![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bdayfo | Structured version Visualization version GIF version |
Description: The birthday function maps the surreals onto the ordinals. Axiom B of [Alling] p. 184. (Proof shortened on 14-Apr-2012 by SF). (Contributed by Scott Fenton, 11-Jun-2011.) |
Ref | Expression |
---|---|
bdayfo | β’ bday : No βontoβOn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmexg 7893 | . . . 4 β’ (π₯ β No β dom π₯ β V) | |
2 | 1 | rgen 3063 | . . 3 β’ βπ₯ β No dom π₯ β V |
3 | df-bday 27145 | . . . 4 β’ bday = (π₯ β No β¦ dom π₯) | |
4 | 3 | mptfng 6689 | . . 3 β’ (βπ₯ β No dom π₯ β V β bday Fn No ) |
5 | 2, 4 | mpbi 229 | . 2 β’ bday Fn No |
6 | 3 | rnmpt 5954 | . . 3 β’ ran bday = {π¦ β£ βπ₯ β No π¦ = dom π₯} |
7 | noxp1o 27163 | . . . . . 6 β’ (π¦ β On β (π¦ Γ {1o}) β No ) | |
8 | 1oex 8475 | . . . . . . . . 9 β’ 1o β V | |
9 | 8 | snnz 4780 | . . . . . . . 8 β’ {1o} β β |
10 | dmxp 5928 | . . . . . . . 8 β’ ({1o} β β β dom (π¦ Γ {1o}) = π¦) | |
11 | 9, 10 | ax-mp 5 | . . . . . . 7 β’ dom (π¦ Γ {1o}) = π¦ |
12 | 11 | eqcomi 2741 | . . . . . 6 β’ π¦ = dom (π¦ Γ {1o}) |
13 | dmeq 5903 | . . . . . . 7 β’ (π₯ = (π¦ Γ {1o}) β dom π₯ = dom (π¦ Γ {1o})) | |
14 | 13 | rspceeqv 3633 | . . . . . 6 β’ (((π¦ Γ {1o}) β No β§ π¦ = dom (π¦ Γ {1o})) β βπ₯ β No π¦ = dom π₯) |
15 | 7, 12, 14 | sylancl 586 | . . . . 5 β’ (π¦ β On β βπ₯ β No π¦ = dom π₯) |
16 | nodmon 27150 | . . . . . . 7 β’ (π₯ β No β dom π₯ β On) | |
17 | eleq1a 2828 | . . . . . . 7 β’ (dom π₯ β On β (π¦ = dom π₯ β π¦ β On)) | |
18 | 16, 17 | syl 17 | . . . . . 6 β’ (π₯ β No β (π¦ = dom π₯ β π¦ β On)) |
19 | 18 | rexlimiv 3148 | . . . . 5 β’ (βπ₯ β No π¦ = dom π₯ β π¦ β On) |
20 | 15, 19 | impbii 208 | . . . 4 β’ (π¦ β On β βπ₯ β No π¦ = dom π₯) |
21 | 20 | eqabi 2869 | . . 3 β’ On = {π¦ β£ βπ₯ β No π¦ = dom π₯} |
22 | 6, 21 | eqtr4i 2763 | . 2 β’ ran bday = On |
23 | df-fo 6549 | . 2 β’ ( bday : No βontoβOn β ( bday Fn No β§ ran bday = On)) | |
24 | 5, 22, 23 | mpbir2an 709 | 1 β’ bday : No βontoβOn |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 {cab 2709 β wne 2940 βwral 3061 βwrex 3070 Vcvv 3474 β c0 4322 {csn 4628 Γ cxp 5674 dom cdm 5676 ran crn 5677 Oncon0 6364 Fn wfn 6538 βontoβwfo 6541 1oc1o 8458 No csur 27140 bday cbday 27142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-1o 8465 df-no 27143 df-bday 27145 |
This theorem is referenced by: nodense 27192 bdayimaon 27193 nosupno 27203 nosupbday 27205 noinfno 27218 noinfbday 27220 noetasuplem4 27236 noetainflem4 27240 bdayfun 27271 bdayfn 27272 bdaydm 27273 bdayrn 27274 bdayelon 27275 noprc 27278 noeta2 27283 |
Copyright terms: Public domain | W3C validator |