Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihf11lem | Structured version Visualization version GIF version |
Description: Functionality of the isomorphism H. (Contributed by NM, 6-Mar-2014.) |
Ref | Expression |
---|---|
dihf11.b | ⊢ 𝐵 = (Base‘𝐾) |
dihf11.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dihf11.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
dihf11.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dihf11.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
Ref | Expression |
---|---|
dihf11lem | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼:𝐵⟶𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6817 | . . . . . . 7 ⊢ (((DIsoB‘𝐾)‘𝑊)‘𝑥) ∈ V | |
2 | riotaex 7268 | . . . . . . 7 ⊢ (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑞(le‘𝐾)𝑊 ∧ (𝑞(join‘𝐾)(𝑥(meet‘𝐾)𝑊)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘𝑈)(((DIsoB‘𝐾)‘𝑊)‘(𝑥(meet‘𝐾)𝑊))))) ∈ V | |
3 | 1, 2 | ifex 4515 | . . . . . 6 ⊢ if(𝑥(le‘𝐾)𝑊, (((DIsoB‘𝐾)‘𝑊)‘𝑥), (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑞(le‘𝐾)𝑊 ∧ (𝑞(join‘𝐾)(𝑥(meet‘𝐾)𝑊)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘𝑈)(((DIsoB‘𝐾)‘𝑊)‘(𝑥(meet‘𝐾)𝑊)))))) ∈ V |
4 | 3 | rgenw 3066 | . . . . 5 ⊢ ∀𝑥 ∈ 𝐵 if(𝑥(le‘𝐾)𝑊, (((DIsoB‘𝐾)‘𝑊)‘𝑥), (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑞(le‘𝐾)𝑊 ∧ (𝑞(join‘𝐾)(𝑥(meet‘𝐾)𝑊)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘𝑈)(((DIsoB‘𝐾)‘𝑊)‘(𝑥(meet‘𝐾)𝑊)))))) ∈ V |
5 | 4 | a1i 11 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∀𝑥 ∈ 𝐵 if(𝑥(le‘𝐾)𝑊, (((DIsoB‘𝐾)‘𝑊)‘𝑥), (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑞(le‘𝐾)𝑊 ∧ (𝑞(join‘𝐾)(𝑥(meet‘𝐾)𝑊)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘𝑈)(((DIsoB‘𝐾)‘𝑊)‘(𝑥(meet‘𝐾)𝑊)))))) ∈ V) |
6 | eqid 2736 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 ↦ if(𝑥(le‘𝐾)𝑊, (((DIsoB‘𝐾)‘𝑊)‘𝑥), (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑞(le‘𝐾)𝑊 ∧ (𝑞(join‘𝐾)(𝑥(meet‘𝐾)𝑊)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘𝑈)(((DIsoB‘𝐾)‘𝑊)‘(𝑥(meet‘𝐾)𝑊))))))) = (𝑥 ∈ 𝐵 ↦ if(𝑥(le‘𝐾)𝑊, (((DIsoB‘𝐾)‘𝑊)‘𝑥), (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑞(le‘𝐾)𝑊 ∧ (𝑞(join‘𝐾)(𝑥(meet‘𝐾)𝑊)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘𝑈)(((DIsoB‘𝐾)‘𝑊)‘(𝑥(meet‘𝐾)𝑊))))))) | |
7 | 6 | mptfng 6602 | . . . 4 ⊢ (∀𝑥 ∈ 𝐵 if(𝑥(le‘𝐾)𝑊, (((DIsoB‘𝐾)‘𝑊)‘𝑥), (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑞(le‘𝐾)𝑊 ∧ (𝑞(join‘𝐾)(𝑥(meet‘𝐾)𝑊)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘𝑈)(((DIsoB‘𝐾)‘𝑊)‘(𝑥(meet‘𝐾)𝑊)))))) ∈ V ↔ (𝑥 ∈ 𝐵 ↦ if(𝑥(le‘𝐾)𝑊, (((DIsoB‘𝐾)‘𝑊)‘𝑥), (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑞(le‘𝐾)𝑊 ∧ (𝑞(join‘𝐾)(𝑥(meet‘𝐾)𝑊)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘𝑈)(((DIsoB‘𝐾)‘𝑊)‘(𝑥(meet‘𝐾)𝑊))))))) Fn 𝐵) |
8 | 5, 7 | sylib 217 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑥 ∈ 𝐵 ↦ if(𝑥(le‘𝐾)𝑊, (((DIsoB‘𝐾)‘𝑊)‘𝑥), (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑞(le‘𝐾)𝑊 ∧ (𝑞(join‘𝐾)(𝑥(meet‘𝐾)𝑊)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘𝑈)(((DIsoB‘𝐾)‘𝑊)‘(𝑥(meet‘𝐾)𝑊))))))) Fn 𝐵) |
9 | dihf11.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
10 | eqid 2736 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
11 | eqid 2736 | . . . . 5 ⊢ (join‘𝐾) = (join‘𝐾) | |
12 | eqid 2736 | . . . . 5 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
13 | eqid 2736 | . . . . 5 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
14 | dihf11.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
15 | dihf11.i | . . . . 5 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
16 | eqid 2736 | . . . . 5 ⊢ ((DIsoB‘𝐾)‘𝑊) = ((DIsoB‘𝐾)‘𝑊) | |
17 | eqid 2736 | . . . . 5 ⊢ ((DIsoC‘𝐾)‘𝑊) = ((DIsoC‘𝐾)‘𝑊) | |
18 | dihf11.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
19 | dihf11.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑈) | |
20 | eqid 2736 | . . . . 5 ⊢ (LSSum‘𝑈) = (LSSum‘𝑈) | |
21 | 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 | dihfval 39445 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼 = (𝑥 ∈ 𝐵 ↦ if(𝑥(le‘𝐾)𝑊, (((DIsoB‘𝐾)‘𝑊)‘𝑥), (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑞(le‘𝐾)𝑊 ∧ (𝑞(join‘𝐾)(𝑥(meet‘𝐾)𝑊)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘𝑈)(((DIsoB‘𝐾)‘𝑊)‘(𝑥(meet‘𝐾)𝑊)))))))) |
22 | 21 | fneq1d 6557 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼 Fn 𝐵 ↔ (𝑥 ∈ 𝐵 ↦ if(𝑥(le‘𝐾)𝑊, (((DIsoB‘𝐾)‘𝑊)‘𝑥), (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑞(le‘𝐾)𝑊 ∧ (𝑞(join‘𝐾)(𝑥(meet‘𝐾)𝑊)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘𝑈)(((DIsoB‘𝐾)‘𝑊)‘(𝑥(meet‘𝐾)𝑊))))))) Fn 𝐵)) |
23 | 8, 22 | mpbird 257 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn 𝐵) |
24 | 9, 14, 15, 18, 19 | dihlss 39464 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑦 ∈ 𝐵) → (𝐼‘𝑦) ∈ 𝑆) |
25 | 24 | ralrimiva 3140 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∀𝑦 ∈ 𝐵 (𝐼‘𝑦) ∈ 𝑆) |
26 | fnfvrnss 7026 | . . 3 ⊢ ((𝐼 Fn 𝐵 ∧ ∀𝑦 ∈ 𝐵 (𝐼‘𝑦) ∈ 𝑆) → ran 𝐼 ⊆ 𝑆) | |
27 | 23, 25, 26 | syl2anc 585 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ran 𝐼 ⊆ 𝑆) |
28 | df-f 6462 | . 2 ⊢ (𝐼:𝐵⟶𝑆 ↔ (𝐼 Fn 𝐵 ∧ ran 𝐼 ⊆ 𝑆)) | |
29 | 23, 27, 28 | sylanbrc 584 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼:𝐵⟶𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∀wral 3062 Vcvv 3437 ⊆ wss 3892 ifcif 4465 class class class wbr 5081 ↦ cmpt 5164 ran crn 5601 Fn wfn 6453 ⟶wf 6454 ‘cfv 6458 ℩crio 7263 (class class class)co 7307 Basecbs 16961 lecple 17018 joincjn 18078 meetcmee 18079 LSSumclsm 19288 LSubSpclss 20242 Atomscatm 37477 HLchlt 37564 LHypclh 38198 DVecHcdvh 39292 DIsoBcdib 39352 DIsoCcdic 39386 DIsoHcdih 39442 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 ax-riotaBAD 37167 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-iin 4934 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-tpos 8073 df-undef 8120 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-map 8648 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-nn 12024 df-2 12086 df-3 12087 df-4 12088 df-5 12089 df-6 12090 df-n0 12284 df-z 12370 df-uz 12633 df-fz 13290 df-struct 16897 df-sets 16914 df-slot 16932 df-ndx 16944 df-base 16962 df-ress 16991 df-plusg 17024 df-mulr 17025 df-sca 17027 df-vsca 17028 df-0g 17201 df-proset 18062 df-poset 18080 df-plt 18097 df-lub 18113 df-glb 18114 df-join 18115 df-meet 18116 df-p0 18192 df-p1 18193 df-lat 18199 df-clat 18266 df-mgm 18375 df-sgrp 18424 df-mnd 18435 df-submnd 18480 df-grp 18629 df-minusg 18630 df-sbg 18631 df-subg 18801 df-cntz 18972 df-lsm 19290 df-cmn 19437 df-abl 19438 df-mgp 19770 df-ur 19787 df-ring 19834 df-oppr 19911 df-dvdsr 19932 df-unit 19933 df-invr 19963 df-dvr 19974 df-drng 20042 df-lmod 20174 df-lss 20243 df-lsp 20283 df-lvec 20414 df-oposet 37390 df-ol 37392 df-oml 37393 df-covers 37480 df-ats 37481 df-atl 37512 df-cvlat 37536 df-hlat 37565 df-llines 37712 df-lplanes 37713 df-lvols 37714 df-lines 37715 df-psubsp 37717 df-pmap 37718 df-padd 38010 df-lhyp 38202 df-laut 38203 df-ldil 38318 df-ltrn 38319 df-trl 38373 df-tendo 38969 df-edring 38971 df-disoa 39243 df-dvech 39293 df-dib 39353 df-dic 39387 df-dih 39443 |
This theorem is referenced by: dihf11 39481 |
Copyright terms: Public domain | W3C validator |