| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bdayfo | Structured version Visualization version GIF version | ||
| Description: The birthday function maps the surreals onto the ordinals. Axiom B of [Alling] p. 184. (Proof shortened on 14-Apr-2012 by SF). (Contributed by Scott Fenton, 11-Jun-2011.) |
| Ref | Expression |
|---|---|
| bdayfo | ⊢ bday : No –onto→On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmexg 7877 | . . . 4 ⊢ (𝑥 ∈ No → dom 𝑥 ∈ V) | |
| 2 | 1 | rgen 3046 | . . 3 ⊢ ∀𝑥 ∈ No dom 𝑥 ∈ V |
| 3 | df-bday 27556 | . . . 4 ⊢ bday = (𝑥 ∈ No ↦ dom 𝑥) | |
| 4 | 3 | mptfng 6657 | . . 3 ⊢ (∀𝑥 ∈ No dom 𝑥 ∈ V ↔ bday Fn No ) |
| 5 | 2, 4 | mpbi 230 | . 2 ⊢ bday Fn No |
| 6 | 3 | rnmpt 5921 | . . 3 ⊢ ran bday = {𝑦 ∣ ∃𝑥 ∈ No 𝑦 = dom 𝑥} |
| 7 | noxp1o 27575 | . . . . . 6 ⊢ (𝑦 ∈ On → (𝑦 × {1o}) ∈ No ) | |
| 8 | 1oex 8444 | . . . . . . . . 9 ⊢ 1o ∈ V | |
| 9 | 8 | snnz 4740 | . . . . . . . 8 ⊢ {1o} ≠ ∅ |
| 10 | dmxp 5892 | . . . . . . . 8 ⊢ ({1o} ≠ ∅ → dom (𝑦 × {1o}) = 𝑦) | |
| 11 | 9, 10 | ax-mp 5 | . . . . . . 7 ⊢ dom (𝑦 × {1o}) = 𝑦 |
| 12 | 11 | eqcomi 2738 | . . . . . 6 ⊢ 𝑦 = dom (𝑦 × {1o}) |
| 13 | dmeq 5867 | . . . . . . 7 ⊢ (𝑥 = (𝑦 × {1o}) → dom 𝑥 = dom (𝑦 × {1o})) | |
| 14 | 13 | rspceeqv 3611 | . . . . . 6 ⊢ (((𝑦 × {1o}) ∈ No ∧ 𝑦 = dom (𝑦 × {1o})) → ∃𝑥 ∈ No 𝑦 = dom 𝑥) |
| 15 | 7, 12, 14 | sylancl 586 | . . . . 5 ⊢ (𝑦 ∈ On → ∃𝑥 ∈ No 𝑦 = dom 𝑥) |
| 16 | nodmon 27562 | . . . . . . 7 ⊢ (𝑥 ∈ No → dom 𝑥 ∈ On) | |
| 17 | eleq1a 2823 | . . . . . . 7 ⊢ (dom 𝑥 ∈ On → (𝑦 = dom 𝑥 → 𝑦 ∈ On)) | |
| 18 | 16, 17 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ No → (𝑦 = dom 𝑥 → 𝑦 ∈ On)) |
| 19 | 18 | rexlimiv 3127 | . . . . 5 ⊢ (∃𝑥 ∈ No 𝑦 = dom 𝑥 → 𝑦 ∈ On) |
| 20 | 15, 19 | impbii 209 | . . . 4 ⊢ (𝑦 ∈ On ↔ ∃𝑥 ∈ No 𝑦 = dom 𝑥) |
| 21 | 20 | eqabi 2863 | . . 3 ⊢ On = {𝑦 ∣ ∃𝑥 ∈ No 𝑦 = dom 𝑥} |
| 22 | 6, 21 | eqtr4i 2755 | . 2 ⊢ ran bday = On |
| 23 | df-fo 6517 | . 2 ⊢ ( bday : No –onto→On ↔ ( bday Fn No ∧ ran bday = On)) | |
| 24 | 5, 22, 23 | mpbir2an 711 | 1 ⊢ bday : No –onto→On |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2707 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 Vcvv 3447 ∅c0 4296 {csn 4589 × cxp 5636 dom cdm 5638 ran crn 5639 Oncon0 6332 Fn wfn 6506 –onto→wfo 6509 1oc1o 8427 No csur 27551 bday cbday 27553 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-suc 6338 df-fun 6513 df-fn 6514 df-f 6515 df-fo 6517 df-1o 8434 df-no 27554 df-bday 27556 |
| This theorem is referenced by: nodense 27604 bdayimaon 27605 nosupno 27615 nosupbday 27617 noinfno 27630 noinfbday 27632 noetasuplem4 27648 noetainflem4 27652 bdayfun 27684 bdayfn 27685 bdaydm 27686 bdayrn 27687 bdayelon 27688 noprc 27691 noeta2 27696 |
| Copyright terms: Public domain | W3C validator |