Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwslnmlem2 Structured version   Visualization version   GIF version

Theorem pwslnmlem2 40037
Description: A sum of powers is Noetherian. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Hypotheses
Ref Expression
pwslnmlem2.a 𝐴 ∈ V
pwslnmlem2.b 𝐵 ∈ V
pwslnmlem2.x 𝑋 = (𝑊s 𝐴)
pwslnmlem2.y 𝑌 = (𝑊s 𝐵)
pwslnmlem2.z 𝑍 = (𝑊s (𝐴𝐵))
pwslnmlem2.w (𝜑𝑊 ∈ LMod)
pwslnmlem2.dj (𝜑 → (𝐴𝐵) = ∅)
pwslnmlem2.xn (𝜑𝑋 ∈ LNoeM)
pwslnmlem2.yn (𝜑𝑌 ∈ LNoeM)
Assertion
Ref Expression
pwslnmlem2 (𝜑𝑍 ∈ LNoeM)

Proof of Theorem pwslnmlem2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwslnmlem2.w . . 3 (𝜑𝑊 ∈ LMod)
2 pwslnmlem2.a . . . . 5 𝐴 ∈ V
3 pwslnmlem2.b . . . . 5 𝐵 ∈ V
42, 3unex 7449 . . . 4 (𝐴𝐵) ∈ V
54a1i 11 . . 3 (𝜑 → (𝐴𝐵) ∈ V)
6 ssun1 4099 . . . 4 𝐴 ⊆ (𝐴𝐵)
76a1i 11 . . 3 (𝜑𝐴 ⊆ (𝐴𝐵))
8 pwslnmlem2.z . . . 4 𝑍 = (𝑊s (𝐴𝐵))
9 pwslnmlem2.x . . . 4 𝑋 = (𝑊s 𝐴)
10 eqid 2798 . . . 4 (Base‘𝑍) = (Base‘𝑍)
11 eqid 2798 . . . 4 (Base‘𝑋) = (Base‘𝑋)
12 eqid 2798 . . . 4 (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) = (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴))
138, 9, 10, 11, 12pwssplit3 19826 . . 3 ((𝑊 ∈ LMod ∧ (𝐴𝐵) ∈ V ∧ 𝐴 ⊆ (𝐴𝐵)) → (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) ∈ (𝑍 LMHom 𝑋))
141, 5, 7, 13syl3anc 1368 . 2 (𝜑 → (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) ∈ (𝑍 LMHom 𝑋))
15 fvex 6658 . . . . . 6 (0g𝑋) ∈ V
1612mptiniseg 6060 . . . . . 6 ((0g𝑋) ∈ V → ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) “ {(0g𝑋)}) = {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (0g𝑋)})
1715, 16ax-mp 5 . . . . 5 ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) “ {(0g𝑋)}) = {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (0g𝑋)}
18 lmodgrp 19634 . . . . . . . . . 10 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
19 grpmnd 18102 . . . . . . . . . 10 (𝑊 ∈ Grp → 𝑊 ∈ Mnd)
201, 18, 193syl 18 . . . . . . . . 9 (𝜑𝑊 ∈ Mnd)
21 eqid 2798 . . . . . . . . . 10 (0g𝑊) = (0g𝑊)
229, 21pws0g 17939 . . . . . . . . 9 ((𝑊 ∈ Mnd ∧ 𝐴 ∈ V) → (𝐴 × {(0g𝑊)}) = (0g𝑋))
2320, 2, 22sylancl 589 . . . . . . . 8 (𝜑 → (𝐴 × {(0g𝑊)}) = (0g𝑋))
2423eqcomd 2804 . . . . . . 7 (𝜑 → (0g𝑋) = (𝐴 × {(0g𝑊)}))
2524eqeq2d 2809 . . . . . 6 (𝜑 → ((𝑥𝐴) = (0g𝑋) ↔ (𝑥𝐴) = (𝐴 × {(0g𝑊)})))
2625rabbidv 3427 . . . . 5 (𝜑 → {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (0g𝑋)} = {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})})
2717, 26syl5eq 2845 . . . 4 (𝜑 → ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) “ {(0g𝑋)}) = {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})})
2827oveq2d 7151 . . 3 (𝜑 → (𝑍s ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) “ {(0g𝑋)})) = (𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}))
29 pwslnmlem2.yn . . . 4 (𝜑𝑌 ∈ LNoeM)
30 pwslnmlem2.dj . . . . . 6 (𝜑 → (𝐴𝐵) = ∅)
31 eqid 2798 . . . . . . 7 {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})} = {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}
32 eqid 2798 . . . . . . 7 (𝑦 ∈ {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})} ↦ (𝑦𝐵)) = (𝑦 ∈ {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})} ↦ (𝑦𝐵))
33 pwslnmlem2.y . . . . . . 7 𝑌 = (𝑊s 𝐵)
34 eqid 2798 . . . . . . 7 (𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}) = (𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})})
358, 10, 21, 31, 32, 9, 33, 34pwssplit4 40033 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝐴𝐵) ∈ V ∧ (𝐴𝐵) = ∅) → (𝑦 ∈ {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})} ↦ (𝑦𝐵)) ∈ ((𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}) LMIso 𝑌))
361, 5, 30, 35syl3anc 1368 . . . . 5 (𝜑 → (𝑦 ∈ {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})} ↦ (𝑦𝐵)) ∈ ((𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}) LMIso 𝑌))
37 brlmici 19834 . . . . 5 ((𝑦 ∈ {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})} ↦ (𝑦𝐵)) ∈ ((𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}) LMIso 𝑌) → (𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}) ≃𝑚 𝑌)
38 lnmlmic 40032 . . . . 5 ((𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}) ≃𝑚 𝑌 → ((𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}) ∈ LNoeM ↔ 𝑌 ∈ LNoeM))
3936, 37, 383syl 18 . . . 4 (𝜑 → ((𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}) ∈ LNoeM ↔ 𝑌 ∈ LNoeM))
4029, 39mpbird 260 . . 3 (𝜑 → (𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}) ∈ LNoeM)
4128, 40eqeltrd 2890 . 2 (𝜑 → (𝑍s ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) “ {(0g𝑋)})) ∈ LNoeM)
428, 9, 10, 11, 12pwssplit1 19824 . . . . . . 7 ((𝑊 ∈ Mnd ∧ (𝐴𝐵) ∈ V ∧ 𝐴 ⊆ (𝐴𝐵)) → (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)):(Base‘𝑍)–onto→(Base‘𝑋))
4320, 5, 7, 42syl3anc 1368 . . . . . 6 (𝜑 → (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)):(Base‘𝑍)–onto→(Base‘𝑋))
44 forn 6568 . . . . . 6 ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)):(Base‘𝑍)–onto→(Base‘𝑋) → ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) = (Base‘𝑋))
4543, 44syl 17 . . . . 5 (𝜑 → ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) = (Base‘𝑋))
4645oveq2d 7151 . . . 4 (𝜑 → (𝑋s ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴))) = (𝑋s (Base‘𝑋)))
47 pwslnmlem2.xn . . . . 5 (𝜑𝑋 ∈ LNoeM)
4811ressid 16551 . . . . 5 (𝑋 ∈ LNoeM → (𝑋s (Base‘𝑋)) = 𝑋)
4947, 48syl 17 . . . 4 (𝜑 → (𝑋s (Base‘𝑋)) = 𝑋)
5046, 49eqtrd 2833 . . 3 (𝜑 → (𝑋s ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴))) = 𝑋)
5150, 47eqeltrd 2890 . 2 (𝜑 → (𝑋s ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴))) ∈ LNoeM)
52 eqid 2798 . . 3 (0g𝑋) = (0g𝑋)
53 eqid 2798 . . 3 ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) “ {(0g𝑋)}) = ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) “ {(0g𝑋)})
54 eqid 2798 . . 3 (𝑍s ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) “ {(0g𝑋)})) = (𝑍s ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) “ {(0g𝑋)}))
55 eqid 2798 . . 3 (𝑋s ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴))) = (𝑋s ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)))
5652, 53, 54, 55lmhmlnmsplit 40031 . 2 (((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) ∈ (𝑍 LMHom 𝑋) ∧ (𝑍s ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) “ {(0g𝑋)})) ∈ LNoeM ∧ (𝑋s ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴))) ∈ LNoeM) → 𝑍 ∈ LNoeM)
5714, 41, 51, 56syl3anc 1368 1 (𝜑𝑍 ∈ LNoeM)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wcel 2111  {crab 3110  Vcvv 3441  cun 3879  cin 3880  wss 3881  c0 4243  {csn 4525   class class class wbr 5030  cmpt 5110   × cxp 5517  ccnv 5518  ran crn 5520  cres 5521  cima 5522  ontowfo 6322  cfv 6324  (class class class)co 7135  Basecbs 16475  s cress 16476  0gc0g 16705  s cpws 16712  Mndcmnd 17903  Grpcgrp 18095  LModclmod 19627   LMHom clmhm 19784   LMIso clmim 19785  𝑚 clmic 19786  LNoeMclnm 40019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-0g 16707  df-prds 16713  df-pws 16715  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-ghm 18348  df-cntz 18439  df-lsm 18753  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-lmod 19629  df-lss 19697  df-lsp 19737  df-lmhm 19787  df-lmim 19788  df-lmic 19789  df-lfig 40012  df-lnm 40020
This theorem is referenced by:  pwslnm  40038
  Copyright terms: Public domain W3C validator