![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnmpt | Structured version Visualization version GIF version |
Description: The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013.) |
Ref | Expression |
---|---|
mptfng.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
fnmpt | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐹 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3498 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
2 | 1 | ralimi 3080 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 𝐵 ∈ V) |
3 | mptfng.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 3 | mptfng 6707 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V ↔ 𝐹 Fn 𝐴) |
5 | 2, 4 | sylib 218 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐹 Fn 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 ∀wral 3058 Vcvv 3477 ↦ cmpt 5230 Fn wfn 6557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-fun 6564 df-fn 6565 |
This theorem is referenced by: fnmptd 6709 mpt0 6710 fnmptfvd 7060 ralrnmptw 7113 ralrnmpt 7115 fmpt 7129 fmpt2d 7143 f1ocnvd 7683 offval2 7716 ofrfval2 7717 mptcnfimad 8009 fsplitfpar 8141 mptelixpg 8973 fifo 9469 cantnflem1 9726 infmap2 10254 compssiso 10411 gruiun 10836 mptnn0fsupp 14034 mptnn0fsuppr 14036 seqof 14096 rlimi2 15546 prdsbas3 17527 prdsbascl 17529 prdsdsval2 17530 quslem 17589 fnmrc 17651 isofn 17822 ghmquskerco 19314 pmtrrn 19489 pmtrfrn 19490 pmtrdifwrdellem2 19514 gsummptcl 19999 mptscmfsupp0 20941 ofco2 22472 pmatcollpw2lem 22798 neif 23123 tgrest 23182 cmpfi 23431 elptr2 23597 xkoptsub 23677 ptcmplem2 24076 ptcmplem3 24077 prdsxmetlem 24393 prdsxmslem2 24557 bcth3 25378 uniioombllem6 25636 itg2const 25789 ellimc2 25926 dvrec 26007 dvmptres3 26008 ulmss 26454 ulmdvlem1 26457 ulmdvlem2 26458 ulmdvlem3 26459 itgulm2 26466 psercn 26484 tgjustr 28496 f1o3d 32643 f1od2 32738 psgnfzto1stlem 33102 frlmdim 33638 rmulccn 33888 esumnul 34028 esum0 34029 gsumesum 34039 ofcfval2 34084 signsplypnf 34543 signsply0 34544 hgt750lemb 34649 wevgblacfn 35092 matunitlindflem1 37602 matunitlindflem2 37603 cdlemk56 40953 dicfnN 41165 hbtlem7 43113 refsumcn 44967 wessf1ornlem 45127 choicefi 45142 axccdom 45164 fsumsermpt 45534 liminfval2 45723 stoweidlem31 45986 stoweidlem59 46014 stirlinglem13 46041 dirkercncflem2 46059 fourierdlem62 46123 subsaliuncllem 46312 subsaliuncl 46313 hoidmvlelem3 46552 dfafn5b 47110 fundcmpsurinjlem2 47323 lincresunit2 48323 |
Copyright terms: Public domain | W3C validator |