Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bdayfo Structured version   Visualization version   GIF version

Theorem bdayfo 33807
Description: The birthday function maps the surreals onto the ordinals. Axiom B of [Alling] p. 184. (Shortened proof on 2012-Apr-14, SF). (Contributed by Scott Fenton, 11-Jun-2011.)
Assertion
Ref Expression
bdayfo bday : No onto→On

Proof of Theorem bdayfo
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmexg 7724 . . . 4 (𝑥 No → dom 𝑥 ∈ V)
21rgen 3073 . . 3 𝑥 No dom 𝑥 ∈ V
3 df-bday 33775 . . . 4 bday = (𝑥 No ↦ dom 𝑥)
43mptfng 6556 . . 3 (∀𝑥 No dom 𝑥 ∈ V ↔ bday Fn No )
52, 4mpbi 229 . 2 bday Fn No
63rnmpt 5853 . . 3 ran bday = {𝑦 ∣ ∃𝑥 No 𝑦 = dom 𝑥}
7 noxp1o 33793 . . . . . 6 (𝑦 ∈ On → (𝑦 × {1o}) ∈ No )
8 1oex 8280 . . . . . . . . 9 1o ∈ V
98snnz 4709 . . . . . . . 8 {1o} ≠ ∅
10 dmxp 5827 . . . . . . . 8 ({1o} ≠ ∅ → dom (𝑦 × {1o}) = 𝑦)
119, 10ax-mp 5 . . . . . . 7 dom (𝑦 × {1o}) = 𝑦
1211eqcomi 2747 . . . . . 6 𝑦 = dom (𝑦 × {1o})
13 dmeq 5801 . . . . . . 7 (𝑥 = (𝑦 × {1o}) → dom 𝑥 = dom (𝑦 × {1o}))
1413rspceeqv 3567 . . . . . 6 (((𝑦 × {1o}) ∈ No 𝑦 = dom (𝑦 × {1o})) → ∃𝑥 No 𝑦 = dom 𝑥)
157, 12, 14sylancl 585 . . . . 5 (𝑦 ∈ On → ∃𝑥 No 𝑦 = dom 𝑥)
16 nodmon 33780 . . . . . . 7 (𝑥 No → dom 𝑥 ∈ On)
17 eleq1a 2834 . . . . . . 7 (dom 𝑥 ∈ On → (𝑦 = dom 𝑥𝑦 ∈ On))
1816, 17syl 17 . . . . . 6 (𝑥 No → (𝑦 = dom 𝑥𝑦 ∈ On))
1918rexlimiv 3208 . . . . 5 (∃𝑥 No 𝑦 = dom 𝑥𝑦 ∈ On)
2015, 19impbii 208 . . . 4 (𝑦 ∈ On ↔ ∃𝑥 No 𝑦 = dom 𝑥)
2120abbi2i 2878 . . 3 On = {𝑦 ∣ ∃𝑥 No 𝑦 = dom 𝑥}
226, 21eqtr4i 2769 . 2 ran bday = On
23 df-fo 6424 . 2 ( bday : No onto→On ↔ ( bday Fn No ∧ ran bday = On))
245, 22, 23mpbir2an 707 1 bday : No onto→On
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  {cab 2715  wne 2942  wral 3063  wrex 3064  Vcvv 3422  c0 4253  {csn 4558   × cxp 5578  dom cdm 5580  ran crn 5581  Oncon0 6251   Fn wfn 6413  ontowfo 6416  1oc1o 8260   No csur 33770   bday cbday 33772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-1o 8267  df-no 33773  df-bday 33775
This theorem is referenced by:  nodense  33822  bdayimaon  33823  nosupno  33833  nosupbday  33835  noinfno  33848  noinfbday  33850  noetasuplem4  33866  noetainflem4  33870  bdayfun  33894  bdayfn  33895  bdaydm  33896  bdayrn  33897  bdayelon  33898  noprc  33901  noeta2  33906
  Copyright terms: Public domain W3C validator