![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frlmsslss | Structured version Visualization version GIF version |
Description: A subset of a free module obtained by restricting the support set is a submodule. 𝐽 is the set of forbidden unit vectors. (Contributed by Stefan O'Rear, 4-Feb-2015.) |
Ref | Expression |
---|---|
frlmsslss.y | ⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
frlmsslss.u | ⊢ 𝑈 = (LSubSp‘𝑌) |
frlmsslss.b | ⊢ 𝐵 = (Base‘𝑌) |
frlmsslss.z | ⊢ 0 = (0g‘𝑅) |
frlmsslss.c | ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (𝐽 × { 0 })} |
Ref | Expression |
---|---|
frlmsslss | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐶 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmsslss.c | . . 3 ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (𝐽 × { 0 })} | |
2 | simp1 1127 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝑅 ∈ Ring) | |
3 | simp2 1128 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐼 ∈ 𝑉) | |
4 | simp3 1129 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐽 ⊆ 𝐼) | |
5 | 3, 4 | ssexd 5044 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐽 ∈ V) |
6 | eqid 2778 | . . . . . . 7 ⊢ (𝑅 freeLMod 𝐽) = (𝑅 freeLMod 𝐽) | |
7 | frlmsslss.z | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
8 | 6, 7 | frlm0 20508 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐽 ∈ V) → (𝐽 × { 0 }) = (0g‘(𝑅 freeLMod 𝐽))) |
9 | 2, 5, 8 | syl2anc 579 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → (𝐽 × { 0 }) = (0g‘(𝑅 freeLMod 𝐽))) |
10 | 9 | eqeq2d 2788 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → ((𝑥 ↾ 𝐽) = (𝐽 × { 0 }) ↔ (𝑥 ↾ 𝐽) = (0g‘(𝑅 freeLMod 𝐽)))) |
11 | 10 | rabbidv 3386 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (𝐽 × { 0 })} = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (0g‘(𝑅 freeLMod 𝐽))}) |
12 | 1, 11 | syl5eq 2826 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (0g‘(𝑅 freeLMod 𝐽))}) |
13 | frlmsslss.y | . . . 4 ⊢ 𝑌 = (𝑅 freeLMod 𝐼) | |
14 | frlmsslss.b | . . . 4 ⊢ 𝐵 = (Base‘𝑌) | |
15 | eqid 2778 | . . . 4 ⊢ (Base‘(𝑅 freeLMod 𝐽)) = (Base‘(𝑅 freeLMod 𝐽)) | |
16 | eqid 2778 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝐽)) = (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝐽)) | |
17 | 13, 6, 14, 15, 16 | frlmsplit2 20527 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝐽)) ∈ (𝑌 LMHom (𝑅 freeLMod 𝐽))) |
18 | fvex 6461 | . . . . . 6 ⊢ (0g‘(𝑅 freeLMod 𝐽)) ∈ V | |
19 | 16 | mptiniseg 5885 | . . . . . 6 ⊢ ((0g‘(𝑅 freeLMod 𝐽)) ∈ V → (◡(𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝐽)) “ {(0g‘(𝑅 freeLMod 𝐽))}) = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (0g‘(𝑅 freeLMod 𝐽))}) |
20 | 18, 19 | ax-mp 5 | . . . . 5 ⊢ (◡(𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝐽)) “ {(0g‘(𝑅 freeLMod 𝐽))}) = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (0g‘(𝑅 freeLMod 𝐽))} |
21 | 20 | eqcomi 2787 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (0g‘(𝑅 freeLMod 𝐽))} = (◡(𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝐽)) “ {(0g‘(𝑅 freeLMod 𝐽))}) |
22 | eqid 2778 | . . . 4 ⊢ (0g‘(𝑅 freeLMod 𝐽)) = (0g‘(𝑅 freeLMod 𝐽)) | |
23 | frlmsslss.u | . . . 4 ⊢ 𝑈 = (LSubSp‘𝑌) | |
24 | 21, 22, 23 | lmhmkerlss 19457 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝐽)) ∈ (𝑌 LMHom (𝑅 freeLMod 𝐽)) → {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (0g‘(𝑅 freeLMod 𝐽))} ∈ 𝑈) |
25 | 17, 24 | syl 17 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (0g‘(𝑅 freeLMod 𝐽))} ∈ 𝑈) |
26 | 12, 25 | eqeltrd 2859 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐶 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 {crab 3094 Vcvv 3398 ⊆ wss 3792 {csn 4398 ↦ cmpt 4967 × cxp 5355 ◡ccnv 5356 ↾ cres 5359 “ cima 5360 ‘cfv 6137 (class class class)co 6924 Basecbs 16266 0gc0g 16497 Ringcrg 18945 LSubSpclss 19335 LMHom clmhm 19425 freeLMod cfrlm 20500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-of 7176 df-om 7346 df-1st 7447 df-2nd 7448 df-supp 7579 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-oadd 7849 df-er 8028 df-map 8144 df-ixp 8197 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-fsupp 8566 df-sup 8638 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-nn 11380 df-2 11443 df-3 11444 df-4 11445 df-5 11446 df-6 11447 df-7 11448 df-8 11449 df-9 11450 df-n0 11648 df-z 11734 df-dec 11851 df-uz 11998 df-fz 12649 df-struct 16268 df-ndx 16269 df-slot 16270 df-base 16272 df-sets 16273 df-ress 16274 df-plusg 16362 df-mulr 16363 df-sca 16365 df-vsca 16366 df-ip 16367 df-tset 16368 df-ple 16369 df-ds 16371 df-hom 16373 df-cco 16374 df-0g 16499 df-prds 16505 df-pws 16507 df-mgm 17639 df-sgrp 17681 df-mnd 17692 df-mhm 17732 df-submnd 17733 df-grp 17823 df-minusg 17824 df-sbg 17825 df-subg 17986 df-ghm 18053 df-mgp 18888 df-ur 18900 df-ring 18947 df-subrg 19181 df-lmod 19268 df-lss 19336 df-lmhm 19428 df-sra 19580 df-rgmod 19581 df-dsmm 20486 df-frlm 20501 |
This theorem is referenced by: frlmsslss2 20529 |
Copyright terms: Public domain | W3C validator |