![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bdayfo | Structured version Visualization version GIF version |
Description: The birthday function maps the surreals onto the ordinals. Axiom B of [Alling] p. 184. (Proof shortened on 14-Apr-2012 by SF). (Contributed by Scott Fenton, 11-Jun-2011.) |
Ref | Expression |
---|---|
bdayfo | β’ bday : No βontoβOn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmexg 7909 | . . . 4 β’ (π₯ β No β dom π₯ β V) | |
2 | 1 | rgen 3060 | . . 3 β’ βπ₯ β No dom π₯ β V |
3 | df-bday 27591 | . . . 4 β’ bday = (π₯ β No β¦ dom π₯) | |
4 | 3 | mptfng 6694 | . . 3 β’ (βπ₯ β No dom π₯ β V β bday Fn No ) |
5 | 2, 4 | mpbi 229 | . 2 β’ bday Fn No |
6 | 3 | rnmpt 5957 | . . 3 β’ ran bday = {π¦ β£ βπ₯ β No π¦ = dom π₯} |
7 | noxp1o 27609 | . . . . . 6 β’ (π¦ β On β (π¦ Γ {1o}) β No ) | |
8 | 1oex 8497 | . . . . . . . . 9 β’ 1o β V | |
9 | 8 | snnz 4781 | . . . . . . . 8 β’ {1o} β β |
10 | dmxp 5931 | . . . . . . . 8 β’ ({1o} β β β dom (π¦ Γ {1o}) = π¦) | |
11 | 9, 10 | ax-mp 5 | . . . . . . 7 β’ dom (π¦ Γ {1o}) = π¦ |
12 | 11 | eqcomi 2737 | . . . . . 6 β’ π¦ = dom (π¦ Γ {1o}) |
13 | dmeq 5906 | . . . . . . 7 β’ (π₯ = (π¦ Γ {1o}) β dom π₯ = dom (π¦ Γ {1o})) | |
14 | 13 | rspceeqv 3631 | . . . . . 6 β’ (((π¦ Γ {1o}) β No β§ π¦ = dom (π¦ Γ {1o})) β βπ₯ β No π¦ = dom π₯) |
15 | 7, 12, 14 | sylancl 585 | . . . . 5 β’ (π¦ β On β βπ₯ β No π¦ = dom π₯) |
16 | nodmon 27596 | . . . . . . 7 β’ (π₯ β No β dom π₯ β On) | |
17 | eleq1a 2824 | . . . . . . 7 β’ (dom π₯ β On β (π¦ = dom π₯ β π¦ β On)) | |
18 | 16, 17 | syl 17 | . . . . . 6 β’ (π₯ β No β (π¦ = dom π₯ β π¦ β On)) |
19 | 18 | rexlimiv 3145 | . . . . 5 β’ (βπ₯ β No π¦ = dom π₯ β π¦ β On) |
20 | 15, 19 | impbii 208 | . . . 4 β’ (π¦ β On β βπ₯ β No π¦ = dom π₯) |
21 | 20 | eqabi 2865 | . . 3 β’ On = {π¦ β£ βπ₯ β No π¦ = dom π₯} |
22 | 6, 21 | eqtr4i 2759 | . 2 β’ ran bday = On |
23 | df-fo 6554 | . 2 β’ ( bday : No βontoβOn β ( bday Fn No β§ ran bday = On)) | |
24 | 5, 22, 23 | mpbir2an 710 | 1 β’ bday : No βontoβOn |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1534 β wcel 2099 {cab 2705 β wne 2937 βwral 3058 βwrex 3067 Vcvv 3471 β c0 4323 {csn 4629 Γ cxp 5676 dom cdm 5678 ran crn 5679 Oncon0 6369 Fn wfn 6543 βontoβwfo 6546 1oc1o 8480 No csur 27586 bday cbday 27588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-1o 8487 df-no 27589 df-bday 27591 |
This theorem is referenced by: nodense 27638 bdayimaon 27639 nosupno 27649 nosupbday 27651 noinfno 27664 noinfbday 27666 noetasuplem4 27682 noetainflem4 27686 bdayfun 27718 bdayfn 27719 bdaydm 27720 bdayrn 27721 bdayelon 27722 noprc 27725 noeta2 27730 |
Copyright terms: Public domain | W3C validator |