| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bdayfo | Structured version Visualization version GIF version | ||
| Description: The birthday function maps the surreals onto the ordinals. Axiom B of [Alling] p. 184. (Proof shortened on 14-Apr-2012 by SF). (Contributed by Scott Fenton, 11-Jun-2011.) |
| Ref | Expression |
|---|---|
| bdayfo | ⊢ bday : No –onto→On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmexg 7831 | . . . 4 ⊢ (𝑥 ∈ No → dom 𝑥 ∈ V) | |
| 2 | 1 | rgen 3049 | . . 3 ⊢ ∀𝑥 ∈ No dom 𝑥 ∈ V |
| 3 | df-bday 27581 | . . . 4 ⊢ bday = (𝑥 ∈ No ↦ dom 𝑥) | |
| 4 | 3 | mptfng 6620 | . . 3 ⊢ (∀𝑥 ∈ No dom 𝑥 ∈ V ↔ bday Fn No ) |
| 5 | 2, 4 | mpbi 230 | . 2 ⊢ bday Fn No |
| 6 | 3 | rnmpt 5897 | . . 3 ⊢ ran bday = {𝑦 ∣ ∃𝑥 ∈ No 𝑦 = dom 𝑥} |
| 7 | noxp1o 27600 | . . . . . 6 ⊢ (𝑦 ∈ On → (𝑦 × {1o}) ∈ No ) | |
| 8 | 1oex 8395 | . . . . . . . . 9 ⊢ 1o ∈ V | |
| 9 | 8 | snnz 4729 | . . . . . . . 8 ⊢ {1o} ≠ ∅ |
| 10 | dmxp 5869 | . . . . . . . 8 ⊢ ({1o} ≠ ∅ → dom (𝑦 × {1o}) = 𝑦) | |
| 11 | 9, 10 | ax-mp 5 | . . . . . . 7 ⊢ dom (𝑦 × {1o}) = 𝑦 |
| 12 | 11 | eqcomi 2740 | . . . . . 6 ⊢ 𝑦 = dom (𝑦 × {1o}) |
| 13 | dmeq 5843 | . . . . . . 7 ⊢ (𝑥 = (𝑦 × {1o}) → dom 𝑥 = dom (𝑦 × {1o})) | |
| 14 | 13 | rspceeqv 3600 | . . . . . 6 ⊢ (((𝑦 × {1o}) ∈ No ∧ 𝑦 = dom (𝑦 × {1o})) → ∃𝑥 ∈ No 𝑦 = dom 𝑥) |
| 15 | 7, 12, 14 | sylancl 586 | . . . . 5 ⊢ (𝑦 ∈ On → ∃𝑥 ∈ No 𝑦 = dom 𝑥) |
| 16 | nodmon 27587 | . . . . . . 7 ⊢ (𝑥 ∈ No → dom 𝑥 ∈ On) | |
| 17 | eleq1a 2826 | . . . . . . 7 ⊢ (dom 𝑥 ∈ On → (𝑦 = dom 𝑥 → 𝑦 ∈ On)) | |
| 18 | 16, 17 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ No → (𝑦 = dom 𝑥 → 𝑦 ∈ On)) |
| 19 | 18 | rexlimiv 3126 | . . . . 5 ⊢ (∃𝑥 ∈ No 𝑦 = dom 𝑥 → 𝑦 ∈ On) |
| 20 | 15, 19 | impbii 209 | . . . 4 ⊢ (𝑦 ∈ On ↔ ∃𝑥 ∈ No 𝑦 = dom 𝑥) |
| 21 | 20 | eqabi 2866 | . . 3 ⊢ On = {𝑦 ∣ ∃𝑥 ∈ No 𝑦 = dom 𝑥} |
| 22 | 6, 21 | eqtr4i 2757 | . 2 ⊢ ran bday = On |
| 23 | df-fo 6487 | . 2 ⊢ ( bday : No –onto→On ↔ ( bday Fn No ∧ ran bday = On)) | |
| 24 | 5, 22, 23 | mpbir2an 711 | 1 ⊢ bday : No –onto→On |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {cab 2709 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 Vcvv 3436 ∅c0 4283 {csn 4576 × cxp 5614 dom cdm 5616 ran crn 5617 Oncon0 6306 Fn wfn 6476 –onto→wfo 6479 1oc1o 8378 No csur 27576 bday cbday 27578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-suc 6312 df-fun 6483 df-fn 6484 df-f 6485 df-fo 6487 df-1o 8385 df-no 27579 df-bday 27581 |
| This theorem is referenced by: nodense 27629 bdayimaon 27630 nosupno 27640 nosupbday 27642 noinfno 27655 noinfbday 27657 noetasuplem4 27673 noetainflem4 27677 bdayfun 27709 bdayfn 27710 bdaydm 27711 bdayrn 27712 bdayelon 27713 noprc 27717 noeta2 27722 |
| Copyright terms: Public domain | W3C validator |