| Step | Hyp | Ref
| Expression |
| 1 | | pwslnmlem2.w |
. . 3
⊢ (𝜑 → 𝑊 ∈ LMod) |
| 2 | | pwslnmlem2.a |
. . . . 5
⊢ 𝐴 ∈ V |
| 3 | | pwslnmlem2.b |
. . . . 5
⊢ 𝐵 ∈ V |
| 4 | 2, 3 | unex 7743 |
. . . 4
⊢ (𝐴 ∪ 𝐵) ∈ V |
| 5 | 4 | a1i 11 |
. . 3
⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ V) |
| 6 | | ssun1 4158 |
. . . 4
⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) |
| 7 | 6 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐴 ⊆ (𝐴 ∪ 𝐵)) |
| 8 | | pwslnmlem2.z |
. . . 4
⊢ 𝑍 = (𝑊 ↑s (𝐴 ∪ 𝐵)) |
| 9 | | pwslnmlem2.x |
. . . 4
⊢ 𝑋 = (𝑊 ↑s 𝐴) |
| 10 | | eqid 2736 |
. . . 4
⊢
(Base‘𝑍) =
(Base‘𝑍) |
| 11 | | eqid 2736 |
. . . 4
⊢
(Base‘𝑋) =
(Base‘𝑋) |
| 12 | | eqid 2736 |
. . . 4
⊢ (𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴)) = (𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴)) |
| 13 | 8, 9, 10, 11, 12 | pwssplit3 21024 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ (𝐴 ∪ 𝐵) ∈ V ∧ 𝐴 ⊆ (𝐴 ∪ 𝐵)) → (𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴)) ∈ (𝑍 LMHom 𝑋)) |
| 14 | 1, 5, 7, 13 | syl3anc 1373 |
. 2
⊢ (𝜑 → (𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴)) ∈ (𝑍 LMHom 𝑋)) |
| 15 | | fvex 6894 |
. . . . . 6
⊢
(0g‘𝑋) ∈ V |
| 16 | 12 | mptiniseg 6233 |
. . . . . 6
⊢
((0g‘𝑋) ∈ V → (◡(𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴)) “ {(0g‘𝑋)}) = {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (0g‘𝑋)}) |
| 17 | 15, 16 | ax-mp 5 |
. . . . 5
⊢ (◡(𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴)) “ {(0g‘𝑋)}) = {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (0g‘𝑋)} |
| 18 | | lmodgrp 20829 |
. . . . . . . . . 10
⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
| 19 | | grpmnd 18928 |
. . . . . . . . . 10
⊢ (𝑊 ∈ Grp → 𝑊 ∈ Mnd) |
| 20 | 1, 18, 19 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → 𝑊 ∈ Mnd) |
| 21 | | eqid 2736 |
. . . . . . . . . 10
⊢
(0g‘𝑊) = (0g‘𝑊) |
| 22 | 9, 21 | pws0g 18756 |
. . . . . . . . 9
⊢ ((𝑊 ∈ Mnd ∧ 𝐴 ∈ V) → (𝐴 ×
{(0g‘𝑊)})
= (0g‘𝑋)) |
| 23 | 20, 2, 22 | sylancl 586 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 × {(0g‘𝑊)}) = (0g‘𝑋)) |
| 24 | 23 | eqcomd 2742 |
. . . . . . 7
⊢ (𝜑 → (0g‘𝑋) = (𝐴 × {(0g‘𝑊)})) |
| 25 | 24 | eqeq2d 2747 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ↾ 𝐴) = (0g‘𝑋) ↔ (𝑥 ↾ 𝐴) = (𝐴 × {(0g‘𝑊)}))) |
| 26 | 25 | rabbidv 3428 |
. . . . 5
⊢ (𝜑 → {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (0g‘𝑋)} = {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (𝐴 × {(0g‘𝑊)})}) |
| 27 | 17, 26 | eqtrid 2783 |
. . . 4
⊢ (𝜑 → (◡(𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴)) “ {(0g‘𝑋)}) = {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (𝐴 × {(0g‘𝑊)})}) |
| 28 | 27 | oveq2d 7426 |
. . 3
⊢ (𝜑 → (𝑍 ↾s (◡(𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴)) “ {(0g‘𝑋)})) = (𝑍 ↾s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (𝐴 × {(0g‘𝑊)})})) |
| 29 | | pwslnmlem2.yn |
. . . 4
⊢ (𝜑 → 𝑌 ∈ LNoeM) |
| 30 | | pwslnmlem2.dj |
. . . . . 6
⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
| 31 | | eqid 2736 |
. . . . . . 7
⊢ {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (𝐴 × {(0g‘𝑊)})} = {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (𝐴 × {(0g‘𝑊)})} |
| 32 | | eqid 2736 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (𝐴 × {(0g‘𝑊)})} ↦ (𝑦 ↾ 𝐵)) = (𝑦 ∈ {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (𝐴 × {(0g‘𝑊)})} ↦ (𝑦 ↾ 𝐵)) |
| 33 | | pwslnmlem2.y |
. . . . . . 7
⊢ 𝑌 = (𝑊 ↑s 𝐵) |
| 34 | | eqid 2736 |
. . . . . . 7
⊢ (𝑍 ↾s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (𝐴 × {(0g‘𝑊)})}) = (𝑍 ↾s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (𝐴 × {(0g‘𝑊)})}) |
| 35 | 8, 10, 21, 31, 32, 9, 33, 34 | pwssplit4 43080 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ (𝐴 ∪ 𝐵) ∈ V ∧ (𝐴 ∩ 𝐵) = ∅) → (𝑦 ∈ {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (𝐴 × {(0g‘𝑊)})} ↦ (𝑦 ↾ 𝐵)) ∈ ((𝑍 ↾s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (𝐴 × {(0g‘𝑊)})}) LMIso 𝑌)) |
| 36 | 1, 5, 30, 35 | syl3anc 1373 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (𝐴 × {(0g‘𝑊)})} ↦ (𝑦 ↾ 𝐵)) ∈ ((𝑍 ↾s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (𝐴 × {(0g‘𝑊)})}) LMIso 𝑌)) |
| 37 | | brlmici 21032 |
. . . . 5
⊢ ((𝑦 ∈ {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (𝐴 × {(0g‘𝑊)})} ↦ (𝑦 ↾ 𝐵)) ∈ ((𝑍 ↾s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (𝐴 × {(0g‘𝑊)})}) LMIso 𝑌) → (𝑍 ↾s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (𝐴 × {(0g‘𝑊)})})
≃𝑚 𝑌) |
| 38 | | lnmlmic 43079 |
. . . . 5
⊢ ((𝑍 ↾s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (𝐴 × {(0g‘𝑊)})})
≃𝑚 𝑌 → ((𝑍 ↾s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (𝐴 × {(0g‘𝑊)})}) ∈ LNoeM ↔ 𝑌 ∈ LNoeM)) |
| 39 | 36, 37, 38 | 3syl 18 |
. . . 4
⊢ (𝜑 → ((𝑍 ↾s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (𝐴 × {(0g‘𝑊)})}) ∈ LNoeM ↔ 𝑌 ∈ LNoeM)) |
| 40 | 29, 39 | mpbird 257 |
. . 3
⊢ (𝜑 → (𝑍 ↾s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (𝐴 × {(0g‘𝑊)})}) ∈
LNoeM) |
| 41 | 28, 40 | eqeltrd 2835 |
. 2
⊢ (𝜑 → (𝑍 ↾s (◡(𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴)) “ {(0g‘𝑋)})) ∈
LNoeM) |
| 42 | 8, 9, 10, 11, 12 | pwssplit1 21022 |
. . . . . . 7
⊢ ((𝑊 ∈ Mnd ∧ (𝐴 ∪ 𝐵) ∈ V ∧ 𝐴 ⊆ (𝐴 ∪ 𝐵)) → (𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴)):(Base‘𝑍)–onto→(Base‘𝑋)) |
| 43 | 20, 5, 7, 42 | syl3anc 1373 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴)):(Base‘𝑍)–onto→(Base‘𝑋)) |
| 44 | | forn 6798 |
. . . . . 6
⊢ ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴)):(Base‘𝑍)–onto→(Base‘𝑋) → ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴)) = (Base‘𝑋)) |
| 45 | 43, 44 | syl 17 |
. . . . 5
⊢ (𝜑 → ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴)) = (Base‘𝑋)) |
| 46 | 45 | oveq2d 7426 |
. . . 4
⊢ (𝜑 → (𝑋 ↾s ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴))) = (𝑋 ↾s (Base‘𝑋))) |
| 47 | | pwslnmlem2.xn |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ LNoeM) |
| 48 | 11 | ressid 17270 |
. . . . 5
⊢ (𝑋 ∈ LNoeM → (𝑋 ↾s
(Base‘𝑋)) = 𝑋) |
| 49 | 47, 48 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑋 ↾s (Base‘𝑋)) = 𝑋) |
| 50 | 46, 49 | eqtrd 2771 |
. . 3
⊢ (𝜑 → (𝑋 ↾s ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴))) = 𝑋) |
| 51 | 50, 47 | eqeltrd 2835 |
. 2
⊢ (𝜑 → (𝑋 ↾s ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴))) ∈ LNoeM) |
| 52 | | eqid 2736 |
. . 3
⊢
(0g‘𝑋) = (0g‘𝑋) |
| 53 | | eqid 2736 |
. . 3
⊢ (◡(𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴)) “ {(0g‘𝑋)}) = (◡(𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴)) “ {(0g‘𝑋)}) |
| 54 | | eqid 2736 |
. . 3
⊢ (𝑍 ↾s (◡(𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴)) “ {(0g‘𝑋)})) = (𝑍 ↾s (◡(𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴)) “ {(0g‘𝑋)})) |
| 55 | | eqid 2736 |
. . 3
⊢ (𝑋 ↾s ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴))) = (𝑋 ↾s ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴))) |
| 56 | 52, 53, 54, 55 | lmhmlnmsplit 43078 |
. 2
⊢ (((𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴)) ∈ (𝑍 LMHom 𝑋) ∧ (𝑍 ↾s (◡(𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴)) “ {(0g‘𝑋)})) ∈ LNoeM ∧ (𝑋 ↾s ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴))) ∈ LNoeM) → 𝑍 ∈ LNoeM) |
| 57 | 14, 41, 51, 56 | syl3anc 1373 |
1
⊢ (𝜑 → 𝑍 ∈ LNoeM) |