Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwslnmlem2 Structured version   Visualization version   GIF version

Theorem pwslnmlem2 40400
Description: A sum of powers is Noetherian. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Hypotheses
Ref Expression
pwslnmlem2.a 𝐴 ∈ V
pwslnmlem2.b 𝐵 ∈ V
pwslnmlem2.x 𝑋 = (𝑊s 𝐴)
pwslnmlem2.y 𝑌 = (𝑊s 𝐵)
pwslnmlem2.z 𝑍 = (𝑊s (𝐴𝐵))
pwslnmlem2.w (𝜑𝑊 ∈ LMod)
pwslnmlem2.dj (𝜑 → (𝐴𝐵) = ∅)
pwslnmlem2.xn (𝜑𝑋 ∈ LNoeM)
pwslnmlem2.yn (𝜑𝑌 ∈ LNoeM)
Assertion
Ref Expression
pwslnmlem2 (𝜑𝑍 ∈ LNoeM)

Proof of Theorem pwslnmlem2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwslnmlem2.w . . 3 (𝜑𝑊 ∈ LMod)
2 pwslnmlem2.a . . . . 5 𝐴 ∈ V
3 pwslnmlem2.b . . . . 5 𝐵 ∈ V
42, 3unex 7465 . . . 4 (𝐴𝐵) ∈ V
54a1i 11 . . 3 (𝜑 → (𝐴𝐵) ∈ V)
6 ssun1 4078 . . . 4 𝐴 ⊆ (𝐴𝐵)
76a1i 11 . . 3 (𝜑𝐴 ⊆ (𝐴𝐵))
8 pwslnmlem2.z . . . 4 𝑍 = (𝑊s (𝐴𝐵))
9 pwslnmlem2.x . . . 4 𝑋 = (𝑊s 𝐴)
10 eqid 2759 . . . 4 (Base‘𝑍) = (Base‘𝑍)
11 eqid 2759 . . . 4 (Base‘𝑋) = (Base‘𝑋)
12 eqid 2759 . . . 4 (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) = (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴))
138, 9, 10, 11, 12pwssplit3 19891 . . 3 ((𝑊 ∈ LMod ∧ (𝐴𝐵) ∈ V ∧ 𝐴 ⊆ (𝐴𝐵)) → (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) ∈ (𝑍 LMHom 𝑋))
141, 5, 7, 13syl3anc 1369 . 2 (𝜑 → (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) ∈ (𝑍 LMHom 𝑋))
15 fvex 6669 . . . . . 6 (0g𝑋) ∈ V
1612mptiniseg 6066 . . . . . 6 ((0g𝑋) ∈ V → ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) “ {(0g𝑋)}) = {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (0g𝑋)})
1715, 16ax-mp 5 . . . . 5 ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) “ {(0g𝑋)}) = {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (0g𝑋)}
18 lmodgrp 19699 . . . . . . . . . 10 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
19 grpmnd 18166 . . . . . . . . . 10 (𝑊 ∈ Grp → 𝑊 ∈ Mnd)
201, 18, 193syl 18 . . . . . . . . 9 (𝜑𝑊 ∈ Mnd)
21 eqid 2759 . . . . . . . . . 10 (0g𝑊) = (0g𝑊)
229, 21pws0g 18003 . . . . . . . . 9 ((𝑊 ∈ Mnd ∧ 𝐴 ∈ V) → (𝐴 × {(0g𝑊)}) = (0g𝑋))
2320, 2, 22sylancl 590 . . . . . . . 8 (𝜑 → (𝐴 × {(0g𝑊)}) = (0g𝑋))
2423eqcomd 2765 . . . . . . 7 (𝜑 → (0g𝑋) = (𝐴 × {(0g𝑊)}))
2524eqeq2d 2770 . . . . . 6 (𝜑 → ((𝑥𝐴) = (0g𝑋) ↔ (𝑥𝐴) = (𝐴 × {(0g𝑊)})))
2625rabbidv 3393 . . . . 5 (𝜑 → {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (0g𝑋)} = {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})})
2717, 26syl5eq 2806 . . . 4 (𝜑 → ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) “ {(0g𝑋)}) = {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})})
2827oveq2d 7164 . . 3 (𝜑 → (𝑍s ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) “ {(0g𝑋)})) = (𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}))
29 pwslnmlem2.yn . . . 4 (𝜑𝑌 ∈ LNoeM)
30 pwslnmlem2.dj . . . . . 6 (𝜑 → (𝐴𝐵) = ∅)
31 eqid 2759 . . . . . . 7 {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})} = {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}
32 eqid 2759 . . . . . . 7 (𝑦 ∈ {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})} ↦ (𝑦𝐵)) = (𝑦 ∈ {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})} ↦ (𝑦𝐵))
33 pwslnmlem2.y . . . . . . 7 𝑌 = (𝑊s 𝐵)
34 eqid 2759 . . . . . . 7 (𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}) = (𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})})
358, 10, 21, 31, 32, 9, 33, 34pwssplit4 40396 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝐴𝐵) ∈ V ∧ (𝐴𝐵) = ∅) → (𝑦 ∈ {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})} ↦ (𝑦𝐵)) ∈ ((𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}) LMIso 𝑌))
361, 5, 30, 35syl3anc 1369 . . . . 5 (𝜑 → (𝑦 ∈ {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})} ↦ (𝑦𝐵)) ∈ ((𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}) LMIso 𝑌))
37 brlmici 19899 . . . . 5 ((𝑦 ∈ {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})} ↦ (𝑦𝐵)) ∈ ((𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}) LMIso 𝑌) → (𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}) ≃𝑚 𝑌)
38 lnmlmic 40395 . . . . 5 ((𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}) ≃𝑚 𝑌 → ((𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}) ∈ LNoeM ↔ 𝑌 ∈ LNoeM))
3936, 37, 383syl 18 . . . 4 (𝜑 → ((𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}) ∈ LNoeM ↔ 𝑌 ∈ LNoeM))
4029, 39mpbird 260 . . 3 (𝜑 → (𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}) ∈ LNoeM)
4128, 40eqeltrd 2853 . 2 (𝜑 → (𝑍s ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) “ {(0g𝑋)})) ∈ LNoeM)
428, 9, 10, 11, 12pwssplit1 19889 . . . . . . 7 ((𝑊 ∈ Mnd ∧ (𝐴𝐵) ∈ V ∧ 𝐴 ⊆ (𝐴𝐵)) → (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)):(Base‘𝑍)–onto→(Base‘𝑋))
4320, 5, 7, 42syl3anc 1369 . . . . . 6 (𝜑 → (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)):(Base‘𝑍)–onto→(Base‘𝑋))
44 forn 6577 . . . . . 6 ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)):(Base‘𝑍)–onto→(Base‘𝑋) → ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) = (Base‘𝑋))
4543, 44syl 17 . . . . 5 (𝜑 → ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) = (Base‘𝑋))
4645oveq2d 7164 . . . 4 (𝜑 → (𝑋s ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴))) = (𝑋s (Base‘𝑋)))
47 pwslnmlem2.xn . . . . 5 (𝜑𝑋 ∈ LNoeM)
4811ressid 16607 . . . . 5 (𝑋 ∈ LNoeM → (𝑋s (Base‘𝑋)) = 𝑋)
4947, 48syl 17 . . . 4 (𝜑 → (𝑋s (Base‘𝑋)) = 𝑋)
5046, 49eqtrd 2794 . . 3 (𝜑 → (𝑋s ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴))) = 𝑋)
5150, 47eqeltrd 2853 . 2 (𝜑 → (𝑋s ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴))) ∈ LNoeM)
52 eqid 2759 . . 3 (0g𝑋) = (0g𝑋)
53 eqid 2759 . . 3 ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) “ {(0g𝑋)}) = ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) “ {(0g𝑋)})
54 eqid 2759 . . 3 (𝑍s ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) “ {(0g𝑋)})) = (𝑍s ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) “ {(0g𝑋)}))
55 eqid 2759 . . 3 (𝑋s ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴))) = (𝑋s ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)))
5652, 53, 54, 55lmhmlnmsplit 40394 . 2 (((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) ∈ (𝑍 LMHom 𝑋) ∧ (𝑍s ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) “ {(0g𝑋)})) ∈ LNoeM ∧ (𝑋s ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴))) ∈ LNoeM) → 𝑍 ∈ LNoeM)
5714, 41, 51, 56syl3anc 1369 1 (𝜑𝑍 ∈ LNoeM)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1539  wcel 2112  {crab 3075  Vcvv 3410  cun 3857  cin 3858  wss 3859  c0 4226  {csn 4520   class class class wbr 5030  cmpt 5110   × cxp 5520  ccnv 5521  ran crn 5523  cres 5524  cima 5525  ontowfo 6331  cfv 6333  (class class class)co 7148  Basecbs 16531  s cress 16532  0gc0g 16761  s cpws 16768  Mndcmnd 17967  Grpcgrp 18159  LModclmod 19692   LMHom clmhm 19849   LMIso clmim 19850  𝑚 clmic 19851  LNoeMclnm 40382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7457  ax-cnex 10621  ax-resscn 10622  ax-1cn 10623  ax-icn 10624  ax-addcl 10625  ax-addrcl 10626  ax-mulcl 10627  ax-mulrcl 10628  ax-mulcom 10629  ax-addass 10630  ax-mulass 10631  ax-distr 10632  ax-i2m1 10633  ax-1ne0 10634  ax-1rid 10635  ax-rnegex 10636  ax-rrecex 10637  ax-cnre 10638  ax-pre-lttri 10639  ax-pre-lttrn 10640  ax-pre-ltadd 10641  ax-pre-mulgt0 10642
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4419  df-pw 4494  df-sn 4521  df-pr 4523  df-tp 4525  df-op 4527  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5428  df-eprel 5433  df-po 5441  df-so 5442  df-fr 5481  df-we 5483  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6292  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7403  df-om 7578  df-1st 7691  df-2nd 7692  df-wrecs 7955  df-recs 8016  df-rdg 8054  df-1o 8110  df-oadd 8114  df-er 8297  df-map 8416  df-ixp 8478  df-en 8526  df-dom 8527  df-sdom 8528  df-fin 8529  df-sup 8929  df-pnf 10705  df-mnf 10706  df-xr 10707  df-ltxr 10708  df-le 10709  df-sub 10900  df-neg 10901  df-nn 11665  df-2 11727  df-3 11728  df-4 11729  df-5 11730  df-6 11731  df-7 11732  df-8 11733  df-9 11734  df-n0 11925  df-z 12011  df-dec 12128  df-uz 12273  df-fz 12930  df-struct 16533  df-ndx 16534  df-slot 16535  df-base 16537  df-sets 16538  df-ress 16539  df-plusg 16626  df-mulr 16627  df-sca 16629  df-vsca 16630  df-ip 16631  df-tset 16632  df-ple 16633  df-ds 16635  df-hom 16637  df-cco 16638  df-0g 16763  df-prds 16769  df-pws 16771  df-mgm 17908  df-sgrp 17957  df-mnd 17968  df-submnd 18013  df-grp 18162  df-minusg 18163  df-sbg 18164  df-subg 18333  df-ghm 18413  df-cntz 18504  df-lsm 18818  df-cmn 18965  df-abl 18966  df-mgp 19298  df-ur 19310  df-ring 19357  df-lmod 19694  df-lss 19762  df-lsp 19802  df-lmhm 19852  df-lmim 19853  df-lmic 19854  df-lfig 40375  df-lnm 40383
This theorem is referenced by:  pwslnm  40401
  Copyright terms: Public domain W3C validator