Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwslnmlem2 Structured version   Visualization version   GIF version

Theorem pwslnmlem2 41917
Description: A sum of powers is Noetherian. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Hypotheses
Ref Expression
pwslnmlem2.a 𝐴 ∈ V
pwslnmlem2.b 𝐵 ∈ V
pwslnmlem2.x 𝑋 = (𝑊s 𝐴)
pwslnmlem2.y 𝑌 = (𝑊s 𝐵)
pwslnmlem2.z 𝑍 = (𝑊s (𝐴𝐵))
pwslnmlem2.w (𝜑𝑊 ∈ LMod)
pwslnmlem2.dj (𝜑 → (𝐴𝐵) = ∅)
pwslnmlem2.xn (𝜑𝑋 ∈ LNoeM)
pwslnmlem2.yn (𝜑𝑌 ∈ LNoeM)
Assertion
Ref Expression
pwslnmlem2 (𝜑𝑍 ∈ LNoeM)

Proof of Theorem pwslnmlem2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwslnmlem2.w . . 3 (𝜑𝑊 ∈ LMod)
2 pwslnmlem2.a . . . . 5 𝐴 ∈ V
3 pwslnmlem2.b . . . . 5 𝐵 ∈ V
42, 3unex 7735 . . . 4 (𝐴𝐵) ∈ V
54a1i 11 . . 3 (𝜑 → (𝐴𝐵) ∈ V)
6 ssun1 4172 . . . 4 𝐴 ⊆ (𝐴𝐵)
76a1i 11 . . 3 (𝜑𝐴 ⊆ (𝐴𝐵))
8 pwslnmlem2.z . . . 4 𝑍 = (𝑊s (𝐴𝐵))
9 pwslnmlem2.x . . . 4 𝑋 = (𝑊s 𝐴)
10 eqid 2732 . . . 4 (Base‘𝑍) = (Base‘𝑍)
11 eqid 2732 . . . 4 (Base‘𝑋) = (Base‘𝑋)
12 eqid 2732 . . . 4 (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) = (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴))
138, 9, 10, 11, 12pwssplit3 20677 . . 3 ((𝑊 ∈ LMod ∧ (𝐴𝐵) ∈ V ∧ 𝐴 ⊆ (𝐴𝐵)) → (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) ∈ (𝑍 LMHom 𝑋))
141, 5, 7, 13syl3anc 1371 . 2 (𝜑 → (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) ∈ (𝑍 LMHom 𝑋))
15 fvex 6904 . . . . . 6 (0g𝑋) ∈ V
1612mptiniseg 6238 . . . . . 6 ((0g𝑋) ∈ V → ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) “ {(0g𝑋)}) = {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (0g𝑋)})
1715, 16ax-mp 5 . . . . 5 ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) “ {(0g𝑋)}) = {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (0g𝑋)}
18 lmodgrp 20482 . . . . . . . . . 10 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
19 grpmnd 18828 . . . . . . . . . 10 (𝑊 ∈ Grp → 𝑊 ∈ Mnd)
201, 18, 193syl 18 . . . . . . . . 9 (𝜑𝑊 ∈ Mnd)
21 eqid 2732 . . . . . . . . . 10 (0g𝑊) = (0g𝑊)
229, 21pws0g 18663 . . . . . . . . 9 ((𝑊 ∈ Mnd ∧ 𝐴 ∈ V) → (𝐴 × {(0g𝑊)}) = (0g𝑋))
2320, 2, 22sylancl 586 . . . . . . . 8 (𝜑 → (𝐴 × {(0g𝑊)}) = (0g𝑋))
2423eqcomd 2738 . . . . . . 7 (𝜑 → (0g𝑋) = (𝐴 × {(0g𝑊)}))
2524eqeq2d 2743 . . . . . 6 (𝜑 → ((𝑥𝐴) = (0g𝑋) ↔ (𝑥𝐴) = (𝐴 × {(0g𝑊)})))
2625rabbidv 3440 . . . . 5 (𝜑 → {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (0g𝑋)} = {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})})
2717, 26eqtrid 2784 . . . 4 (𝜑 → ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) “ {(0g𝑋)}) = {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})})
2827oveq2d 7427 . . 3 (𝜑 → (𝑍s ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) “ {(0g𝑋)})) = (𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}))
29 pwslnmlem2.yn . . . 4 (𝜑𝑌 ∈ LNoeM)
30 pwslnmlem2.dj . . . . . 6 (𝜑 → (𝐴𝐵) = ∅)
31 eqid 2732 . . . . . . 7 {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})} = {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}
32 eqid 2732 . . . . . . 7 (𝑦 ∈ {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})} ↦ (𝑦𝐵)) = (𝑦 ∈ {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})} ↦ (𝑦𝐵))
33 pwslnmlem2.y . . . . . . 7 𝑌 = (𝑊s 𝐵)
34 eqid 2732 . . . . . . 7 (𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}) = (𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})})
358, 10, 21, 31, 32, 9, 33, 34pwssplit4 41913 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝐴𝐵) ∈ V ∧ (𝐴𝐵) = ∅) → (𝑦 ∈ {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})} ↦ (𝑦𝐵)) ∈ ((𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}) LMIso 𝑌))
361, 5, 30, 35syl3anc 1371 . . . . 5 (𝜑 → (𝑦 ∈ {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})} ↦ (𝑦𝐵)) ∈ ((𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}) LMIso 𝑌))
37 brlmici 20685 . . . . 5 ((𝑦 ∈ {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})} ↦ (𝑦𝐵)) ∈ ((𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}) LMIso 𝑌) → (𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}) ≃𝑚 𝑌)
38 lnmlmic 41912 . . . . 5 ((𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}) ≃𝑚 𝑌 → ((𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}) ∈ LNoeM ↔ 𝑌 ∈ LNoeM))
3936, 37, 383syl 18 . . . 4 (𝜑 → ((𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}) ∈ LNoeM ↔ 𝑌 ∈ LNoeM))
4029, 39mpbird 256 . . 3 (𝜑 → (𝑍s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥𝐴) = (𝐴 × {(0g𝑊)})}) ∈ LNoeM)
4128, 40eqeltrd 2833 . 2 (𝜑 → (𝑍s ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) “ {(0g𝑋)})) ∈ LNoeM)
428, 9, 10, 11, 12pwssplit1 20675 . . . . . . 7 ((𝑊 ∈ Mnd ∧ (𝐴𝐵) ∈ V ∧ 𝐴 ⊆ (𝐴𝐵)) → (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)):(Base‘𝑍)–onto→(Base‘𝑋))
4320, 5, 7, 42syl3anc 1371 . . . . . 6 (𝜑 → (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)):(Base‘𝑍)–onto→(Base‘𝑋))
44 forn 6808 . . . . . 6 ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)):(Base‘𝑍)–onto→(Base‘𝑋) → ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) = (Base‘𝑋))
4543, 44syl 17 . . . . 5 (𝜑 → ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) = (Base‘𝑋))
4645oveq2d 7427 . . . 4 (𝜑 → (𝑋s ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴))) = (𝑋s (Base‘𝑋)))
47 pwslnmlem2.xn . . . . 5 (𝜑𝑋 ∈ LNoeM)
4811ressid 17191 . . . . 5 (𝑋 ∈ LNoeM → (𝑋s (Base‘𝑋)) = 𝑋)
4947, 48syl 17 . . . 4 (𝜑 → (𝑋s (Base‘𝑋)) = 𝑋)
5046, 49eqtrd 2772 . . 3 (𝜑 → (𝑋s ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴))) = 𝑋)
5150, 47eqeltrd 2833 . 2 (𝜑 → (𝑋s ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴))) ∈ LNoeM)
52 eqid 2732 . . 3 (0g𝑋) = (0g𝑋)
53 eqid 2732 . . 3 ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) “ {(0g𝑋)}) = ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) “ {(0g𝑋)})
54 eqid 2732 . . 3 (𝑍s ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) “ {(0g𝑋)})) = (𝑍s ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) “ {(0g𝑋)}))
55 eqid 2732 . . 3 (𝑋s ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴))) = (𝑋s ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)))
5652, 53, 54, 55lmhmlnmsplit 41911 . 2 (((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) ∈ (𝑍 LMHom 𝑋) ∧ (𝑍s ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴)) “ {(0g𝑋)})) ∈ LNoeM ∧ (𝑋s ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥𝐴))) ∈ LNoeM) → 𝑍 ∈ LNoeM)
5714, 41, 51, 56syl3anc 1371 1 (𝜑𝑍 ∈ LNoeM)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wcel 2106  {crab 3432  Vcvv 3474  cun 3946  cin 3947  wss 3948  c0 4322  {csn 4628   class class class wbr 5148  cmpt 5231   × cxp 5674  ccnv 5675  ran crn 5677  cres 5678  cima 5679  ontowfo 6541  cfv 6543  (class class class)co 7411  Basecbs 17146  s cress 17175  0gc0g 17387  s cpws 17394  Mndcmnd 18627  Grpcgrp 18821  LModclmod 20475   LMHom clmhm 20635   LMIso clmim 20636  𝑚 clmic 20637  LNoeMclnm 41899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-map 8824  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-nn 12215  df-2 12277  df-3 12278  df-4 12279  df-5 12280  df-6 12281  df-7 12282  df-8 12283  df-9 12284  df-n0 12475  df-z 12561  df-dec 12680  df-uz 12825  df-fz 13487  df-struct 17082  df-sets 17099  df-slot 17117  df-ndx 17129  df-base 17147  df-ress 17176  df-plusg 17212  df-mulr 17213  df-sca 17215  df-vsca 17216  df-ip 17217  df-tset 17218  df-ple 17219  df-ds 17221  df-hom 17223  df-cco 17224  df-0g 17389  df-prds 17395  df-pws 17397  df-mgm 18563  df-sgrp 18612  df-mnd 18628  df-submnd 18674  df-grp 18824  df-minusg 18825  df-sbg 18826  df-subg 19005  df-ghm 19092  df-cntz 19183  df-lsm 19506  df-cmn 19652  df-abl 19653  df-mgp 19990  df-ur 20007  df-ring 20060  df-lmod 20477  df-lss 20548  df-lsp 20588  df-lmhm 20638  df-lmim 20639  df-lmic 20640  df-lfig 41892  df-lnm 41900
This theorem is referenced by:  pwslnm  41918
  Copyright terms: Public domain W3C validator