| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnmpt | Structured version Visualization version GIF version | ||
| Description: The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013.) |
| Ref | Expression |
|---|---|
| mptfng.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fnmpt | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3468 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
| 2 | 1 | ralimi 3066 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 𝐵 ∈ V) |
| 3 | mptfng.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | 3 | mptfng 6657 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V ↔ 𝐹 Fn 𝐴) |
| 5 | 2, 4 | sylib 218 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐹 Fn 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 ↦ cmpt 5188 Fn wfn 6506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-fun 6513 df-fn 6514 |
| This theorem is referenced by: fnmptd 6659 mpt0 6660 fnmptfvd 7013 ralrnmptw 7066 ralrnmpt 7068 fmpt 7082 fmpt2d 7096 f1ocnvd 7640 offval2 7673 ofrfval2 7674 mptcnfimad 7965 fsplitfpar 8097 mptelixpg 8908 fifo 9383 cantnflem1 9642 infmap2 10170 compssiso 10327 gruiun 10752 mptnn0fsupp 13962 mptnn0fsuppr 13964 seqof 14024 rlimi2 15480 prdsbas3 17444 prdsbascl 17446 prdsdsval2 17447 quslem 17506 fnmrc 17568 isofn 17737 ghmquskerco 19216 pmtrrn 19387 pmtrfrn 19388 pmtrdifwrdellem2 19412 gsummptcl 19897 mptscmfsupp0 20833 ofco2 22338 pmatcollpw2lem 22664 neif 22987 tgrest 23046 cmpfi 23295 elptr2 23461 xkoptsub 23541 ptcmplem2 23940 ptcmplem3 23941 prdsxmetlem 24256 prdsxmslem2 24417 bcth3 25231 uniioombllem6 25489 itg2const 25641 ellimc2 25778 dvrec 25859 dvmptres3 25860 ulmss 26306 ulmdvlem1 26309 ulmdvlem2 26310 ulmdvlem3 26311 itgulm2 26318 psercn 26336 tgjustr 28401 f1o3d 32551 f1od2 32644 psgnfzto1stlem 33057 frlmdim 33607 rmulccn 33918 esumnul 34038 esum0 34039 gsumesum 34049 ofcfval2 34094 signsplypnf 34541 signsply0 34542 hgt750lemb 34647 wevgblacfn 35096 matunitlindflem1 37610 matunitlindflem2 37611 cdlemk56 40965 dicfnN 41177 hbtlem7 43114 refsumcn 45024 wessf1ornlem 45179 choicefi 45194 axccdom 45216 fsumsermpt 45577 liminfval2 45766 stoweidlem31 46029 stoweidlem59 46057 stirlinglem13 46084 dirkercncflem2 46102 fourierdlem62 46166 subsaliuncllem 46355 subsaliuncl 46356 hoidmvlelem3 46595 dfafn5b 47162 fundcmpsurinjlem2 47400 upgrimwlklem1 47897 lincresunit2 48467 isofnALT 49020 |
| Copyright terms: Public domain | W3C validator |