Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwslnmlem2 Structured version   Visualization version   GIF version

Theorem pwslnmlem2 40834
Description: A sum of powers is Noetherian. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Hypotheses
Ref Expression
pwslnmlem2.a 𝐴 ∈ V
pwslnmlem2.b 𝐵 ∈ V
pwslnmlem2.x 𝑋 = (𝑊s 𝐴)
pwslnmlem2.y 𝑌 = (𝑊s 𝐵)
pwslnmlem2.z 𝑍 = (𝑊s (𝐴𝐵))
pwslnmlem2.w (𝜑𝑊 ∈ LMod)
pwslnmlem2.dj (𝜑 → (𝐴𝐵) = ∅)
pwslnmlem2.xn (𝜑𝑋 ∈ LNoeM)
pwslnmlem2.yn (𝜑𝑌 ∈ LNoeM)
Assertion
Ref Expression
pwslnmlem2 (𝜑𝑍 ∈ LNoeM)

Proof of Theorem pwslnmlem2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwslnmlem2.w . . 3 (𝜑𝑊 ∈ LMod)
2 pwslnmlem2.a . . . . 5 𝐴 ∈ V
3 pwslnmlem2.b . . . . 5 𝐵 ∈ V
42, 3unex 7574 . . . 4 (𝐴𝐵) ∈ V
54a1i 11 . . 3 (𝜑 → (𝐴𝐵) ∈ V)
6 ssun1 4102 . . . 4 𝐴 ⊆ (𝐴𝐵)
76a1i 11 . . 3 (𝜑𝐴 ⊆ (𝐴𝐵))
8 pwslnmlem2.z . . . 4 𝑍 = (𝑊s (𝐴𝐵))
9 pwslnmlem2.x . . . 4 𝑋 = (𝑊s 𝐴)
10 eqid 2738 . . . 4 (Base‘𝑍) = (Base‘𝑍)
11 eqid 2738 . . . 4 (Base‘𝑋) = (Base‘𝑋)
12 eqid 2738 . . . 4 (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) = (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴))
138, 9, 10, 11, 12pwssplit3 20238 . . 3 ((𝑊 ∈ LMod ∧ (𝐴𝐵) ∈ V ∧ 𝐴 ⊆ (𝐴𝐵)) → (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) ∈ (𝑍 LMHom 𝑋))
141, 5, 7, 13syl3anc 1369 . 2 (𝜑 → (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) ∈ (𝑍 LMHom 𝑋))
15 fvex 6769 . . . . . 6 (0g𝑋) ∈ V
1612mptiniseg 6131 . . . . . 6 ((0g𝑋) ∈ V → ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) “ {(0g𝑋)}) = {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (0g𝑋)})
1715, 16ax-mp 5 . . . . 5 ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) “ {(0g𝑋)}) = {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (0g𝑋)}
18 lmodgrp 20045 . . . . . . . . . 10 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
19 grpmnd 18499 . . . . . . . . . 10 (𝑊 ∈ Grp → 𝑊 ∈ Mnd)
201, 18, 193syl 18 . . . . . . . . 9 (𝜑𝑊 ∈ Mnd)
21 eqid 2738 . . . . . . . . . 10 (0g𝑊) = (0g𝑊)
229, 21pws0g 18336 . . . . . . . . 9 ((𝑊 ∈ Mnd ∧ 𝐴 ∈ V) → (𝐴 × {(0g𝑊)}) = (0g𝑋))
2320, 2, 22sylancl 585 . . . . . . . 8 (𝜑 → (𝐴 × {(0g𝑊)}) = (0g𝑋))
2423eqcomd 2744 . . . . . . 7 (𝜑 → (0g𝑋) = (𝐴 × {(0g𝑊)}))
2524eqeq2d 2749 . . . . . 6 (𝜑 → ((𝑥𝐴) = (0g𝑋) ↔ (𝑥𝐴) = (𝐴 × {(0g𝑊)})))
2625rabbidv 3404 . . . . 5 (𝜑 → {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (0g𝑋)} = {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})})
2717, 26syl5eq 2791 . . . 4 (𝜑 → ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) “ {(0g𝑋)}) = {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})})
2827oveq2d 7271 . . 3 (𝜑 → (𝑍s ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) “ {(0g𝑋)})) = (𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}))
29 pwslnmlem2.yn . . . 4 (𝜑𝑌 ∈ LNoeM)
30 pwslnmlem2.dj . . . . . 6 (𝜑 → (𝐴𝐵) = ∅)
31 eqid 2738 . . . . . . 7 {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})} = {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}
32 eqid 2738 . . . . . . 7 (𝑦 ∈ {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})} ↦ (𝑦𝐵)) = (𝑦 ∈ {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})} ↦ (𝑦𝐵))
33 pwslnmlem2.y . . . . . . 7 𝑌 = (𝑊s 𝐵)
34 eqid 2738 . . . . . . 7 (𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}) = (𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})})
358, 10, 21, 31, 32, 9, 33, 34pwssplit4 40830 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝐴𝐵) ∈ V ∧ (𝐴𝐵) = ∅) → (𝑦 ∈ {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})} ↦ (𝑦𝐵)) ∈ ((𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}) LMIso 𝑌))
361, 5, 30, 35syl3anc 1369 . . . . 5 (𝜑 → (𝑦 ∈ {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})} ↦ (𝑦𝐵)) ∈ ((𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}) LMIso 𝑌))
37 brlmici 20246 . . . . 5 ((𝑦 ∈ {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})} ↦ (𝑦𝐵)) ∈ ((𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}) LMIso 𝑌) → (𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}) ≃𝑚 𝑌)
38 lnmlmic 40829 . . . . 5 ((𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}) ≃𝑚 𝑌 → ((𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}) ∈ LNoeM ↔ 𝑌 ∈ LNoeM))
3936, 37, 383syl 18 . . . 4 (𝜑 → ((𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}) ∈ LNoeM ↔ 𝑌 ∈ LNoeM))
4029, 39mpbird 256 . . 3 (𝜑 → (𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}) ∈ LNoeM)
4128, 40eqeltrd 2839 . 2 (𝜑 → (𝑍s ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) “ {(0g𝑋)})) ∈ LNoeM)
428, 9, 10, 11, 12pwssplit1 20236 . . . . . . 7 ((𝑊 ∈ Mnd ∧ (𝐴𝐵) ∈ V ∧ 𝐴 ⊆ (𝐴𝐵)) → (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)):(Base‘𝑍)–onto→(Base‘𝑋))
4320, 5, 7, 42syl3anc 1369 . . . . . 6 (𝜑 → (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)):(Base‘𝑍)–onto→(Base‘𝑋))
44 forn 6675 . . . . . 6 ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)):(Base‘𝑍)–onto→(Base‘𝑋) → ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) = (Base‘𝑋))
4543, 44syl 17 . . . . 5 (𝜑 → ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) = (Base‘𝑋))
4645oveq2d 7271 . . . 4 (𝜑 → (𝑋s ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴))) = (𝑋s (Base‘𝑋)))
47 pwslnmlem2.xn . . . . 5 (𝜑𝑋 ∈ LNoeM)
4811ressid 16880 . . . . 5 (𝑋 ∈ LNoeM → (𝑋s (Base‘𝑋)) = 𝑋)
4947, 48syl 17 . . . 4 (𝜑 → (𝑋s (Base‘𝑋)) = 𝑋)
5046, 49eqtrd 2778 . . 3 (𝜑 → (𝑋s ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴))) = 𝑋)
5150, 47eqeltrd 2839 . 2 (𝜑 → (𝑋s ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴))) ∈ LNoeM)
52 eqid 2738 . . 3 (0g𝑋) = (0g𝑋)
53 eqid 2738 . . 3 ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) “ {(0g𝑋)}) = ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) “ {(0g𝑋)})
54 eqid 2738 . . 3 (𝑍s ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) “ {(0g𝑋)})) = (𝑍s ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) “ {(0g𝑋)}))
55 eqid 2738 . . 3 (𝑋s ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴))) = (𝑋s ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)))
5652, 53, 54, 55lmhmlnmsplit 40828 . 2 (((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) ∈ (𝑍 LMHom 𝑋) ∧ (𝑍s ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) “ {(0g𝑋)})) ∈ LNoeM ∧ (𝑋s ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴))) ∈ LNoeM) → 𝑍 ∈ LNoeM)
5714, 41, 51, 56syl3anc 1369 1 (𝜑𝑍 ∈ LNoeM)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  {crab 3067  Vcvv 3422  cun 3881  cin 3882  wss 3883  c0 4253  {csn 4558   class class class wbr 5070  cmpt 5153   × cxp 5578  ccnv 5579  ran crn 5581  cres 5582  cima 5583  ontowfo 6416  cfv 6418  (class class class)co 7255  Basecbs 16840  s cress 16867  0gc0g 17067  s cpws 17074  Mndcmnd 18300  Grpcgrp 18492  LModclmod 20038   LMHom clmhm 20196   LMIso clmim 20197  𝑚 clmic 20198  LNoeMclnm 40816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-hom 16912  df-cco 16913  df-0g 17069  df-prds 17075  df-pws 17077  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-ghm 18747  df-cntz 18838  df-lsm 19156  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-lmod 20040  df-lss 20109  df-lsp 20149  df-lmhm 20199  df-lmim 20200  df-lmic 20201  df-lfig 40809  df-lnm 40817
This theorem is referenced by:  pwslnm  40835
  Copyright terms: Public domain W3C validator