Step | Hyp | Ref
| Expression |
1 | | fvex 6901 |
. . . . . . 7
β’
(((DIsoBβπΎ)βπ)βπ₯) β V |
2 | | riotaex 7365 |
. . . . . . 7
β’
(β©π’
β π βπ β (AtomsβπΎ)((Β¬ π(leβπΎ)π β§ (π(joinβπΎ)(π₯(meetβπΎ)π)) = π₯) β π’ = ((((DIsoCβπΎ)βπ)βπ)(LSSumβπ)(((DIsoBβπΎ)βπ)β(π₯(meetβπΎ)π))))) β V |
3 | 1, 2 | ifex 4577 |
. . . . . 6
β’ if(π₯(leβπΎ)π, (((DIsoBβπΎ)βπ)βπ₯), (β©π’ β π βπ β (AtomsβπΎ)((Β¬ π(leβπΎ)π β§ (π(joinβπΎ)(π₯(meetβπΎ)π)) = π₯) β π’ = ((((DIsoCβπΎ)βπ)βπ)(LSSumβπ)(((DIsoBβπΎ)βπ)β(π₯(meetβπΎ)π)))))) β V |
4 | 3 | rgenw 3065 |
. . . . 5
β’
βπ₯ β
π΅ if(π₯(leβπΎ)π, (((DIsoBβπΎ)βπ)βπ₯), (β©π’ β π βπ β (AtomsβπΎ)((Β¬ π(leβπΎ)π β§ (π(joinβπΎ)(π₯(meetβπΎ)π)) = π₯) β π’ = ((((DIsoCβπΎ)βπ)βπ)(LSSumβπ)(((DIsoBβπΎ)βπ)β(π₯(meetβπΎ)π)))))) β V |
5 | 4 | a1i 11 |
. . . 4
β’ ((πΎ β HL β§ π β π») β βπ₯ β π΅ if(π₯(leβπΎ)π, (((DIsoBβπΎ)βπ)βπ₯), (β©π’ β π βπ β (AtomsβπΎ)((Β¬ π(leβπΎ)π β§ (π(joinβπΎ)(π₯(meetβπΎ)π)) = π₯) β π’ = ((((DIsoCβπΎ)βπ)βπ)(LSSumβπ)(((DIsoBβπΎ)βπ)β(π₯(meetβπΎ)π)))))) β V) |
6 | | eqid 2732 |
. . . . 5
β’ (π₯ β π΅ β¦ if(π₯(leβπΎ)π, (((DIsoBβπΎ)βπ)βπ₯), (β©π’ β π βπ β (AtomsβπΎ)((Β¬ π(leβπΎ)π β§ (π(joinβπΎ)(π₯(meetβπΎ)π)) = π₯) β π’ = ((((DIsoCβπΎ)βπ)βπ)(LSSumβπ)(((DIsoBβπΎ)βπ)β(π₯(meetβπΎ)π))))))) = (π₯ β π΅ β¦ if(π₯(leβπΎ)π, (((DIsoBβπΎ)βπ)βπ₯), (β©π’ β π βπ β (AtomsβπΎ)((Β¬ π(leβπΎ)π β§ (π(joinβπΎ)(π₯(meetβπΎ)π)) = π₯) β π’ = ((((DIsoCβπΎ)βπ)βπ)(LSSumβπ)(((DIsoBβπΎ)βπ)β(π₯(meetβπΎ)π))))))) |
7 | 6 | mptfng 6686 |
. . . 4
β’
(βπ₯ β
π΅ if(π₯(leβπΎ)π, (((DIsoBβπΎ)βπ)βπ₯), (β©π’ β π βπ β (AtomsβπΎ)((Β¬ π(leβπΎ)π β§ (π(joinβπΎ)(π₯(meetβπΎ)π)) = π₯) β π’ = ((((DIsoCβπΎ)βπ)βπ)(LSSumβπ)(((DIsoBβπΎ)βπ)β(π₯(meetβπΎ)π)))))) β V β (π₯ β π΅ β¦ if(π₯(leβπΎ)π, (((DIsoBβπΎ)βπ)βπ₯), (β©π’ β π βπ β (AtomsβπΎ)((Β¬ π(leβπΎ)π β§ (π(joinβπΎ)(π₯(meetβπΎ)π)) = π₯) β π’ = ((((DIsoCβπΎ)βπ)βπ)(LSSumβπ)(((DIsoBβπΎ)βπ)β(π₯(meetβπΎ)π))))))) Fn π΅) |
8 | 5, 7 | sylib 217 |
. . 3
β’ ((πΎ β HL β§ π β π») β (π₯ β π΅ β¦ if(π₯(leβπΎ)π, (((DIsoBβπΎ)βπ)βπ₯), (β©π’ β π βπ β (AtomsβπΎ)((Β¬ π(leβπΎ)π β§ (π(joinβπΎ)(π₯(meetβπΎ)π)) = π₯) β π’ = ((((DIsoCβπΎ)βπ)βπ)(LSSumβπ)(((DIsoBβπΎ)βπ)β(π₯(meetβπΎ)π))))))) Fn π΅) |
9 | | dihf11.b |
. . . . 5
β’ π΅ = (BaseβπΎ) |
10 | | eqid 2732 |
. . . . 5
β’
(leβπΎ) =
(leβπΎ) |
11 | | eqid 2732 |
. . . . 5
β’
(joinβπΎ) =
(joinβπΎ) |
12 | | eqid 2732 |
. . . . 5
β’
(meetβπΎ) =
(meetβπΎ) |
13 | | eqid 2732 |
. . . . 5
β’
(AtomsβπΎ) =
(AtomsβπΎ) |
14 | | dihf11.h |
. . . . 5
β’ π» = (LHypβπΎ) |
15 | | dihf11.i |
. . . . 5
β’ πΌ = ((DIsoHβπΎ)βπ) |
16 | | eqid 2732 |
. . . . 5
β’
((DIsoBβπΎ)βπ) = ((DIsoBβπΎ)βπ) |
17 | | eqid 2732 |
. . . . 5
β’
((DIsoCβπΎ)βπ) = ((DIsoCβπΎ)βπ) |
18 | | dihf11.u |
. . . . 5
β’ π = ((DVecHβπΎ)βπ) |
19 | | dihf11.s |
. . . . 5
β’ π = (LSubSpβπ) |
20 | | eqid 2732 |
. . . . 5
β’
(LSSumβπ) =
(LSSumβπ) |
21 | 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 | dihfval 40090 |
. . . 4
β’ ((πΎ β HL β§ π β π») β πΌ = (π₯ β π΅ β¦ if(π₯(leβπΎ)π, (((DIsoBβπΎ)βπ)βπ₯), (β©π’ β π βπ β (AtomsβπΎ)((Β¬ π(leβπΎ)π β§ (π(joinβπΎ)(π₯(meetβπΎ)π)) = π₯) β π’ = ((((DIsoCβπΎ)βπ)βπ)(LSSumβπ)(((DIsoBβπΎ)βπ)β(π₯(meetβπΎ)π)))))))) |
22 | 21 | fneq1d 6639 |
. . 3
β’ ((πΎ β HL β§ π β π») β (πΌ Fn π΅ β (π₯ β π΅ β¦ if(π₯(leβπΎ)π, (((DIsoBβπΎ)βπ)βπ₯), (β©π’ β π βπ β (AtomsβπΎ)((Β¬ π(leβπΎ)π β§ (π(joinβπΎ)(π₯(meetβπΎ)π)) = π₯) β π’ = ((((DIsoCβπΎ)βπ)βπ)(LSSumβπ)(((DIsoBβπΎ)βπ)β(π₯(meetβπΎ)π))))))) Fn π΅)) |
23 | 8, 22 | mpbird 256 |
. 2
β’ ((πΎ β HL β§ π β π») β πΌ Fn π΅) |
24 | 9, 14, 15, 18, 19 | dihlss 40109 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ π¦ β π΅) β (πΌβπ¦) β π) |
25 | 24 | ralrimiva 3146 |
. . 3
β’ ((πΎ β HL β§ π β π») β βπ¦ β π΅ (πΌβπ¦) β π) |
26 | | fnfvrnss 7116 |
. . 3
β’ ((πΌ Fn π΅ β§ βπ¦ β π΅ (πΌβπ¦) β π) β ran πΌ β π) |
27 | 23, 25, 26 | syl2anc 584 |
. 2
β’ ((πΎ β HL β§ π β π») β ran πΌ β π) |
28 | | df-f 6544 |
. 2
β’ (πΌ:π΅βΆπ β (πΌ Fn π΅ β§ ran πΌ β π)) |
29 | 23, 27, 28 | sylanbrc 583 |
1
β’ ((πΎ β HL β§ π β π») β πΌ:π΅βΆπ) |