| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frlmsslss | Structured version Visualization version GIF version | ||
| Description: A subset of a free module obtained by restricting the support set is a submodule. 𝐽 is the set of forbidden unit vectors. (Contributed by Stefan O'Rear, 4-Feb-2015.) |
| Ref | Expression |
|---|---|
| frlmsslss.y | ⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
| frlmsslss.u | ⊢ 𝑈 = (LSubSp‘𝑌) |
| frlmsslss.b | ⊢ 𝐵 = (Base‘𝑌) |
| frlmsslss.z | ⊢ 0 = (0g‘𝑅) |
| frlmsslss.c | ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (𝐽 × { 0 })} |
| Ref | Expression |
|---|---|
| frlmsslss | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐶 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmsslss.c | . . 3 ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (𝐽 × { 0 })} | |
| 2 | simp1 1136 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝑅 ∈ Ring) | |
| 3 | simp2 1137 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐼 ∈ 𝑉) | |
| 4 | simp3 1138 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐽 ⊆ 𝐼) | |
| 5 | 3, 4 | ssexd 5266 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐽 ∈ V) |
| 6 | eqid 2729 | . . . . . . 7 ⊢ (𝑅 freeLMod 𝐽) = (𝑅 freeLMod 𝐽) | |
| 7 | frlmsslss.z | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
| 8 | 6, 7 | frlm0 21680 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐽 ∈ V) → (𝐽 × { 0 }) = (0g‘(𝑅 freeLMod 𝐽))) |
| 9 | 2, 5, 8 | syl2anc 584 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → (𝐽 × { 0 }) = (0g‘(𝑅 freeLMod 𝐽))) |
| 10 | 9 | eqeq2d 2740 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → ((𝑥 ↾ 𝐽) = (𝐽 × { 0 }) ↔ (𝑥 ↾ 𝐽) = (0g‘(𝑅 freeLMod 𝐽)))) |
| 11 | 10 | rabbidv 3404 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (𝐽 × { 0 })} = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (0g‘(𝑅 freeLMod 𝐽))}) |
| 12 | 1, 11 | eqtrid 2776 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (0g‘(𝑅 freeLMod 𝐽))}) |
| 13 | frlmsslss.y | . . . 4 ⊢ 𝑌 = (𝑅 freeLMod 𝐼) | |
| 14 | frlmsslss.b | . . . 4 ⊢ 𝐵 = (Base‘𝑌) | |
| 15 | eqid 2729 | . . . 4 ⊢ (Base‘(𝑅 freeLMod 𝐽)) = (Base‘(𝑅 freeLMod 𝐽)) | |
| 16 | eqid 2729 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝐽)) = (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝐽)) | |
| 17 | 13, 6, 14, 15, 16 | frlmsplit2 21699 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝐽)) ∈ (𝑌 LMHom (𝑅 freeLMod 𝐽))) |
| 18 | fvex 6839 | . . . . . 6 ⊢ (0g‘(𝑅 freeLMod 𝐽)) ∈ V | |
| 19 | 16 | mptiniseg 6192 | . . . . . 6 ⊢ ((0g‘(𝑅 freeLMod 𝐽)) ∈ V → (◡(𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝐽)) “ {(0g‘(𝑅 freeLMod 𝐽))}) = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (0g‘(𝑅 freeLMod 𝐽))}) |
| 20 | 18, 19 | ax-mp 5 | . . . . 5 ⊢ (◡(𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝐽)) “ {(0g‘(𝑅 freeLMod 𝐽))}) = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (0g‘(𝑅 freeLMod 𝐽))} |
| 21 | 20 | eqcomi 2738 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (0g‘(𝑅 freeLMod 𝐽))} = (◡(𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝐽)) “ {(0g‘(𝑅 freeLMod 𝐽))}) |
| 22 | eqid 2729 | . . . 4 ⊢ (0g‘(𝑅 freeLMod 𝐽)) = (0g‘(𝑅 freeLMod 𝐽)) | |
| 23 | frlmsslss.u | . . . 4 ⊢ 𝑈 = (LSubSp‘𝑌) | |
| 24 | 21, 22, 23 | lmhmkerlss 20974 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝐽)) ∈ (𝑌 LMHom (𝑅 freeLMod 𝐽)) → {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (0g‘(𝑅 freeLMod 𝐽))} ∈ 𝑈) |
| 25 | 17, 24 | syl 17 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (0g‘(𝑅 freeLMod 𝐽))} ∈ 𝑈) |
| 26 | 12, 25 | eqeltrd 2828 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐶 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3396 Vcvv 3438 ⊆ wss 3905 {csn 4579 ↦ cmpt 5176 × cxp 5621 ◡ccnv 5622 ↾ cres 5625 “ cima 5626 ‘cfv 6486 (class class class)co 7353 Basecbs 17139 0gc0g 17362 Ringcrg 20137 LSubSpclss 20853 LMHom clmhm 20942 freeLMod cfrlm 21672 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-sup 9351 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-7 12215 df-8 12216 df-9 12217 df-n0 12404 df-z 12491 df-dec 12611 df-uz 12755 df-fz 13430 df-struct 17077 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17140 df-ress 17161 df-plusg 17193 df-mulr 17194 df-sca 17196 df-vsca 17197 df-ip 17198 df-tset 17199 df-ple 17200 df-ds 17202 df-hom 17204 df-cco 17205 df-0g 17364 df-prds 17370 df-pws 17372 df-mgm 18533 df-sgrp 18612 df-mnd 18628 df-mhm 18676 df-submnd 18677 df-grp 18834 df-minusg 18835 df-sbg 18836 df-subg 19021 df-ghm 19111 df-cmn 19680 df-abl 19681 df-mgp 20045 df-rng 20057 df-ur 20086 df-ring 20139 df-subrg 20474 df-lmod 20784 df-lss 20854 df-lmhm 20945 df-sra 21096 df-rgmod 21097 df-dsmm 21658 df-frlm 21673 |
| This theorem is referenced by: frlmsslss2 21701 |
| Copyright terms: Public domain | W3C validator |