MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmsslss Structured version   Visualization version   GIF version

Theorem frlmsslss 21794
Description: A subset of a free module obtained by restricting the support set is a submodule. 𝐽 is the set of forbidden unit vectors. (Contributed by Stefan O'Rear, 4-Feb-2015.)
Hypotheses
Ref Expression
frlmsslss.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmsslss.u 𝑈 = (LSubSp‘𝑌)
frlmsslss.b 𝐵 = (Base‘𝑌)
frlmsslss.z 0 = (0g𝑅)
frlmsslss.c 𝐶 = {𝑥𝐵 ∣ (𝑥𝐽) = (𝐽 × { 0 })}
Assertion
Ref Expression
frlmsslss ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐶𝑈)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐼   𝑥,𝐽   𝑥,𝑅   𝑥,𝑈   𝑥, 0   𝑥,𝑉   𝑥,𝑌
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem frlmsslss
StepHypRef Expression
1 frlmsslss.c . . 3 𝐶 = {𝑥𝐵 ∣ (𝑥𝐽) = (𝐽 × { 0 })}
2 simp1 1137 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝑅 ∈ Ring)
3 simp2 1138 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐼𝑉)
4 simp3 1139 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐽𝐼)
53, 4ssexd 5324 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐽 ∈ V)
6 eqid 2737 . . . . . . 7 (𝑅 freeLMod 𝐽) = (𝑅 freeLMod 𝐽)
7 frlmsslss.z . . . . . . 7 0 = (0g𝑅)
86, 7frlm0 21774 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐽 ∈ V) → (𝐽 × { 0 }) = (0g‘(𝑅 freeLMod 𝐽)))
92, 5, 8syl2anc 584 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝐽 × { 0 }) = (0g‘(𝑅 freeLMod 𝐽)))
109eqeq2d 2748 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → ((𝑥𝐽) = (𝐽 × { 0 }) ↔ (𝑥𝐽) = (0g‘(𝑅 freeLMod 𝐽))))
1110rabbidv 3444 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → {𝑥𝐵 ∣ (𝑥𝐽) = (𝐽 × { 0 })} = {𝑥𝐵 ∣ (𝑥𝐽) = (0g‘(𝑅 freeLMod 𝐽))})
121, 11eqtrid 2789 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐶 = {𝑥𝐵 ∣ (𝑥𝐽) = (0g‘(𝑅 freeLMod 𝐽))})
13 frlmsslss.y . . . 4 𝑌 = (𝑅 freeLMod 𝐼)
14 frlmsslss.b . . . 4 𝐵 = (Base‘𝑌)
15 eqid 2737 . . . 4 (Base‘(𝑅 freeLMod 𝐽)) = (Base‘(𝑅 freeLMod 𝐽))
16 eqid 2737 . . . 4 (𝑥𝐵 ↦ (𝑥𝐽)) = (𝑥𝐵 ↦ (𝑥𝐽))
1713, 6, 14, 15, 16frlmsplit2 21793 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝑥𝐵 ↦ (𝑥𝐽)) ∈ (𝑌 LMHom (𝑅 freeLMod 𝐽)))
18 fvex 6919 . . . . . 6 (0g‘(𝑅 freeLMod 𝐽)) ∈ V
1916mptiniseg 6259 . . . . . 6 ((0g‘(𝑅 freeLMod 𝐽)) ∈ V → ((𝑥𝐵 ↦ (𝑥𝐽)) “ {(0g‘(𝑅 freeLMod 𝐽))}) = {𝑥𝐵 ∣ (𝑥𝐽) = (0g‘(𝑅 freeLMod 𝐽))})
2018, 19ax-mp 5 . . . . 5 ((𝑥𝐵 ↦ (𝑥𝐽)) “ {(0g‘(𝑅 freeLMod 𝐽))}) = {𝑥𝐵 ∣ (𝑥𝐽) = (0g‘(𝑅 freeLMod 𝐽))}
2120eqcomi 2746 . . . 4 {𝑥𝐵 ∣ (𝑥𝐽) = (0g‘(𝑅 freeLMod 𝐽))} = ((𝑥𝐵 ↦ (𝑥𝐽)) “ {(0g‘(𝑅 freeLMod 𝐽))})
22 eqid 2737 . . . 4 (0g‘(𝑅 freeLMod 𝐽)) = (0g‘(𝑅 freeLMod 𝐽))
23 frlmsslss.u . . . 4 𝑈 = (LSubSp‘𝑌)
2421, 22, 23lmhmkerlss 21050 . . 3 ((𝑥𝐵 ↦ (𝑥𝐽)) ∈ (𝑌 LMHom (𝑅 freeLMod 𝐽)) → {𝑥𝐵 ∣ (𝑥𝐽) = (0g‘(𝑅 freeLMod 𝐽))} ∈ 𝑈)
2517, 24syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → {𝑥𝐵 ∣ (𝑥𝐽) = (0g‘(𝑅 freeLMod 𝐽))} ∈ 𝑈)
2612, 25eqeltrd 2841 1 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐶𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1540  wcel 2108  {crab 3436  Vcvv 3480  wss 3951  {csn 4626  cmpt 5225   × cxp 5683  ccnv 5684  cres 5687  cima 5688  cfv 6561  (class class class)co 7431  Basecbs 17247  0gc0g 17484  Ringcrg 20230  LSubSpclss 20929   LMHom clmhm 21018   freeLMod cfrlm 21766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-0g 17486  df-prds 17492  df-pws 17494  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-ghm 19231  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-subrg 20570  df-lmod 20860  df-lss 20930  df-lmhm 21021  df-sra 21172  df-rgmod 21173  df-dsmm 21752  df-frlm 21767
This theorem is referenced by:  frlmsslss2  21795
  Copyright terms: Public domain W3C validator