| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnmpt | Structured version Visualization version GIF version | ||
| Description: The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013.) |
| Ref | Expression |
|---|---|
| mptfng.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fnmpt | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3465 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
| 2 | 1 | ralimi 3066 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 𝐵 ∈ V) |
| 3 | mptfng.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | 3 | mptfng 6639 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V ↔ 𝐹 Fn 𝐴) |
| 5 | 2, 4 | sylib 218 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐹 Fn 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3444 ↦ cmpt 5183 Fn wfn 6494 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-fun 6501 df-fn 6502 |
| This theorem is referenced by: fnmptd 6641 mpt0 6642 fnmptfvd 6995 ralrnmptw 7048 ralrnmpt 7050 fmpt 7064 fmpt2d 7078 f1ocnvd 7620 offval2 7653 ofrfval2 7654 mptcnfimad 7944 fsplitfpar 8074 mptelixpg 8885 fifo 9359 cantnflem1 9618 infmap2 10146 compssiso 10303 gruiun 10728 mptnn0fsupp 13938 mptnn0fsuppr 13940 seqof 14000 rlimi2 15456 prdsbas3 17420 prdsbascl 17422 prdsdsval2 17423 quslem 17482 fnmrc 17544 isofn 17713 ghmquskerco 19192 pmtrrn 19363 pmtrfrn 19364 pmtrdifwrdellem2 19388 gsummptcl 19873 mptscmfsupp0 20809 ofco2 22314 pmatcollpw2lem 22640 neif 22963 tgrest 23022 cmpfi 23271 elptr2 23437 xkoptsub 23517 ptcmplem2 23916 ptcmplem3 23917 prdsxmetlem 24232 prdsxmslem2 24393 bcth3 25207 uniioombllem6 25465 itg2const 25617 ellimc2 25754 dvrec 25835 dvmptres3 25836 ulmss 26282 ulmdvlem1 26285 ulmdvlem2 26286 ulmdvlem3 26287 itgulm2 26294 psercn 26312 tgjustr 28377 f1o3d 32524 f1od2 32617 psgnfzto1stlem 33030 frlmdim 33580 rmulccn 33891 esumnul 34011 esum0 34012 gsumesum 34022 ofcfval2 34067 signsplypnf 34514 signsply0 34515 hgt750lemb 34620 wevgblacfn 35069 matunitlindflem1 37583 matunitlindflem2 37584 cdlemk56 40938 dicfnN 41150 hbtlem7 43087 refsumcn 44997 wessf1ornlem 45152 choicefi 45167 axccdom 45189 fsumsermpt 45550 liminfval2 45739 stoweidlem31 46002 stoweidlem59 46030 stirlinglem13 46057 dirkercncflem2 46075 fourierdlem62 46139 subsaliuncllem 46328 subsaliuncl 46329 hoidmvlelem3 46568 dfafn5b 47135 fundcmpsurinjlem2 47373 upgrimwlklem1 47870 lincresunit2 48440 isofnALT 48993 |
| Copyright terms: Public domain | W3C validator |