![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bdayfo | Structured version Visualization version GIF version |
Description: The birthday function maps the surreals onto the ordinals. Axiom B of [Alling] p. 184. (Proof shortened on 14-Apr-2012 by SF). (Contributed by Scott Fenton, 11-Jun-2011.) |
Ref | Expression |
---|---|
bdayfo | ⊢ bday : No –onto→On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmexg 7924 | . . . 4 ⊢ (𝑥 ∈ No → dom 𝑥 ∈ V) | |
2 | 1 | rgen 3061 | . . 3 ⊢ ∀𝑥 ∈ No dom 𝑥 ∈ V |
3 | df-bday 27704 | . . . 4 ⊢ bday = (𝑥 ∈ No ↦ dom 𝑥) | |
4 | 3 | mptfng 6708 | . . 3 ⊢ (∀𝑥 ∈ No dom 𝑥 ∈ V ↔ bday Fn No ) |
5 | 2, 4 | mpbi 230 | . 2 ⊢ bday Fn No |
6 | 3 | rnmpt 5971 | . . 3 ⊢ ran bday = {𝑦 ∣ ∃𝑥 ∈ No 𝑦 = dom 𝑥} |
7 | noxp1o 27723 | . . . . . 6 ⊢ (𝑦 ∈ On → (𝑦 × {1o}) ∈ No ) | |
8 | 1oex 8515 | . . . . . . . . 9 ⊢ 1o ∈ V | |
9 | 8 | snnz 4781 | . . . . . . . 8 ⊢ {1o} ≠ ∅ |
10 | dmxp 5942 | . . . . . . . 8 ⊢ ({1o} ≠ ∅ → dom (𝑦 × {1o}) = 𝑦) | |
11 | 9, 10 | ax-mp 5 | . . . . . . 7 ⊢ dom (𝑦 × {1o}) = 𝑦 |
12 | 11 | eqcomi 2744 | . . . . . 6 ⊢ 𝑦 = dom (𝑦 × {1o}) |
13 | dmeq 5917 | . . . . . . 7 ⊢ (𝑥 = (𝑦 × {1o}) → dom 𝑥 = dom (𝑦 × {1o})) | |
14 | 13 | rspceeqv 3645 | . . . . . 6 ⊢ (((𝑦 × {1o}) ∈ No ∧ 𝑦 = dom (𝑦 × {1o})) → ∃𝑥 ∈ No 𝑦 = dom 𝑥) |
15 | 7, 12, 14 | sylancl 586 | . . . . 5 ⊢ (𝑦 ∈ On → ∃𝑥 ∈ No 𝑦 = dom 𝑥) |
16 | nodmon 27710 | . . . . . . 7 ⊢ (𝑥 ∈ No → dom 𝑥 ∈ On) | |
17 | eleq1a 2834 | . . . . . . 7 ⊢ (dom 𝑥 ∈ On → (𝑦 = dom 𝑥 → 𝑦 ∈ On)) | |
18 | 16, 17 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ No → (𝑦 = dom 𝑥 → 𝑦 ∈ On)) |
19 | 18 | rexlimiv 3146 | . . . . 5 ⊢ (∃𝑥 ∈ No 𝑦 = dom 𝑥 → 𝑦 ∈ On) |
20 | 15, 19 | impbii 209 | . . . 4 ⊢ (𝑦 ∈ On ↔ ∃𝑥 ∈ No 𝑦 = dom 𝑥) |
21 | 20 | eqabi 2875 | . . 3 ⊢ On = {𝑦 ∣ ∃𝑥 ∈ No 𝑦 = dom 𝑥} |
22 | 6, 21 | eqtr4i 2766 | . 2 ⊢ ran bday = On |
23 | df-fo 6569 | . 2 ⊢ ( bday : No –onto→On ↔ ( bday Fn No ∧ ran bday = On)) | |
24 | 5, 22, 23 | mpbir2an 711 | 1 ⊢ bday : No –onto→On |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 {cab 2712 ≠ wne 2938 ∀wral 3059 ∃wrex 3068 Vcvv 3478 ∅c0 4339 {csn 4631 × cxp 5687 dom cdm 5689 ran crn 5690 Oncon0 6386 Fn wfn 6558 –onto→wfo 6561 1oc1o 8498 No csur 27699 bday cbday 27701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-suc 6392 df-fun 6565 df-fn 6566 df-f 6567 df-fo 6569 df-1o 8505 df-no 27702 df-bday 27704 |
This theorem is referenced by: nodense 27752 bdayimaon 27753 nosupno 27763 nosupbday 27765 noinfno 27778 noinfbday 27780 noetasuplem4 27796 noetainflem4 27800 bdayfun 27832 bdayfn 27833 bdaydm 27834 bdayrn 27835 bdayelon 27836 noprc 27839 noeta2 27844 |
Copyright terms: Public domain | W3C validator |