| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bdayfo | Structured version Visualization version GIF version | ||
| Description: The birthday function maps the surreals onto the ordinals. Axiom B of [Alling] p. 184. (Proof shortened on 14-Apr-2012 by SF). (Contributed by Scott Fenton, 11-Jun-2011.) |
| Ref | Expression |
|---|---|
| bdayfo | ⊢ bday : No –onto→On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmexg 7902 | . . . 4 ⊢ (𝑥 ∈ No → dom 𝑥 ∈ V) | |
| 2 | 1 | rgen 3054 | . . 3 ⊢ ∀𝑥 ∈ No dom 𝑥 ∈ V |
| 3 | df-bday 27613 | . . . 4 ⊢ bday = (𝑥 ∈ No ↦ dom 𝑥) | |
| 4 | 3 | mptfng 6682 | . . 3 ⊢ (∀𝑥 ∈ No dom 𝑥 ∈ V ↔ bday Fn No ) |
| 5 | 2, 4 | mpbi 230 | . 2 ⊢ bday Fn No |
| 6 | 3 | rnmpt 5942 | . . 3 ⊢ ran bday = {𝑦 ∣ ∃𝑥 ∈ No 𝑦 = dom 𝑥} |
| 7 | noxp1o 27632 | . . . . . 6 ⊢ (𝑦 ∈ On → (𝑦 × {1o}) ∈ No ) | |
| 8 | 1oex 8495 | . . . . . . . . 9 ⊢ 1o ∈ V | |
| 9 | 8 | snnz 4757 | . . . . . . . 8 ⊢ {1o} ≠ ∅ |
| 10 | dmxp 5913 | . . . . . . . 8 ⊢ ({1o} ≠ ∅ → dom (𝑦 × {1o}) = 𝑦) | |
| 11 | 9, 10 | ax-mp 5 | . . . . . . 7 ⊢ dom (𝑦 × {1o}) = 𝑦 |
| 12 | 11 | eqcomi 2745 | . . . . . 6 ⊢ 𝑦 = dom (𝑦 × {1o}) |
| 13 | dmeq 5888 | . . . . . . 7 ⊢ (𝑥 = (𝑦 × {1o}) → dom 𝑥 = dom (𝑦 × {1o})) | |
| 14 | 13 | rspceeqv 3629 | . . . . . 6 ⊢ (((𝑦 × {1o}) ∈ No ∧ 𝑦 = dom (𝑦 × {1o})) → ∃𝑥 ∈ No 𝑦 = dom 𝑥) |
| 15 | 7, 12, 14 | sylancl 586 | . . . . 5 ⊢ (𝑦 ∈ On → ∃𝑥 ∈ No 𝑦 = dom 𝑥) |
| 16 | nodmon 27619 | . . . . . . 7 ⊢ (𝑥 ∈ No → dom 𝑥 ∈ On) | |
| 17 | eleq1a 2830 | . . . . . . 7 ⊢ (dom 𝑥 ∈ On → (𝑦 = dom 𝑥 → 𝑦 ∈ On)) | |
| 18 | 16, 17 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ No → (𝑦 = dom 𝑥 → 𝑦 ∈ On)) |
| 19 | 18 | rexlimiv 3135 | . . . . 5 ⊢ (∃𝑥 ∈ No 𝑦 = dom 𝑥 → 𝑦 ∈ On) |
| 20 | 15, 19 | impbii 209 | . . . 4 ⊢ (𝑦 ∈ On ↔ ∃𝑥 ∈ No 𝑦 = dom 𝑥) |
| 21 | 20 | eqabi 2871 | . . 3 ⊢ On = {𝑦 ∣ ∃𝑥 ∈ No 𝑦 = dom 𝑥} |
| 22 | 6, 21 | eqtr4i 2762 | . 2 ⊢ ran bday = On |
| 23 | df-fo 6542 | . 2 ⊢ ( bday : No –onto→On ↔ ( bday Fn No ∧ ran bday = On)) | |
| 24 | 5, 22, 23 | mpbir2an 711 | 1 ⊢ bday : No –onto→On |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2714 ≠ wne 2933 ∀wral 3052 ∃wrex 3061 Vcvv 3464 ∅c0 4313 {csn 4606 × cxp 5657 dom cdm 5659 ran crn 5660 Oncon0 6357 Fn wfn 6531 –onto→wfo 6534 1oc1o 8478 No csur 27608 bday cbday 27610 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-suc 6363 df-fun 6538 df-fn 6539 df-f 6540 df-fo 6542 df-1o 8485 df-no 27611 df-bday 27613 |
| This theorem is referenced by: nodense 27661 bdayimaon 27662 nosupno 27672 nosupbday 27674 noinfno 27687 noinfbday 27689 noetasuplem4 27705 noetainflem4 27709 bdayfun 27741 bdayfn 27742 bdaydm 27743 bdayrn 27744 bdayelon 27745 noprc 27748 noeta2 27753 |
| Copyright terms: Public domain | W3C validator |