| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnmpt | Structured version Visualization version GIF version | ||
| Description: The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013.) |
| Ref | Expression |
|---|---|
| mptfng.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fnmpt | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3457 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
| 2 | 1 | ralimi 3069 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 𝐵 ∈ V) |
| 3 | mptfng.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | 3 | mptfng 6620 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V ↔ 𝐹 Fn 𝐴) |
| 5 | 2, 4 | sylib 218 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐹 Fn 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ↦ cmpt 5170 Fn wfn 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-fun 6483 df-fn 6484 |
| This theorem is referenced by: fnmptd 6622 mpt0 6623 fnmptfvd 6974 ralrnmptw 7027 ralrnmpt 7029 fmpt 7043 fmpt2d 7057 f1ocnvd 7597 offval2 7630 ofrfval2 7631 mptcnfimad 7918 fsplitfpar 8048 mptelixpg 8859 fifo 9316 cantnflem1 9579 infmap2 10108 compssiso 10265 gruiun 10690 mptnn0fsupp 13904 mptnn0fsuppr 13906 seqof 13966 rlimi2 15421 prdsbas3 17385 prdsbascl 17387 prdsdsval2 17388 quslem 17447 fnmrc 17513 isofn 17682 ghmquskerco 19196 pmtrrn 19369 pmtrfrn 19370 pmtrdifwrdellem2 19394 gsummptcl 19879 mptscmfsupp0 20860 ofco2 22366 pmatcollpw2lem 22692 neif 23015 tgrest 23074 cmpfi 23323 elptr2 23489 xkoptsub 23569 ptcmplem2 23968 ptcmplem3 23969 prdsxmetlem 24283 prdsxmslem2 24444 bcth3 25258 uniioombllem6 25516 itg2const 25668 ellimc2 25805 dvrec 25886 dvmptres3 25887 ulmss 26333 ulmdvlem1 26336 ulmdvlem2 26337 ulmdvlem3 26338 itgulm2 26345 psercn 26363 tgjustr 28452 f1o3d 32608 f1od2 32702 psgnfzto1stlem 33069 frlmdim 33624 rmulccn 33941 esumnul 34061 esum0 34062 gsumesum 34072 ofcfval2 34117 signsplypnf 34563 signsply0 34564 hgt750lemb 34669 fineqvnttrclse 35144 wevgblacfn 35153 matunitlindflem1 37666 matunitlindflem2 37667 cdlemk56 41080 dicfnN 41292 hbtlem7 43228 refsumcn 45137 wessf1ornlem 45292 choicefi 45307 axccdom 45329 fsumsermpt 45689 liminfval2 45876 stoweidlem31 46139 stoweidlem59 46167 stirlinglem13 46194 dirkercncflem2 46212 fourierdlem62 46276 subsaliuncllem 46465 subsaliuncl 46466 hoidmvlelem3 46705 dfafn5b 47271 fundcmpsurinjlem2 47509 upgrimwlklem1 48007 lincresunit2 48589 isofnALT 49142 |
| Copyright terms: Public domain | W3C validator |