| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnmpt | Structured version Visualization version GIF version | ||
| Description: The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013.) |
| Ref | Expression |
|---|---|
| mptfng.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fnmpt | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3480 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
| 2 | 1 | ralimi 3073 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 𝐵 ∈ V) |
| 3 | mptfng.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | 3 | mptfng 6677 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V ↔ 𝐹 Fn 𝐴) |
| 5 | 2, 4 | sylib 218 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐹 Fn 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 ↦ cmpt 5201 Fn wfn 6526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-fun 6533 df-fn 6534 |
| This theorem is referenced by: fnmptd 6679 mpt0 6680 fnmptfvd 7031 ralrnmptw 7084 ralrnmpt 7086 fmpt 7100 fmpt2d 7114 f1ocnvd 7658 offval2 7691 ofrfval2 7692 mptcnfimad 7985 fsplitfpar 8117 mptelixpg 8949 fifo 9444 cantnflem1 9703 infmap2 10231 compssiso 10388 gruiun 10813 mptnn0fsupp 14015 mptnn0fsuppr 14017 seqof 14077 rlimi2 15530 prdsbas3 17495 prdsbascl 17497 prdsdsval2 17498 quslem 17557 fnmrc 17619 isofn 17788 ghmquskerco 19267 pmtrrn 19438 pmtrfrn 19439 pmtrdifwrdellem2 19463 gsummptcl 19948 mptscmfsupp0 20884 ofco2 22389 pmatcollpw2lem 22715 neif 23038 tgrest 23097 cmpfi 23346 elptr2 23512 xkoptsub 23592 ptcmplem2 23991 ptcmplem3 23992 prdsxmetlem 24307 prdsxmslem2 24468 bcth3 25283 uniioombllem6 25541 itg2const 25693 ellimc2 25830 dvrec 25911 dvmptres3 25912 ulmss 26358 ulmdvlem1 26361 ulmdvlem2 26362 ulmdvlem3 26363 itgulm2 26370 psercn 26388 tgjustr 28453 f1o3d 32605 f1od2 32698 psgnfzto1stlem 33111 frlmdim 33651 rmulccn 33959 esumnul 34079 esum0 34080 gsumesum 34090 ofcfval2 34135 signsplypnf 34582 signsply0 34583 hgt750lemb 34688 wevgblacfn 35131 matunitlindflem1 37640 matunitlindflem2 37641 cdlemk56 40990 dicfnN 41202 hbtlem7 43149 refsumcn 45054 wessf1ornlem 45209 choicefi 45224 axccdom 45246 fsumsermpt 45608 liminfval2 45797 stoweidlem31 46060 stoweidlem59 46088 stirlinglem13 46115 dirkercncflem2 46133 fourierdlem62 46197 subsaliuncllem 46386 subsaliuncl 46387 hoidmvlelem3 46626 dfafn5b 47190 fundcmpsurinjlem2 47413 upgrimwlklem1 47910 lincresunit2 48454 isofnALT 49001 |
| Copyright terms: Public domain | W3C validator |