Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bdayfo Structured version   Visualization version   GIF version

Theorem bdayfo 33177
Description: The birthday function maps the surreals onto the ordinals. Alling's axiom (B). (Shortened proof on 2012-Apr-14, SF). (Contributed by Scott Fenton, 11-Jun-2011.)
Assertion
Ref Expression
bdayfo bday : No onto→On

Proof of Theorem bdayfo
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmexg 7607 . . . 4 (𝑥 No → dom 𝑥 ∈ V)
21rgen 3148 . . 3 𝑥 No dom 𝑥 ∈ V
3 df-bday 33147 . . . 4 bday = (𝑥 No ↦ dom 𝑥)
43mptfng 6482 . . 3 (∀𝑥 No dom 𝑥 ∈ V ↔ bday Fn No )
52, 4mpbi 232 . 2 bday Fn No
63rnmpt 5822 . . 3 ran bday = {𝑦 ∣ ∃𝑥 No 𝑦 = dom 𝑥}
7 noxp1o 33165 . . . . . 6 (𝑦 ∈ On → (𝑦 × {1o}) ∈ No )
8 1oex 8104 . . . . . . . . 9 1o ∈ V
98snnz 4705 . . . . . . . 8 {1o} ≠ ∅
10 dmxp 5794 . . . . . . . 8 ({1o} ≠ ∅ → dom (𝑦 × {1o}) = 𝑦)
119, 10ax-mp 5 . . . . . . 7 dom (𝑦 × {1o}) = 𝑦
1211eqcomi 2830 . . . . . 6 𝑦 = dom (𝑦 × {1o})
13 dmeq 5767 . . . . . . 7 (𝑥 = (𝑦 × {1o}) → dom 𝑥 = dom (𝑦 × {1o}))
1413rspceeqv 3638 . . . . . 6 (((𝑦 × {1o}) ∈ No 𝑦 = dom (𝑦 × {1o})) → ∃𝑥 No 𝑦 = dom 𝑥)
157, 12, 14sylancl 588 . . . . 5 (𝑦 ∈ On → ∃𝑥 No 𝑦 = dom 𝑥)
16 nodmon 33152 . . . . . . 7 (𝑥 No → dom 𝑥 ∈ On)
17 eleq1a 2908 . . . . . . 7 (dom 𝑥 ∈ On → (𝑦 = dom 𝑥𝑦 ∈ On))
1816, 17syl 17 . . . . . 6 (𝑥 No → (𝑦 = dom 𝑥𝑦 ∈ On))
1918rexlimiv 3280 . . . . 5 (∃𝑥 No 𝑦 = dom 𝑥𝑦 ∈ On)
2015, 19impbii 211 . . . 4 (𝑦 ∈ On ↔ ∃𝑥 No 𝑦 = dom 𝑥)
2120abbi2i 2953 . . 3 On = {𝑦 ∣ ∃𝑥 No 𝑦 = dom 𝑥}
226, 21eqtr4i 2847 . 2 ran bday = On
23 df-fo 6356 . 2 ( bday : No onto→On ↔ ( bday Fn No ∧ ran bday = On))
245, 22, 23mpbir2an 709 1 bday : No onto→On
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  {cab 2799  wne 3016  wral 3138  wrex 3139  Vcvv 3495  c0 4291  {csn 4561   × cxp 5548  dom cdm 5550  ran crn 5551  Oncon0 6186   Fn wfn 6345  ontowfo 6348  1oc1o 8089   No csur 33142   bday cbday 33144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-ord 6189  df-on 6190  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-1o 8096  df-no 33145  df-bday 33147
This theorem is referenced by:  nodense  33191  bdayimaon  33192  nosupno  33198  nosupbday  33200  noetalem3  33214  noetalem4  33215  bdayfun  33237  bdayfn  33238  bdaydm  33239  bdayrn  33240  bdayelon  33241  noprc  33244
  Copyright terms: Public domain W3C validator