MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bdayfo Structured version   Visualization version   GIF version

Theorem bdayfo 27740
Description: The birthday function maps the surreals onto the ordinals. Axiom B of [Alling] p. 184. (Proof shortened on 14-Apr-2012 by SF). (Contributed by Scott Fenton, 11-Jun-2011.)
Assertion
Ref Expression
bdayfo bday : No onto→On

Proof of Theorem bdayfo
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmexg 7941 . . . 4 (𝑥 No → dom 𝑥 ∈ V)
21rgen 3069 . . 3 𝑥 No dom 𝑥 ∈ V
3 df-bday 27707 . . . 4 bday = (𝑥 No ↦ dom 𝑥)
43mptfng 6719 . . 3 (∀𝑥 No dom 𝑥 ∈ V ↔ bday Fn No )
52, 4mpbi 230 . 2 bday Fn No
63rnmpt 5980 . . 3 ran bday = {𝑦 ∣ ∃𝑥 No 𝑦 = dom 𝑥}
7 noxp1o 27726 . . . . . 6 (𝑦 ∈ On → (𝑦 × {1o}) ∈ No )
8 1oex 8532 . . . . . . . . 9 1o ∈ V
98snnz 4801 . . . . . . . 8 {1o} ≠ ∅
10 dmxp 5953 . . . . . . . 8 ({1o} ≠ ∅ → dom (𝑦 × {1o}) = 𝑦)
119, 10ax-mp 5 . . . . . . 7 dom (𝑦 × {1o}) = 𝑦
1211eqcomi 2749 . . . . . 6 𝑦 = dom (𝑦 × {1o})
13 dmeq 5928 . . . . . . 7 (𝑥 = (𝑦 × {1o}) → dom 𝑥 = dom (𝑦 × {1o}))
1413rspceeqv 3658 . . . . . 6 (((𝑦 × {1o}) ∈ No 𝑦 = dom (𝑦 × {1o})) → ∃𝑥 No 𝑦 = dom 𝑥)
157, 12, 14sylancl 585 . . . . 5 (𝑦 ∈ On → ∃𝑥 No 𝑦 = dom 𝑥)
16 nodmon 27713 . . . . . . 7 (𝑥 No → dom 𝑥 ∈ On)
17 eleq1a 2839 . . . . . . 7 (dom 𝑥 ∈ On → (𝑦 = dom 𝑥𝑦 ∈ On))
1816, 17syl 17 . . . . . 6 (𝑥 No → (𝑦 = dom 𝑥𝑦 ∈ On))
1918rexlimiv 3154 . . . . 5 (∃𝑥 No 𝑦 = dom 𝑥𝑦 ∈ On)
2015, 19impbii 209 . . . 4 (𝑦 ∈ On ↔ ∃𝑥 No 𝑦 = dom 𝑥)
2120eqabi 2880 . . 3 On = {𝑦 ∣ ∃𝑥 No 𝑦 = dom 𝑥}
226, 21eqtr4i 2771 . 2 ran bday = On
23 df-fo 6579 . 2 ( bday : No onto→On ↔ ( bday Fn No ∧ ran bday = On))
245, 22, 23mpbir2an 710 1 bday : No onto→On
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {cab 2717  wne 2946  wral 3067  wrex 3076  Vcvv 3488  c0 4352  {csn 4648   × cxp 5698  dom cdm 5700  ran crn 5701  Oncon0 6395   Fn wfn 6568  ontowfo 6571  1oc1o 8515   No csur 27702   bday cbday 27704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-suc 6401  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-1o 8522  df-no 27705  df-bday 27707
This theorem is referenced by:  nodense  27755  bdayimaon  27756  nosupno  27766  nosupbday  27768  noinfno  27781  noinfbday  27783  noetasuplem4  27799  noetainflem4  27803  bdayfun  27835  bdayfn  27836  bdaydm  27837  bdayrn  27838  bdayelon  27839  noprc  27842  noeta2  27847
  Copyright terms: Public domain W3C validator