Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bdayfo | Structured version Visualization version GIF version |
Description: The birthday function maps the surreals onto the ordinals. Axiom B of [Alling] p. 184. (Shortened proof on 2012-Apr-14, SF). (Contributed by Scott Fenton, 11-Jun-2011.) |
Ref | Expression |
---|---|
bdayfo | ⊢ bday : No –onto→On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmexg 7724 | . . . 4 ⊢ (𝑥 ∈ No → dom 𝑥 ∈ V) | |
2 | 1 | rgen 3073 | . . 3 ⊢ ∀𝑥 ∈ No dom 𝑥 ∈ V |
3 | df-bday 33775 | . . . 4 ⊢ bday = (𝑥 ∈ No ↦ dom 𝑥) | |
4 | 3 | mptfng 6556 | . . 3 ⊢ (∀𝑥 ∈ No dom 𝑥 ∈ V ↔ bday Fn No ) |
5 | 2, 4 | mpbi 229 | . 2 ⊢ bday Fn No |
6 | 3 | rnmpt 5853 | . . 3 ⊢ ran bday = {𝑦 ∣ ∃𝑥 ∈ No 𝑦 = dom 𝑥} |
7 | noxp1o 33793 | . . . . . 6 ⊢ (𝑦 ∈ On → (𝑦 × {1o}) ∈ No ) | |
8 | 1oex 8280 | . . . . . . . . 9 ⊢ 1o ∈ V | |
9 | 8 | snnz 4709 | . . . . . . . 8 ⊢ {1o} ≠ ∅ |
10 | dmxp 5827 | . . . . . . . 8 ⊢ ({1o} ≠ ∅ → dom (𝑦 × {1o}) = 𝑦) | |
11 | 9, 10 | ax-mp 5 | . . . . . . 7 ⊢ dom (𝑦 × {1o}) = 𝑦 |
12 | 11 | eqcomi 2747 | . . . . . 6 ⊢ 𝑦 = dom (𝑦 × {1o}) |
13 | dmeq 5801 | . . . . . . 7 ⊢ (𝑥 = (𝑦 × {1o}) → dom 𝑥 = dom (𝑦 × {1o})) | |
14 | 13 | rspceeqv 3567 | . . . . . 6 ⊢ (((𝑦 × {1o}) ∈ No ∧ 𝑦 = dom (𝑦 × {1o})) → ∃𝑥 ∈ No 𝑦 = dom 𝑥) |
15 | 7, 12, 14 | sylancl 585 | . . . . 5 ⊢ (𝑦 ∈ On → ∃𝑥 ∈ No 𝑦 = dom 𝑥) |
16 | nodmon 33780 | . . . . . . 7 ⊢ (𝑥 ∈ No → dom 𝑥 ∈ On) | |
17 | eleq1a 2834 | . . . . . . 7 ⊢ (dom 𝑥 ∈ On → (𝑦 = dom 𝑥 → 𝑦 ∈ On)) | |
18 | 16, 17 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ No → (𝑦 = dom 𝑥 → 𝑦 ∈ On)) |
19 | 18 | rexlimiv 3208 | . . . . 5 ⊢ (∃𝑥 ∈ No 𝑦 = dom 𝑥 → 𝑦 ∈ On) |
20 | 15, 19 | impbii 208 | . . . 4 ⊢ (𝑦 ∈ On ↔ ∃𝑥 ∈ No 𝑦 = dom 𝑥) |
21 | 20 | abbi2i 2878 | . . 3 ⊢ On = {𝑦 ∣ ∃𝑥 ∈ No 𝑦 = dom 𝑥} |
22 | 6, 21 | eqtr4i 2769 | . 2 ⊢ ran bday = On |
23 | df-fo 6424 | . 2 ⊢ ( bday : No –onto→On ↔ ( bday Fn No ∧ ran bday = On)) | |
24 | 5, 22, 23 | mpbir2an 707 | 1 ⊢ bday : No –onto→On |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {cab 2715 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 Vcvv 3422 ∅c0 4253 {csn 4558 × cxp 5578 dom cdm 5580 ran crn 5581 Oncon0 6251 Fn wfn 6413 –onto→wfo 6416 1oc1o 8260 No csur 33770 bday cbday 33772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-1o 8267 df-no 33773 df-bday 33775 |
This theorem is referenced by: nodense 33822 bdayimaon 33823 nosupno 33833 nosupbday 33835 noinfno 33848 noinfbday 33850 noetasuplem4 33866 noetainflem4 33870 bdayfun 33894 bdayfn 33895 bdaydm 33896 bdayrn 33897 bdayelon 33898 noprc 33901 noeta2 33906 |
Copyright terms: Public domain | W3C validator |