Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bdayfo | Structured version Visualization version GIF version |
Description: The birthday function maps the surreals onto the ordinals. Axiom B of [Alling] p. 184. (Shortened proof on 2012-Apr-14, SF). (Contributed by Scott Fenton, 11-Jun-2011.) |
Ref | Expression |
---|---|
bdayfo | ⊢ bday : No –onto→On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmexg 7750 | . . . 4 ⊢ (𝑥 ∈ No → dom 𝑥 ∈ V) | |
2 | 1 | rgen 3074 | . . 3 ⊢ ∀𝑥 ∈ No dom 𝑥 ∈ V |
3 | df-bday 33848 | . . . 4 ⊢ bday = (𝑥 ∈ No ↦ dom 𝑥) | |
4 | 3 | mptfng 6572 | . . 3 ⊢ (∀𝑥 ∈ No dom 𝑥 ∈ V ↔ bday Fn No ) |
5 | 2, 4 | mpbi 229 | . 2 ⊢ bday Fn No |
6 | 3 | rnmpt 5864 | . . 3 ⊢ ran bday = {𝑦 ∣ ∃𝑥 ∈ No 𝑦 = dom 𝑥} |
7 | noxp1o 33866 | . . . . . 6 ⊢ (𝑦 ∈ On → (𝑦 × {1o}) ∈ No ) | |
8 | 1oex 8307 | . . . . . . . . 9 ⊢ 1o ∈ V | |
9 | 8 | snnz 4712 | . . . . . . . 8 ⊢ {1o} ≠ ∅ |
10 | dmxp 5838 | . . . . . . . 8 ⊢ ({1o} ≠ ∅ → dom (𝑦 × {1o}) = 𝑦) | |
11 | 9, 10 | ax-mp 5 | . . . . . . 7 ⊢ dom (𝑦 × {1o}) = 𝑦 |
12 | 11 | eqcomi 2747 | . . . . . 6 ⊢ 𝑦 = dom (𝑦 × {1o}) |
13 | dmeq 5812 | . . . . . . 7 ⊢ (𝑥 = (𝑦 × {1o}) → dom 𝑥 = dom (𝑦 × {1o})) | |
14 | 13 | rspceeqv 3575 | . . . . . 6 ⊢ (((𝑦 × {1o}) ∈ No ∧ 𝑦 = dom (𝑦 × {1o})) → ∃𝑥 ∈ No 𝑦 = dom 𝑥) |
15 | 7, 12, 14 | sylancl 586 | . . . . 5 ⊢ (𝑦 ∈ On → ∃𝑥 ∈ No 𝑦 = dom 𝑥) |
16 | nodmon 33853 | . . . . . . 7 ⊢ (𝑥 ∈ No → dom 𝑥 ∈ On) | |
17 | eleq1a 2834 | . . . . . . 7 ⊢ (dom 𝑥 ∈ On → (𝑦 = dom 𝑥 → 𝑦 ∈ On)) | |
18 | 16, 17 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ No → (𝑦 = dom 𝑥 → 𝑦 ∈ On)) |
19 | 18 | rexlimiv 3209 | . . . . 5 ⊢ (∃𝑥 ∈ No 𝑦 = dom 𝑥 → 𝑦 ∈ On) |
20 | 15, 19 | impbii 208 | . . . 4 ⊢ (𝑦 ∈ On ↔ ∃𝑥 ∈ No 𝑦 = dom 𝑥) |
21 | 20 | abbi2i 2879 | . . 3 ⊢ On = {𝑦 ∣ ∃𝑥 ∈ No 𝑦 = dom 𝑥} |
22 | 6, 21 | eqtr4i 2769 | . 2 ⊢ ran bday = On |
23 | df-fo 6439 | . 2 ⊢ ( bday : No –onto→On ↔ ( bday Fn No ∧ ran bday = On)) | |
24 | 5, 22, 23 | mpbir2an 708 | 1 ⊢ bday : No –onto→On |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 {cab 2715 ≠ wne 2943 ∀wral 3064 ∃wrex 3065 Vcvv 3432 ∅c0 4256 {csn 4561 × cxp 5587 dom cdm 5589 ran crn 5590 Oncon0 6266 Fn wfn 6428 –onto→wfo 6431 1oc1o 8290 No csur 33843 bday cbday 33845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-1o 8297 df-no 33846 df-bday 33848 |
This theorem is referenced by: nodense 33895 bdayimaon 33896 nosupno 33906 nosupbday 33908 noinfno 33921 noinfbday 33923 noetasuplem4 33939 noetainflem4 33943 bdayfun 33967 bdayfn 33968 bdaydm 33969 bdayrn 33970 bdayelon 33971 noprc 33974 noeta2 33979 |
Copyright terms: Public domain | W3C validator |