MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bdayfo Structured version   Visualization version   GIF version

Theorem bdayfo 27177
Description: The birthday function maps the surreals onto the ordinals. Axiom B of [Alling] p. 184. (Proof shortened on 14-Apr-2012 by SF). (Contributed by Scott Fenton, 11-Jun-2011.)
Assertion
Ref Expression
bdayfo bday : No –ontoβ†’On

Proof of Theorem bdayfo
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmexg 7893 . . . 4 (π‘₯ ∈ No β†’ dom π‘₯ ∈ V)
21rgen 3063 . . 3 βˆ€π‘₯ ∈ No dom π‘₯ ∈ V
3 df-bday 27145 . . . 4 bday = (π‘₯ ∈ No ↦ dom π‘₯)
43mptfng 6689 . . 3 (βˆ€π‘₯ ∈ No dom π‘₯ ∈ V ↔ bday Fn No )
52, 4mpbi 229 . 2 bday Fn No
63rnmpt 5954 . . 3 ran bday = {𝑦 ∣ βˆƒπ‘₯ ∈ No 𝑦 = dom π‘₯}
7 noxp1o 27163 . . . . . 6 (𝑦 ∈ On β†’ (𝑦 Γ— {1o}) ∈ No )
8 1oex 8475 . . . . . . . . 9 1o ∈ V
98snnz 4780 . . . . . . . 8 {1o} β‰  βˆ…
10 dmxp 5928 . . . . . . . 8 ({1o} β‰  βˆ… β†’ dom (𝑦 Γ— {1o}) = 𝑦)
119, 10ax-mp 5 . . . . . . 7 dom (𝑦 Γ— {1o}) = 𝑦
1211eqcomi 2741 . . . . . 6 𝑦 = dom (𝑦 Γ— {1o})
13 dmeq 5903 . . . . . . 7 (π‘₯ = (𝑦 Γ— {1o}) β†’ dom π‘₯ = dom (𝑦 Γ— {1o}))
1413rspceeqv 3633 . . . . . 6 (((𝑦 Γ— {1o}) ∈ No ∧ 𝑦 = dom (𝑦 Γ— {1o})) β†’ βˆƒπ‘₯ ∈ No 𝑦 = dom π‘₯)
157, 12, 14sylancl 586 . . . . 5 (𝑦 ∈ On β†’ βˆƒπ‘₯ ∈ No 𝑦 = dom π‘₯)
16 nodmon 27150 . . . . . . 7 (π‘₯ ∈ No β†’ dom π‘₯ ∈ On)
17 eleq1a 2828 . . . . . . 7 (dom π‘₯ ∈ On β†’ (𝑦 = dom π‘₯ β†’ 𝑦 ∈ On))
1816, 17syl 17 . . . . . 6 (π‘₯ ∈ No β†’ (𝑦 = dom π‘₯ β†’ 𝑦 ∈ On))
1918rexlimiv 3148 . . . . 5 (βˆƒπ‘₯ ∈ No 𝑦 = dom π‘₯ β†’ 𝑦 ∈ On)
2015, 19impbii 208 . . . 4 (𝑦 ∈ On ↔ βˆƒπ‘₯ ∈ No 𝑦 = dom π‘₯)
2120eqabi 2869 . . 3 On = {𝑦 ∣ βˆƒπ‘₯ ∈ No 𝑦 = dom π‘₯}
226, 21eqtr4i 2763 . 2 ran bday = On
23 df-fo 6549 . 2 ( bday : No –ontoβ†’On ↔ ( bday Fn No ∧ ran bday = On))
245, 22, 23mpbir2an 709 1 bday : No –ontoβ†’On
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  {cab 2709   β‰  wne 2940  βˆ€wral 3061  βˆƒwrex 3070  Vcvv 3474  βˆ…c0 4322  {csn 4628   Γ— cxp 5674  dom cdm 5676  ran crn 5677  Oncon0 6364   Fn wfn 6538  β€“ontoβ†’wfo 6541  1oc1o 8458   No csur 27140   bday cbday 27142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-1o 8465  df-no 27143  df-bday 27145
This theorem is referenced by:  nodense  27192  bdayimaon  27193  nosupno  27203  nosupbday  27205  noinfno  27218  noinfbday  27220  noetasuplem4  27236  noetainflem4  27240  bdayfun  27271  bdayfn  27272  bdaydm  27273  bdayrn  27274  bdayelon  27275  noprc  27278  noeta2  27283
  Copyright terms: Public domain W3C validator