MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmsslss Structured version   Visualization version   GIF version

Theorem frlmsslss 20461
Description: A subset of a free module obtained by restricting the support set is a submodule. 𝐽 is the set of forbidden unit vectors. (Contributed by Stefan O'Rear, 4-Feb-2015.)
Hypotheses
Ref Expression
frlmsslss.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmsslss.u 𝑈 = (LSubSp‘𝑌)
frlmsslss.b 𝐵 = (Base‘𝑌)
frlmsslss.z 0 = (0g𝑅)
frlmsslss.c 𝐶 = {𝑥𝐵 ∣ (𝑥𝐽) = (𝐽 × { 0 })}
Assertion
Ref Expression
frlmsslss ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐶𝑈)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐼   𝑥,𝐽   𝑥,𝑅   𝑥,𝑈   𝑥, 0   𝑥,𝑉   𝑥,𝑌
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem frlmsslss
StepHypRef Expression
1 frlmsslss.c . . 3 𝐶 = {𝑥𝐵 ∣ (𝑥𝐽) = (𝐽 × { 0 })}
2 simp1 1133 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝑅 ∈ Ring)
3 simp2 1134 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐼𝑉)
4 simp3 1135 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐽𝐼)
53, 4ssexd 5204 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐽 ∈ V)
6 eqid 2822 . . . . . . 7 (𝑅 freeLMod 𝐽) = (𝑅 freeLMod 𝐽)
7 frlmsslss.z . . . . . . 7 0 = (0g𝑅)
86, 7frlm0 20441 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐽 ∈ V) → (𝐽 × { 0 }) = (0g‘(𝑅 freeLMod 𝐽)))
92, 5, 8syl2anc 587 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝐽 × { 0 }) = (0g‘(𝑅 freeLMod 𝐽)))
109eqeq2d 2833 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → ((𝑥𝐽) = (𝐽 × { 0 }) ↔ (𝑥𝐽) = (0g‘(𝑅 freeLMod 𝐽))))
1110rabbidv 3455 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → {𝑥𝐵 ∣ (𝑥𝐽) = (𝐽 × { 0 })} = {𝑥𝐵 ∣ (𝑥𝐽) = (0g‘(𝑅 freeLMod 𝐽))})
121, 11syl5eq 2869 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐶 = {𝑥𝐵 ∣ (𝑥𝐽) = (0g‘(𝑅 freeLMod 𝐽))})
13 frlmsslss.y . . . 4 𝑌 = (𝑅 freeLMod 𝐼)
14 frlmsslss.b . . . 4 𝐵 = (Base‘𝑌)
15 eqid 2822 . . . 4 (Base‘(𝑅 freeLMod 𝐽)) = (Base‘(𝑅 freeLMod 𝐽))
16 eqid 2822 . . . 4 (𝑥𝐵 ↦ (𝑥𝐽)) = (𝑥𝐵 ↦ (𝑥𝐽))
1713, 6, 14, 15, 16frlmsplit2 20460 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝑥𝐵 ↦ (𝑥𝐽)) ∈ (𝑌 LMHom (𝑅 freeLMod 𝐽)))
18 fvex 6665 . . . . . 6 (0g‘(𝑅 freeLMod 𝐽)) ∈ V
1916mptiniseg 6071 . . . . . 6 ((0g‘(𝑅 freeLMod 𝐽)) ∈ V → ((𝑥𝐵 ↦ (𝑥𝐽)) “ {(0g‘(𝑅 freeLMod 𝐽))}) = {𝑥𝐵 ∣ (𝑥𝐽) = (0g‘(𝑅 freeLMod 𝐽))})
2018, 19ax-mp 5 . . . . 5 ((𝑥𝐵 ↦ (𝑥𝐽)) “ {(0g‘(𝑅 freeLMod 𝐽))}) = {𝑥𝐵 ∣ (𝑥𝐽) = (0g‘(𝑅 freeLMod 𝐽))}
2120eqcomi 2831 . . . 4 {𝑥𝐵 ∣ (𝑥𝐽) = (0g‘(𝑅 freeLMod 𝐽))} = ((𝑥𝐵 ↦ (𝑥𝐽)) “ {(0g‘(𝑅 freeLMod 𝐽))})
22 eqid 2822 . . . 4 (0g‘(𝑅 freeLMod 𝐽)) = (0g‘(𝑅 freeLMod 𝐽))
23 frlmsslss.u . . . 4 𝑈 = (LSubSp‘𝑌)
2421, 22, 23lmhmkerlss 19814 . . 3 ((𝑥𝐵 ↦ (𝑥𝐽)) ∈ (𝑌 LMHom (𝑅 freeLMod 𝐽)) → {𝑥𝐵 ∣ (𝑥𝐽) = (0g‘(𝑅 freeLMod 𝐽))} ∈ 𝑈)
2517, 24syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → {𝑥𝐵 ∣ (𝑥𝐽) = (0g‘(𝑅 freeLMod 𝐽))} ∈ 𝑈)
2612, 25eqeltrd 2914 1 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐶𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1538  wcel 2114  {crab 3134  Vcvv 3469  wss 3908  {csn 4539  cmpt 5122   × cxp 5530  ccnv 5531  cres 5534  cima 5535  cfv 6334  (class class class)co 7140  Basecbs 16474  0gc0g 16704  Ringcrg 19288  LSubSpclss 19694   LMHom clmhm 19782   freeLMod cfrlm 20433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7394  df-om 7566  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-sup 8894  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-struct 16476  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-ress 16482  df-plusg 16569  df-mulr 16570  df-sca 16572  df-vsca 16573  df-ip 16574  df-tset 16575  df-ple 16576  df-ds 16578  df-hom 16580  df-cco 16581  df-0g 16706  df-prds 16712  df-pws 16714  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-mhm 17947  df-submnd 17948  df-grp 18097  df-minusg 18098  df-sbg 18099  df-subg 18267  df-ghm 18347  df-mgp 19231  df-ur 19243  df-ring 19290  df-subrg 19524  df-lmod 19627  df-lss 19695  df-lmhm 19785  df-sra 19935  df-rgmod 19936  df-dsmm 20419  df-frlm 20434
This theorem is referenced by:  frlmsslss2  20462
  Copyright terms: Public domain W3C validator