![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frlmsslss | Structured version Visualization version GIF version |
Description: A subset of a free module obtained by restricting the support set is a submodule. 𝐽 is the set of forbidden unit vectors. (Contributed by Stefan O'Rear, 4-Feb-2015.) |
Ref | Expression |
---|---|
frlmsslss.y | ⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
frlmsslss.u | ⊢ 𝑈 = (LSubSp‘𝑌) |
frlmsslss.b | ⊢ 𝐵 = (Base‘𝑌) |
frlmsslss.z | ⊢ 0 = (0g‘𝑅) |
frlmsslss.c | ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (𝐽 × { 0 })} |
Ref | Expression |
---|---|
frlmsslss | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐶 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmsslss.c | . . 3 ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (𝐽 × { 0 })} | |
2 | simp1 1134 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝑅 ∈ Ring) | |
3 | simp2 1135 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐼 ∈ 𝑉) | |
4 | simp3 1136 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐽 ⊆ 𝐼) | |
5 | 3, 4 | ssexd 5318 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐽 ∈ V) |
6 | eqid 2727 | . . . . . . 7 ⊢ (𝑅 freeLMod 𝐽) = (𝑅 freeLMod 𝐽) | |
7 | frlmsslss.z | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
8 | 6, 7 | frlm0 21675 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐽 ∈ V) → (𝐽 × { 0 }) = (0g‘(𝑅 freeLMod 𝐽))) |
9 | 2, 5, 8 | syl2anc 583 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → (𝐽 × { 0 }) = (0g‘(𝑅 freeLMod 𝐽))) |
10 | 9 | eqeq2d 2738 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → ((𝑥 ↾ 𝐽) = (𝐽 × { 0 }) ↔ (𝑥 ↾ 𝐽) = (0g‘(𝑅 freeLMod 𝐽)))) |
11 | 10 | rabbidv 3435 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (𝐽 × { 0 })} = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (0g‘(𝑅 freeLMod 𝐽))}) |
12 | 1, 11 | eqtrid 2779 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (0g‘(𝑅 freeLMod 𝐽))}) |
13 | frlmsslss.y | . . . 4 ⊢ 𝑌 = (𝑅 freeLMod 𝐼) | |
14 | frlmsslss.b | . . . 4 ⊢ 𝐵 = (Base‘𝑌) | |
15 | eqid 2727 | . . . 4 ⊢ (Base‘(𝑅 freeLMod 𝐽)) = (Base‘(𝑅 freeLMod 𝐽)) | |
16 | eqid 2727 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝐽)) = (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝐽)) | |
17 | 13, 6, 14, 15, 16 | frlmsplit2 21694 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝐽)) ∈ (𝑌 LMHom (𝑅 freeLMod 𝐽))) |
18 | fvex 6904 | . . . . . 6 ⊢ (0g‘(𝑅 freeLMod 𝐽)) ∈ V | |
19 | 16 | mptiniseg 6237 | . . . . . 6 ⊢ ((0g‘(𝑅 freeLMod 𝐽)) ∈ V → (◡(𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝐽)) “ {(0g‘(𝑅 freeLMod 𝐽))}) = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (0g‘(𝑅 freeLMod 𝐽))}) |
20 | 18, 19 | ax-mp 5 | . . . . 5 ⊢ (◡(𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝐽)) “ {(0g‘(𝑅 freeLMod 𝐽))}) = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (0g‘(𝑅 freeLMod 𝐽))} |
21 | 20 | eqcomi 2736 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (0g‘(𝑅 freeLMod 𝐽))} = (◡(𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝐽)) “ {(0g‘(𝑅 freeLMod 𝐽))}) |
22 | eqid 2727 | . . . 4 ⊢ (0g‘(𝑅 freeLMod 𝐽)) = (0g‘(𝑅 freeLMod 𝐽)) | |
23 | frlmsslss.u | . . . 4 ⊢ 𝑈 = (LSubSp‘𝑌) | |
24 | 21, 22, 23 | lmhmkerlss 20925 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝐽)) ∈ (𝑌 LMHom (𝑅 freeLMod 𝐽)) → {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (0g‘(𝑅 freeLMod 𝐽))} ∈ 𝑈) |
25 | 17, 24 | syl 17 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (0g‘(𝑅 freeLMod 𝐽))} ∈ 𝑈) |
26 | 12, 25 | eqeltrd 2828 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐶 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 {crab 3427 Vcvv 3469 ⊆ wss 3944 {csn 4624 ↦ cmpt 5225 × cxp 5670 ◡ccnv 5671 ↾ cres 5674 “ cima 5675 ‘cfv 6542 (class class class)co 7414 Basecbs 17171 0gc0g 17412 Ringcrg 20164 LSubSpclss 20804 LMHom clmhm 20893 freeLMod cfrlm 21667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8838 df-ixp 8908 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-fsupp 9378 df-sup 9457 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-2 12297 df-3 12298 df-4 12299 df-5 12300 df-6 12301 df-7 12302 df-8 12303 df-9 12304 df-n0 12495 df-z 12581 df-dec 12700 df-uz 12845 df-fz 13509 df-struct 17107 df-sets 17124 df-slot 17142 df-ndx 17154 df-base 17172 df-ress 17201 df-plusg 17237 df-mulr 17238 df-sca 17240 df-vsca 17241 df-ip 17242 df-tset 17243 df-ple 17244 df-ds 17246 df-hom 17248 df-cco 17249 df-0g 17414 df-prds 17420 df-pws 17422 df-mgm 18591 df-sgrp 18670 df-mnd 18686 df-mhm 18731 df-submnd 18732 df-grp 18884 df-minusg 18885 df-sbg 18886 df-subg 19069 df-ghm 19159 df-cmn 19728 df-abl 19729 df-mgp 20066 df-rng 20084 df-ur 20113 df-ring 20166 df-subrg 20497 df-lmod 20734 df-lss 20805 df-lmhm 20896 df-sra 21047 df-rgmod 21048 df-dsmm 21653 df-frlm 21668 |
This theorem is referenced by: frlmsslss2 21696 |
Copyright terms: Public domain | W3C validator |