MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bdayfo Structured version   Visualization version   GIF version

Theorem bdayfo 27646
Description: The birthday function maps the surreals onto the ordinals. Axiom B of [Alling] p. 184. (Proof shortened on 14-Apr-2012 by SF). (Contributed by Scott Fenton, 11-Jun-2011.)
Assertion
Ref Expression
bdayfo bday : No onto→On

Proof of Theorem bdayfo
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmexg 7902 . . . 4 (𝑥 No → dom 𝑥 ∈ V)
21rgen 3054 . . 3 𝑥 No dom 𝑥 ∈ V
3 df-bday 27613 . . . 4 bday = (𝑥 No ↦ dom 𝑥)
43mptfng 6682 . . 3 (∀𝑥 No dom 𝑥 ∈ V ↔ bday Fn No )
52, 4mpbi 230 . 2 bday Fn No
63rnmpt 5942 . . 3 ran bday = {𝑦 ∣ ∃𝑥 No 𝑦 = dom 𝑥}
7 noxp1o 27632 . . . . . 6 (𝑦 ∈ On → (𝑦 × {1o}) ∈ No )
8 1oex 8495 . . . . . . . . 9 1o ∈ V
98snnz 4757 . . . . . . . 8 {1o} ≠ ∅
10 dmxp 5913 . . . . . . . 8 ({1o} ≠ ∅ → dom (𝑦 × {1o}) = 𝑦)
119, 10ax-mp 5 . . . . . . 7 dom (𝑦 × {1o}) = 𝑦
1211eqcomi 2745 . . . . . 6 𝑦 = dom (𝑦 × {1o})
13 dmeq 5888 . . . . . . 7 (𝑥 = (𝑦 × {1o}) → dom 𝑥 = dom (𝑦 × {1o}))
1413rspceeqv 3629 . . . . . 6 (((𝑦 × {1o}) ∈ No 𝑦 = dom (𝑦 × {1o})) → ∃𝑥 No 𝑦 = dom 𝑥)
157, 12, 14sylancl 586 . . . . 5 (𝑦 ∈ On → ∃𝑥 No 𝑦 = dom 𝑥)
16 nodmon 27619 . . . . . . 7 (𝑥 No → dom 𝑥 ∈ On)
17 eleq1a 2830 . . . . . . 7 (dom 𝑥 ∈ On → (𝑦 = dom 𝑥𝑦 ∈ On))
1816, 17syl 17 . . . . . 6 (𝑥 No → (𝑦 = dom 𝑥𝑦 ∈ On))
1918rexlimiv 3135 . . . . 5 (∃𝑥 No 𝑦 = dom 𝑥𝑦 ∈ On)
2015, 19impbii 209 . . . 4 (𝑦 ∈ On ↔ ∃𝑥 No 𝑦 = dom 𝑥)
2120eqabi 2871 . . 3 On = {𝑦 ∣ ∃𝑥 No 𝑦 = dom 𝑥}
226, 21eqtr4i 2762 . 2 ran bday = On
23 df-fo 6542 . 2 ( bday : No onto→On ↔ ( bday Fn No ∧ ran bday = On))
245, 22, 23mpbir2an 711 1 bday : No onto→On
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {cab 2714  wne 2933  wral 3052  wrex 3061  Vcvv 3464  c0 4313  {csn 4606   × cxp 5657  dom cdm 5659  ran crn 5660  Oncon0 6357   Fn wfn 6531  ontowfo 6534  1oc1o 8478   No csur 27608   bday cbday 27610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-suc 6363  df-fun 6538  df-fn 6539  df-f 6540  df-fo 6542  df-1o 8485  df-no 27611  df-bday 27613
This theorem is referenced by:  nodense  27661  bdayimaon  27662  nosupno  27672  nosupbday  27674  noinfno  27687  noinfbday  27689  noetasuplem4  27705  noetainflem4  27709  bdayfun  27741  bdayfn  27742  bdaydm  27743  bdayrn  27744  bdayelon  27745  noprc  27748  noeta2  27753
  Copyright terms: Public domain W3C validator