Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frlmsslss | Structured version Visualization version GIF version |
Description: A subset of a free module obtained by restricting the support set is a submodule. 𝐽 is the set of forbidden unit vectors. (Contributed by Stefan O'Rear, 4-Feb-2015.) |
Ref | Expression |
---|---|
frlmsslss.y | ⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
frlmsslss.u | ⊢ 𝑈 = (LSubSp‘𝑌) |
frlmsslss.b | ⊢ 𝐵 = (Base‘𝑌) |
frlmsslss.z | ⊢ 0 = (0g‘𝑅) |
frlmsslss.c | ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (𝐽 × { 0 })} |
Ref | Expression |
---|---|
frlmsslss | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐶 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmsslss.c | . . 3 ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (𝐽 × { 0 })} | |
2 | simp1 1135 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝑅 ∈ Ring) | |
3 | simp2 1136 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐼 ∈ 𝑉) | |
4 | simp3 1137 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐽 ⊆ 𝐼) | |
5 | 3, 4 | ssexd 5252 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐽 ∈ V) |
6 | eqid 2740 | . . . . . . 7 ⊢ (𝑅 freeLMod 𝐽) = (𝑅 freeLMod 𝐽) | |
7 | frlmsslss.z | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
8 | 6, 7 | frlm0 20957 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐽 ∈ V) → (𝐽 × { 0 }) = (0g‘(𝑅 freeLMod 𝐽))) |
9 | 2, 5, 8 | syl2anc 584 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → (𝐽 × { 0 }) = (0g‘(𝑅 freeLMod 𝐽))) |
10 | 9 | eqeq2d 2751 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → ((𝑥 ↾ 𝐽) = (𝐽 × { 0 }) ↔ (𝑥 ↾ 𝐽) = (0g‘(𝑅 freeLMod 𝐽)))) |
11 | 10 | rabbidv 3413 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (𝐽 × { 0 })} = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (0g‘(𝑅 freeLMod 𝐽))}) |
12 | 1, 11 | eqtrid 2792 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (0g‘(𝑅 freeLMod 𝐽))}) |
13 | frlmsslss.y | . . . 4 ⊢ 𝑌 = (𝑅 freeLMod 𝐼) | |
14 | frlmsslss.b | . . . 4 ⊢ 𝐵 = (Base‘𝑌) | |
15 | eqid 2740 | . . . 4 ⊢ (Base‘(𝑅 freeLMod 𝐽)) = (Base‘(𝑅 freeLMod 𝐽)) | |
16 | eqid 2740 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝐽)) = (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝐽)) | |
17 | 13, 6, 14, 15, 16 | frlmsplit2 20976 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝐽)) ∈ (𝑌 LMHom (𝑅 freeLMod 𝐽))) |
18 | fvex 6782 | . . . . . 6 ⊢ (0g‘(𝑅 freeLMod 𝐽)) ∈ V | |
19 | 16 | mptiniseg 6140 | . . . . . 6 ⊢ ((0g‘(𝑅 freeLMod 𝐽)) ∈ V → (◡(𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝐽)) “ {(0g‘(𝑅 freeLMod 𝐽))}) = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (0g‘(𝑅 freeLMod 𝐽))}) |
20 | 18, 19 | ax-mp 5 | . . . . 5 ⊢ (◡(𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝐽)) “ {(0g‘(𝑅 freeLMod 𝐽))}) = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (0g‘(𝑅 freeLMod 𝐽))} |
21 | 20 | eqcomi 2749 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (0g‘(𝑅 freeLMod 𝐽))} = (◡(𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝐽)) “ {(0g‘(𝑅 freeLMod 𝐽))}) |
22 | eqid 2740 | . . . 4 ⊢ (0g‘(𝑅 freeLMod 𝐽)) = (0g‘(𝑅 freeLMod 𝐽)) | |
23 | frlmsslss.u | . . . 4 ⊢ 𝑈 = (LSubSp‘𝑌) | |
24 | 21, 22, 23 | lmhmkerlss 20309 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝐽)) ∈ (𝑌 LMHom (𝑅 freeLMod 𝐽)) → {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (0g‘(𝑅 freeLMod 𝐽))} ∈ 𝑈) |
25 | 17, 24 | syl 17 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (0g‘(𝑅 freeLMod 𝐽))} ∈ 𝑈) |
26 | 12, 25 | eqeltrd 2841 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐶 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 {crab 3070 Vcvv 3431 ⊆ wss 3892 {csn 4567 ↦ cmpt 5162 × cxp 5587 ◡ccnv 5588 ↾ cres 5591 “ cima 5592 ‘cfv 6431 (class class class)co 7269 Basecbs 16908 0gc0g 17146 Ringcrg 19779 LSubSpclss 20189 LMHom clmhm 20277 freeLMod cfrlm 20949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10926 ax-resscn 10927 ax-1cn 10928 ax-icn 10929 ax-addcl 10930 ax-addrcl 10931 ax-mulcl 10932 ax-mulrcl 10933 ax-mulcom 10934 ax-addass 10935 ax-mulass 10936 ax-distr 10937 ax-i2m1 10938 ax-1ne0 10939 ax-1rid 10940 ax-rnegex 10941 ax-rrecex 10942 ax-cnre 10943 ax-pre-lttri 10944 ax-pre-lttrn 10945 ax-pre-ltadd 10946 ax-pre-mulgt0 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-of 7525 df-om 7705 df-1st 7822 df-2nd 7823 df-supp 7967 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-rdg 8230 df-1o 8286 df-er 8479 df-map 8598 df-ixp 8667 df-en 8715 df-dom 8716 df-sdom 8717 df-fin 8718 df-fsupp 9105 df-sup 9177 df-pnf 11010 df-mnf 11011 df-xr 11012 df-ltxr 11013 df-le 11014 df-sub 11205 df-neg 11206 df-nn 11972 df-2 12034 df-3 12035 df-4 12036 df-5 12037 df-6 12038 df-7 12039 df-8 12040 df-9 12041 df-n0 12232 df-z 12318 df-dec 12435 df-uz 12580 df-fz 13237 df-struct 16844 df-sets 16861 df-slot 16879 df-ndx 16891 df-base 16909 df-ress 16938 df-plusg 16971 df-mulr 16972 df-sca 16974 df-vsca 16975 df-ip 16976 df-tset 16977 df-ple 16978 df-ds 16980 df-hom 16982 df-cco 16983 df-0g 17148 df-prds 17154 df-pws 17156 df-mgm 18322 df-sgrp 18371 df-mnd 18382 df-mhm 18426 df-submnd 18427 df-grp 18576 df-minusg 18577 df-sbg 18578 df-subg 18748 df-ghm 18828 df-mgp 19717 df-ur 19734 df-ring 19781 df-subrg 20018 df-lmod 20121 df-lss 20190 df-lmhm 20280 df-sra 20430 df-rgmod 20431 df-dsmm 20935 df-frlm 20950 |
This theorem is referenced by: frlmsslss2 20978 |
Copyright terms: Public domain | W3C validator |