| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnmpt | Structured version Visualization version GIF version | ||
| Description: The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013.) |
| Ref | Expression |
|---|---|
| mptfng.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fnmpt | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3471 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
| 2 | 1 | ralimi 3067 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 𝐵 ∈ V) |
| 3 | mptfng.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | 3 | mptfng 6660 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V ↔ 𝐹 Fn 𝐴) |
| 5 | 2, 4 | sylib 218 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐹 Fn 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 ↦ cmpt 5191 Fn wfn 6509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-fun 6516 df-fn 6517 |
| This theorem is referenced by: fnmptd 6662 mpt0 6663 fnmptfvd 7016 ralrnmptw 7069 ralrnmpt 7071 fmpt 7085 fmpt2d 7099 f1ocnvd 7643 offval2 7676 ofrfval2 7677 mptcnfimad 7968 fsplitfpar 8100 mptelixpg 8911 fifo 9390 cantnflem1 9649 infmap2 10177 compssiso 10334 gruiun 10759 mptnn0fsupp 13969 mptnn0fsuppr 13971 seqof 14031 rlimi2 15487 prdsbas3 17451 prdsbascl 17453 prdsdsval2 17454 quslem 17513 fnmrc 17575 isofn 17744 ghmquskerco 19223 pmtrrn 19394 pmtrfrn 19395 pmtrdifwrdellem2 19419 gsummptcl 19904 mptscmfsupp0 20840 ofco2 22345 pmatcollpw2lem 22671 neif 22994 tgrest 23053 cmpfi 23302 elptr2 23468 xkoptsub 23548 ptcmplem2 23947 ptcmplem3 23948 prdsxmetlem 24263 prdsxmslem2 24424 bcth3 25238 uniioombllem6 25496 itg2const 25648 ellimc2 25785 dvrec 25866 dvmptres3 25867 ulmss 26313 ulmdvlem1 26316 ulmdvlem2 26317 ulmdvlem3 26318 itgulm2 26325 psercn 26343 tgjustr 28408 f1o3d 32558 f1od2 32651 psgnfzto1stlem 33064 frlmdim 33614 rmulccn 33925 esumnul 34045 esum0 34046 gsumesum 34056 ofcfval2 34101 signsplypnf 34548 signsply0 34549 hgt750lemb 34654 wevgblacfn 35103 matunitlindflem1 37617 matunitlindflem2 37618 cdlemk56 40972 dicfnN 41184 hbtlem7 43121 refsumcn 45031 wessf1ornlem 45186 choicefi 45201 axccdom 45223 fsumsermpt 45584 liminfval2 45773 stoweidlem31 46036 stoweidlem59 46064 stirlinglem13 46091 dirkercncflem2 46109 fourierdlem62 46173 subsaliuncllem 46362 subsaliuncl 46363 hoidmvlelem3 46602 dfafn5b 47166 fundcmpsurinjlem2 47404 upgrimwlklem1 47901 lincresunit2 48471 isofnALT 49024 |
| Copyright terms: Public domain | W3C validator |