| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frlmsslss | Structured version Visualization version GIF version | ||
| Description: A subset of a free module obtained by restricting the support set is a submodule. 𝐽 is the set of forbidden unit vectors. (Contributed by Stefan O'Rear, 4-Feb-2015.) |
| Ref | Expression |
|---|---|
| frlmsslss.y | ⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
| frlmsslss.u | ⊢ 𝑈 = (LSubSp‘𝑌) |
| frlmsslss.b | ⊢ 𝐵 = (Base‘𝑌) |
| frlmsslss.z | ⊢ 0 = (0g‘𝑅) |
| frlmsslss.c | ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (𝐽 × { 0 })} |
| Ref | Expression |
|---|---|
| frlmsslss | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐶 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmsslss.c | . . 3 ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (𝐽 × { 0 })} | |
| 2 | simp1 1136 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝑅 ∈ Ring) | |
| 3 | simp2 1137 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐼 ∈ 𝑉) | |
| 4 | simp3 1138 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐽 ⊆ 𝐼) | |
| 5 | 3, 4 | ssexd 5282 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐽 ∈ V) |
| 6 | eqid 2730 | . . . . . . 7 ⊢ (𝑅 freeLMod 𝐽) = (𝑅 freeLMod 𝐽) | |
| 7 | frlmsslss.z | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
| 8 | 6, 7 | frlm0 21670 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐽 ∈ V) → (𝐽 × { 0 }) = (0g‘(𝑅 freeLMod 𝐽))) |
| 9 | 2, 5, 8 | syl2anc 584 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → (𝐽 × { 0 }) = (0g‘(𝑅 freeLMod 𝐽))) |
| 10 | 9 | eqeq2d 2741 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → ((𝑥 ↾ 𝐽) = (𝐽 × { 0 }) ↔ (𝑥 ↾ 𝐽) = (0g‘(𝑅 freeLMod 𝐽)))) |
| 11 | 10 | rabbidv 3416 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (𝐽 × { 0 })} = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (0g‘(𝑅 freeLMod 𝐽))}) |
| 12 | 1, 11 | eqtrid 2777 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (0g‘(𝑅 freeLMod 𝐽))}) |
| 13 | frlmsslss.y | . . . 4 ⊢ 𝑌 = (𝑅 freeLMod 𝐼) | |
| 14 | frlmsslss.b | . . . 4 ⊢ 𝐵 = (Base‘𝑌) | |
| 15 | eqid 2730 | . . . 4 ⊢ (Base‘(𝑅 freeLMod 𝐽)) = (Base‘(𝑅 freeLMod 𝐽)) | |
| 16 | eqid 2730 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝐽)) = (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝐽)) | |
| 17 | 13, 6, 14, 15, 16 | frlmsplit2 21689 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝐽)) ∈ (𝑌 LMHom (𝑅 freeLMod 𝐽))) |
| 18 | fvex 6874 | . . . . . 6 ⊢ (0g‘(𝑅 freeLMod 𝐽)) ∈ V | |
| 19 | 16 | mptiniseg 6215 | . . . . . 6 ⊢ ((0g‘(𝑅 freeLMod 𝐽)) ∈ V → (◡(𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝐽)) “ {(0g‘(𝑅 freeLMod 𝐽))}) = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (0g‘(𝑅 freeLMod 𝐽))}) |
| 20 | 18, 19 | ax-mp 5 | . . . . 5 ⊢ (◡(𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝐽)) “ {(0g‘(𝑅 freeLMod 𝐽))}) = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (0g‘(𝑅 freeLMod 𝐽))} |
| 21 | 20 | eqcomi 2739 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (0g‘(𝑅 freeLMod 𝐽))} = (◡(𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝐽)) “ {(0g‘(𝑅 freeLMod 𝐽))}) |
| 22 | eqid 2730 | . . . 4 ⊢ (0g‘(𝑅 freeLMod 𝐽)) = (0g‘(𝑅 freeLMod 𝐽)) | |
| 23 | frlmsslss.u | . . . 4 ⊢ 𝑈 = (LSubSp‘𝑌) | |
| 24 | 21, 22, 23 | lmhmkerlss 20965 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝐽)) ∈ (𝑌 LMHom (𝑅 freeLMod 𝐽)) → {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (0g‘(𝑅 freeLMod 𝐽))} ∈ 𝑈) |
| 25 | 17, 24 | syl 17 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (0g‘(𝑅 freeLMod 𝐽))} ∈ 𝑈) |
| 26 | 12, 25 | eqeltrd 2829 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐶 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3408 Vcvv 3450 ⊆ wss 3917 {csn 4592 ↦ cmpt 5191 × cxp 5639 ◡ccnv 5640 ↾ cres 5643 “ cima 5644 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 0gc0g 17409 Ringcrg 20149 LSubSpclss 20844 LMHom clmhm 20933 freeLMod cfrlm 21662 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-hom 17251 df-cco 17252 df-0g 17411 df-prds 17417 df-pws 17419 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-subg 19062 df-ghm 19152 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-subrg 20486 df-lmod 20775 df-lss 20845 df-lmhm 20936 df-sra 21087 df-rgmod 21088 df-dsmm 21648 df-frlm 21663 |
| This theorem is referenced by: frlmsslss2 21691 |
| Copyright terms: Public domain | W3C validator |