmptfvd 6975 ralrnmptw 7028 ralrnmpt 7030 fmpt 7044 fmpt2d 7058 f1ocnvd 7600 offval2 7633 ofrfval2 7634 mptcnfimad 7921 fsplitfpar 8051 mptelixpg 8862 fifo 9322 cantnflem1 9585 infmap2 10111 compssiso 10268 gruiun 10693 mptnn0fsupp 13904 mptnn0fsuppr 13906 seqof 13966 rlimi2 15421 prdsbas3 17385 prdsbascl 17387 prdsdsval2 17388 quslem 17447 fnmrc 17513 isofn 17682 ghmquskerco 19163 pmtrrn 19336 pmtrfrn 19337 pmtrdifwrdellem2 19361 gsummptcl 19846 mptscmfsupp0 20830 ofco2 22336 pmatcollpw2lem 22662 neif 22985 tgrest 23044 cmpfi 23293 elptr2 23459 xkoptsub 23539 ptcmplem2 23938 ptcmplem3 23939 prdsxmetlem 24254 prdsxmslem2 24415 bcth3 25229 uniioombllem6 25487 itg2const 25639 ellimc2 25776 dvrec 25857 dvmptres3 25858 ulmss 26304 ulmdvlem1 26307 ulmdvlem2 26308 ulmdvlem3 26309 itgulm2 26316 psercn 26334 tgjustr 28419 f1o3d 32570 f1od2 32664 psgnfzto1stlem 33043 frlmdim 33584 rmulccn 33901 esumnul 34021 esum0 34022 gsumesum 34032 ofcfval2 34077 signsplypnf 34524 signsply0 34525 hgt750lemb 34630 fineqvnttrclse 35083 wevgblacfn 35092 matunitlindflem1 37606 matunitlindflem2 37607 cdlemk56 40960 dicfnN 41172 hbtlem7 43108 refsumcn 45018 wessf1ornlem 45173 choicefi 45188 axccdom 45210 fsumsermpt 45570 liminfval2 45759 stoweidlem31 46022 stoweidlem59 46050 stirlinglem13 46077 dirkercncflem2 46095 fourierdlem62 46159 subsaliuncllem 46348 subsaliuncl 46349 hoidmvlelem3 46588 dfafn5b 47155 fundcmpsurinjlem2 47393 upgrimwlklem1 47891 lincresunit2 48473 isofnALT 49026 |
| Copyright terms: Public domain | W3C validator |