Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnmpt | Structured version Visualization version GIF version |
Description: The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013.) |
Ref | Expression |
---|---|
mptfng.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
fnmpt | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐹 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3440 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
2 | 1 | ralimi 3086 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 𝐵 ∈ V) |
3 | mptfng.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 3 | mptfng 6556 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V ↔ 𝐹 Fn 𝐴) |
5 | 2, 4 | sylib 217 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐹 Fn 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ↦ cmpt 5153 Fn wfn 6413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-fun 6420 df-fn 6421 |
This theorem is referenced by: fnmptd 6558 mpt0 6559 fnmptfvd 6900 ralrnmptw 6952 ralrnmpt 6954 fmpt 6966 fmpt2d 6979 f1ocnvd 7498 offval2 7531 ofrfval2 7532 fsplitfpar 7930 mptelixpg 8681 fifo 9121 cantnflem1 9377 infmap2 9905 compssiso 10061 gruiun 10486 mptnn0fsupp 13645 mptnn0fsuppr 13647 seqof 13708 rlimi2 15151 prdsbas3 17109 prdsbascl 17111 prdsdsval2 17112 quslem 17171 fnmrc 17233 isofn 17404 pmtrrn 18980 pmtrfrn 18981 pmtrdifwrdellem2 19005 gsummptcl 19483 mptscmfsupp0 20103 ofco2 21508 pmatcollpw2lem 21834 neif 22159 tgrest 22218 cmpfi 22467 elptr2 22633 xkoptsub 22713 ptcmplem2 23112 ptcmplem3 23113 prdsxmetlem 23429 prdsxmslem2 23591 bcth3 24400 uniioombllem6 24657 itg2const 24810 ellimc2 24946 dvrec 25024 dvmptres3 25025 ulmss 25461 ulmdvlem1 25464 ulmdvlem2 25465 ulmdvlem3 25466 itgulm2 25473 psercn 25490 tgjustr 26739 f1o3d 30863 f1od2 30958 psgnfzto1stlem 31269 frlmdim 31596 rmulccn 31780 esumnul 31916 esum0 31917 gsumesum 31927 ofcfval2 31972 signsplypnf 32429 signsply0 32430 hgt750lemb 32536 matunitlindflem1 35700 matunitlindflem2 35701 cdlemk56 38912 dicfnN 39124 hbtlem7 40866 refsumcn 42462 wessf1ornlem 42611 choicefi 42629 axccdom 42651 fsumsermpt 43010 liminfval2 43199 stoweidlem31 43462 stoweidlem59 43490 stirlinglem13 43517 dirkercncflem2 43535 fourierdlem62 43599 subsaliuncllem 43786 subsaliuncl 43787 hoidmvlelem3 44025 dfafn5b 44540 fundcmpsurinjlem2 44739 lincresunit2 45707 |
Copyright terms: Public domain | W3C validator |