| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnmpt | Structured version Visualization version GIF version | ||
| Description: The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013.) |
| Ref | Expression |
|---|---|
| mptfng.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fnmpt | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3465 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
| 2 | 1 | ralimi 3066 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 𝐵 ∈ V) |
| 3 | mptfng.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | 3 | mptfng 6639 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V ↔ 𝐹 Fn 𝐴) |
| 5 | 2, 4 | sylib 218 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐹 Fn 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3444 ↦ cmpt 5183 Fn wfn 6494 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-fun 6501 df-fn 6502 |
| This theorem is referenced by: fnmptd 6641 mpt0 6642 fnmptfvd 6995 ralrnmptw 7048 ralrnmpt 7050 fmpt 7064 fmpt2d 7078 f1ocnvd 7620 offval2 7653 ofrfval2 7654 mptcnfimad 7944 fsplitfpar 8074 mptelixpg 8885 fifo 9359 cantnflem1 9618 infmap2 10146 compssiso 10303 gruiun 10728 mptnn0fsupp 13938 mptnn0fsuppr 13940 seqof 14000 rlimi2 15456 prdsbas3 17420 prdsbascl 17422 prdsdsval2 17423 quslem 17482 fnmrc 17548 isofn 17717 ghmquskerco 19198 pmtrrn 19371 pmtrfrn 19372 pmtrdifwrdellem2 19396 gsummptcl 19881 mptscmfsupp0 20865 ofco2 22371 pmatcollpw2lem 22697 neif 23020 tgrest 23079 cmpfi 23328 elptr2 23494 xkoptsub 23574 ptcmplem2 23973 ptcmplem3 23974 prdsxmetlem 24289 prdsxmslem2 24450 bcth3 25264 uniioombllem6 25522 itg2const 25674 ellimc2 25811 dvrec 25892 dvmptres3 25893 ulmss 26339 ulmdvlem1 26342 ulmdvlem2 26343 ulmdvlem3 26344 itgulm2 26351 psercn 26369 tgjustr 28454 f1o3d 32601 f1od2 32694 psgnfzto1stlem 33072 frlmdim 33600 rmulccn 33911 esumnul 34031 esum0 34032 gsumesum 34042 ofcfval2 34087 signsplypnf 34534 signsply0 34535 hgt750lemb 34640 wevgblacfn 35089 matunitlindflem1 37603 matunitlindflem2 37604 cdlemk56 40958 dicfnN 41170 hbtlem7 43107 refsumcn 45017 wessf1ornlem 45172 choicefi 45187 axccdom 45209 fsumsermpt 45570 liminfval2 45759 stoweidlem31 46022 stoweidlem59 46050 stirlinglem13 46077 dirkercncflem2 46095 fourierdlem62 46159 subsaliuncllem 46348 subsaliuncl 46349 hoidmvlelem3 46588 dfafn5b 47155 fundcmpsurinjlem2 47393 upgrimwlklem1 47890 lincresunit2 48460 isofnALT 49013 |
| Copyright terms: Public domain | W3C validator |