MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bdayfo Structured version   Visualization version   GIF version

Theorem bdayfo 27723
Description: The birthday function maps the surreals onto the ordinals. Axiom B of [Alling] p. 184. (Proof shortened on 14-Apr-2012 by SF). (Contributed by Scott Fenton, 11-Jun-2011.)
Assertion
Ref Expression
bdayfo bday : No onto→On

Proof of Theorem bdayfo
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmexg 7924 . . . 4 (𝑥 No → dom 𝑥 ∈ V)
21rgen 3062 . . 3 𝑥 No dom 𝑥 ∈ V
3 df-bday 27690 . . . 4 bday = (𝑥 No ↦ dom 𝑥)
43mptfng 6706 . . 3 (∀𝑥 No dom 𝑥 ∈ V ↔ bday Fn No )
52, 4mpbi 230 . 2 bday Fn No
63rnmpt 5967 . . 3 ran bday = {𝑦 ∣ ∃𝑥 No 𝑦 = dom 𝑥}
7 noxp1o 27709 . . . . . 6 (𝑦 ∈ On → (𝑦 × {1o}) ∈ No )
8 1oex 8517 . . . . . . . . 9 1o ∈ V
98snnz 4775 . . . . . . . 8 {1o} ≠ ∅
10 dmxp 5938 . . . . . . . 8 ({1o} ≠ ∅ → dom (𝑦 × {1o}) = 𝑦)
119, 10ax-mp 5 . . . . . . 7 dom (𝑦 × {1o}) = 𝑦
1211eqcomi 2745 . . . . . 6 𝑦 = dom (𝑦 × {1o})
13 dmeq 5913 . . . . . . 7 (𝑥 = (𝑦 × {1o}) → dom 𝑥 = dom (𝑦 × {1o}))
1413rspceeqv 3644 . . . . . 6 (((𝑦 × {1o}) ∈ No 𝑦 = dom (𝑦 × {1o})) → ∃𝑥 No 𝑦 = dom 𝑥)
157, 12, 14sylancl 586 . . . . 5 (𝑦 ∈ On → ∃𝑥 No 𝑦 = dom 𝑥)
16 nodmon 27696 . . . . . . 7 (𝑥 No → dom 𝑥 ∈ On)
17 eleq1a 2835 . . . . . . 7 (dom 𝑥 ∈ On → (𝑦 = dom 𝑥𝑦 ∈ On))
1816, 17syl 17 . . . . . 6 (𝑥 No → (𝑦 = dom 𝑥𝑦 ∈ On))
1918rexlimiv 3147 . . . . 5 (∃𝑥 No 𝑦 = dom 𝑥𝑦 ∈ On)
2015, 19impbii 209 . . . 4 (𝑦 ∈ On ↔ ∃𝑥 No 𝑦 = dom 𝑥)
2120eqabi 2876 . . 3 On = {𝑦 ∣ ∃𝑥 No 𝑦 = dom 𝑥}
226, 21eqtr4i 2767 . 2 ran bday = On
23 df-fo 6566 . 2 ( bday : No onto→On ↔ ( bday Fn No ∧ ran bday = On))
245, 22, 23mpbir2an 711 1 bday : No onto→On
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  {cab 2713  wne 2939  wral 3060  wrex 3069  Vcvv 3479  c0 4332  {csn 4625   × cxp 5682  dom cdm 5684  ran crn 5685  Oncon0 6383   Fn wfn 6555  ontowfo 6558  1oc1o 8500   No csur 27685   bday cbday 27687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-suc 6389  df-fun 6562  df-fn 6563  df-f 6564  df-fo 6566  df-1o 8507  df-no 27688  df-bday 27690
This theorem is referenced by:  nodense  27738  bdayimaon  27739  nosupno  27749  nosupbday  27751  noinfno  27764  noinfbday  27766  noetasuplem4  27782  noetainflem4  27786  bdayfun  27818  bdayfn  27819  bdaydm  27820  bdayrn  27821  bdayelon  27822  noprc  27825  noeta2  27830
  Copyright terms: Public domain W3C validator