|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > bdayfo | Structured version Visualization version GIF version | ||
| Description: The birthday function maps the surreals onto the ordinals. Axiom B of [Alling] p. 184. (Proof shortened on 14-Apr-2012 by SF). (Contributed by Scott Fenton, 11-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| bdayfo | ⊢ bday : No –onto→On | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dmexg 7924 | . . . 4 ⊢ (𝑥 ∈ No → dom 𝑥 ∈ V) | |
| 2 | 1 | rgen 3062 | . . 3 ⊢ ∀𝑥 ∈ No dom 𝑥 ∈ V | 
| 3 | df-bday 27690 | . . . 4 ⊢ bday = (𝑥 ∈ No ↦ dom 𝑥) | |
| 4 | 3 | mptfng 6706 | . . 3 ⊢ (∀𝑥 ∈ No dom 𝑥 ∈ V ↔ bday Fn No ) | 
| 5 | 2, 4 | mpbi 230 | . 2 ⊢ bday Fn No | 
| 6 | 3 | rnmpt 5967 | . . 3 ⊢ ran bday = {𝑦 ∣ ∃𝑥 ∈ No 𝑦 = dom 𝑥} | 
| 7 | noxp1o 27709 | . . . . . 6 ⊢ (𝑦 ∈ On → (𝑦 × {1o}) ∈ No ) | |
| 8 | 1oex 8517 | . . . . . . . . 9 ⊢ 1o ∈ V | |
| 9 | 8 | snnz 4775 | . . . . . . . 8 ⊢ {1o} ≠ ∅ | 
| 10 | dmxp 5938 | . . . . . . . 8 ⊢ ({1o} ≠ ∅ → dom (𝑦 × {1o}) = 𝑦) | |
| 11 | 9, 10 | ax-mp 5 | . . . . . . 7 ⊢ dom (𝑦 × {1o}) = 𝑦 | 
| 12 | 11 | eqcomi 2745 | . . . . . 6 ⊢ 𝑦 = dom (𝑦 × {1o}) | 
| 13 | dmeq 5913 | . . . . . . 7 ⊢ (𝑥 = (𝑦 × {1o}) → dom 𝑥 = dom (𝑦 × {1o})) | |
| 14 | 13 | rspceeqv 3644 | . . . . . 6 ⊢ (((𝑦 × {1o}) ∈ No ∧ 𝑦 = dom (𝑦 × {1o})) → ∃𝑥 ∈ No 𝑦 = dom 𝑥) | 
| 15 | 7, 12, 14 | sylancl 586 | . . . . 5 ⊢ (𝑦 ∈ On → ∃𝑥 ∈ No 𝑦 = dom 𝑥) | 
| 16 | nodmon 27696 | . . . . . . 7 ⊢ (𝑥 ∈ No → dom 𝑥 ∈ On) | |
| 17 | eleq1a 2835 | . . . . . . 7 ⊢ (dom 𝑥 ∈ On → (𝑦 = dom 𝑥 → 𝑦 ∈ On)) | |
| 18 | 16, 17 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ No → (𝑦 = dom 𝑥 → 𝑦 ∈ On)) | 
| 19 | 18 | rexlimiv 3147 | . . . . 5 ⊢ (∃𝑥 ∈ No 𝑦 = dom 𝑥 → 𝑦 ∈ On) | 
| 20 | 15, 19 | impbii 209 | . . . 4 ⊢ (𝑦 ∈ On ↔ ∃𝑥 ∈ No 𝑦 = dom 𝑥) | 
| 21 | 20 | eqabi 2876 | . . 3 ⊢ On = {𝑦 ∣ ∃𝑥 ∈ No 𝑦 = dom 𝑥} | 
| 22 | 6, 21 | eqtr4i 2767 | . 2 ⊢ ran bday = On | 
| 23 | df-fo 6566 | . 2 ⊢ ( bday : No –onto→On ↔ ( bday Fn No ∧ ran bday = On)) | |
| 24 | 5, 22, 23 | mpbir2an 711 | 1 ⊢ bday : No –onto→On | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {cab 2713 ≠ wne 2939 ∀wral 3060 ∃wrex 3069 Vcvv 3479 ∅c0 4332 {csn 4625 × cxp 5682 dom cdm 5684 ran crn 5685 Oncon0 6383 Fn wfn 6555 –onto→wfo 6558 1oc1o 8500 No csur 27685 bday cbday 27687 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-suc 6389 df-fun 6562 df-fn 6563 df-f 6564 df-fo 6566 df-1o 8507 df-no 27688 df-bday 27690 | 
| This theorem is referenced by: nodense 27738 bdayimaon 27739 nosupno 27749 nosupbday 27751 noinfno 27764 noinfbday 27766 noetasuplem4 27782 noetainflem4 27786 bdayfun 27818 bdayfn 27819 bdaydm 27820 bdayrn 27821 bdayelon 27822 noprc 27825 noeta2 27830 | 
| Copyright terms: Public domain | W3C validator |