Step | Hyp | Ref
| Expression |
1 | | pwslnmlem2.w |
. . 3
⊢ (𝜑 → 𝑊 ∈ LMod) |
2 | | pwslnmlem2.a |
. . . . 5
⊢ 𝐴 ∈ V |
3 | | pwslnmlem2.b |
. . . . 5
⊢ 𝐵 ∈ V |
4 | 2, 3 | unex 7465 |
. . . 4
⊢ (𝐴 ∪ 𝐵) ∈ V |
5 | 4 | a1i 11 |
. . 3
⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ V) |
6 | | ssun1 4078 |
. . . 4
⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) |
7 | 6 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐴 ⊆ (𝐴 ∪ 𝐵)) |
8 | | pwslnmlem2.z |
. . . 4
⊢ 𝑍 = (𝑊 ↑s (𝐴 ∪ 𝐵)) |
9 | | pwslnmlem2.x |
. . . 4
⊢ 𝑋 = (𝑊 ↑s 𝐴) |
10 | | eqid 2759 |
. . . 4
⊢
(Base‘𝑍) =
(Base‘𝑍) |
11 | | eqid 2759 |
. . . 4
⊢
(Base‘𝑋) =
(Base‘𝑋) |
12 | | eqid 2759 |
. . . 4
⊢ (𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴)) = (𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴)) |
13 | 8, 9, 10, 11, 12 | pwssplit3 19891 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ (𝐴 ∪ 𝐵) ∈ V ∧ 𝐴 ⊆ (𝐴 ∪ 𝐵)) → (𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴)) ∈ (𝑍 LMHom 𝑋)) |
14 | 1, 5, 7, 13 | syl3anc 1369 |
. 2
⊢ (𝜑 → (𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴)) ∈ (𝑍 LMHom 𝑋)) |
15 | | fvex 6669 |
. . . . . 6
⊢
(0g‘𝑋) ∈ V |
16 | 12 | mptiniseg 6066 |
. . . . . 6
⊢
((0g‘𝑋) ∈ V → (◡(𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴)) “ {(0g‘𝑋)}) = {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (0g‘𝑋)}) |
17 | 15, 16 | ax-mp 5 |
. . . . 5
⊢ (◡(𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴)) “ {(0g‘𝑋)}) = {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (0g‘𝑋)} |
18 | | lmodgrp 19699 |
. . . . . . . . . 10
⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
19 | | grpmnd 18166 |
. . . . . . . . . 10
⊢ (𝑊 ∈ Grp → 𝑊 ∈ Mnd) |
20 | 1, 18, 19 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → 𝑊 ∈ Mnd) |
21 | | eqid 2759 |
. . . . . . . . . 10
⊢
(0g‘𝑊) = (0g‘𝑊) |
22 | 9, 21 | pws0g 18003 |
. . . . . . . . 9
⊢ ((𝑊 ∈ Mnd ∧ 𝐴 ∈ V) → (𝐴 ×
{(0g‘𝑊)})
= (0g‘𝑋)) |
23 | 20, 2, 22 | sylancl 590 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 × {(0g‘𝑊)}) = (0g‘𝑋)) |
24 | 23 | eqcomd 2765 |
. . . . . . 7
⊢ (𝜑 → (0g‘𝑋) = (𝐴 × {(0g‘𝑊)})) |
25 | 24 | eqeq2d 2770 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ↾ 𝐴) = (0g‘𝑋) ↔ (𝑥 ↾ 𝐴) = (𝐴 × {(0g‘𝑊)}))) |
26 | 25 | rabbidv 3393 |
. . . . 5
⊢ (𝜑 → {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (0g‘𝑋)} = {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (𝐴 × {(0g‘𝑊)})}) |
27 | 17, 26 | syl5eq 2806 |
. . . 4
⊢ (𝜑 → (◡(𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴)) “ {(0g‘𝑋)}) = {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (𝐴 × {(0g‘𝑊)})}) |
28 | 27 | oveq2d 7164 |
. . 3
⊢ (𝜑 → (𝑍 ↾s (◡(𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴)) “ {(0g‘𝑋)})) = (𝑍 ↾s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (𝐴 × {(0g‘𝑊)})})) |
29 | | pwslnmlem2.yn |
. . . 4
⊢ (𝜑 → 𝑌 ∈ LNoeM) |
30 | | pwslnmlem2.dj |
. . . . . 6
⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
31 | | eqid 2759 |
. . . . . . 7
⊢ {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (𝐴 × {(0g‘𝑊)})} = {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (𝐴 × {(0g‘𝑊)})} |
32 | | eqid 2759 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (𝐴 × {(0g‘𝑊)})} ↦ (𝑦 ↾ 𝐵)) = (𝑦 ∈ {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (𝐴 × {(0g‘𝑊)})} ↦ (𝑦 ↾ 𝐵)) |
33 | | pwslnmlem2.y |
. . . . . . 7
⊢ 𝑌 = (𝑊 ↑s 𝐵) |
34 | | eqid 2759 |
. . . . . . 7
⊢ (𝑍 ↾s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (𝐴 × {(0g‘𝑊)})}) = (𝑍 ↾s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (𝐴 × {(0g‘𝑊)})}) |
35 | 8, 10, 21, 31, 32, 9, 33, 34 | pwssplit4 40396 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ (𝐴 ∪ 𝐵) ∈ V ∧ (𝐴 ∩ 𝐵) = ∅) → (𝑦 ∈ {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (𝐴 × {(0g‘𝑊)})} ↦ (𝑦 ↾ 𝐵)) ∈ ((𝑍 ↾s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (𝐴 × {(0g‘𝑊)})}) LMIso 𝑌)) |
36 | 1, 5, 30, 35 | syl3anc 1369 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (𝐴 × {(0g‘𝑊)})} ↦ (𝑦 ↾ 𝐵)) ∈ ((𝑍 ↾s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (𝐴 × {(0g‘𝑊)})}) LMIso 𝑌)) |
37 | | brlmici 19899 |
. . . . 5
⊢ ((𝑦 ∈ {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (𝐴 × {(0g‘𝑊)})} ↦ (𝑦 ↾ 𝐵)) ∈ ((𝑍 ↾s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (𝐴 × {(0g‘𝑊)})}) LMIso 𝑌) → (𝑍 ↾s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (𝐴 × {(0g‘𝑊)})})
≃𝑚 𝑌) |
38 | | lnmlmic 40395 |
. . . . 5
⊢ ((𝑍 ↾s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (𝐴 × {(0g‘𝑊)})})
≃𝑚 𝑌 → ((𝑍 ↾s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (𝐴 × {(0g‘𝑊)})}) ∈ LNoeM ↔ 𝑌 ∈ LNoeM)) |
39 | 36, 37, 38 | 3syl 18 |
. . . 4
⊢ (𝜑 → ((𝑍 ↾s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (𝐴 × {(0g‘𝑊)})}) ∈ LNoeM ↔ 𝑌 ∈ LNoeM)) |
40 | 29, 39 | mpbird 260 |
. . 3
⊢ (𝜑 → (𝑍 ↾s {𝑥 ∈ (Base‘𝑍) ∣ (𝑥 ↾ 𝐴) = (𝐴 × {(0g‘𝑊)})}) ∈
LNoeM) |
41 | 28, 40 | eqeltrd 2853 |
. 2
⊢ (𝜑 → (𝑍 ↾s (◡(𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴)) “ {(0g‘𝑋)})) ∈
LNoeM) |
42 | 8, 9, 10, 11, 12 | pwssplit1 19889 |
. . . . . . 7
⊢ ((𝑊 ∈ Mnd ∧ (𝐴 ∪ 𝐵) ∈ V ∧ 𝐴 ⊆ (𝐴 ∪ 𝐵)) → (𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴)):(Base‘𝑍)–onto→(Base‘𝑋)) |
43 | 20, 5, 7, 42 | syl3anc 1369 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴)):(Base‘𝑍)–onto→(Base‘𝑋)) |
44 | | forn 6577 |
. . . . . 6
⊢ ((𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴)):(Base‘𝑍)–onto→(Base‘𝑋) → ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴)) = (Base‘𝑋)) |
45 | 43, 44 | syl 17 |
. . . . 5
⊢ (𝜑 → ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴)) = (Base‘𝑋)) |
46 | 45 | oveq2d 7164 |
. . . 4
⊢ (𝜑 → (𝑋 ↾s ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴))) = (𝑋 ↾s (Base‘𝑋))) |
47 | | pwslnmlem2.xn |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ LNoeM) |
48 | 11 | ressid 16607 |
. . . . 5
⊢ (𝑋 ∈ LNoeM → (𝑋 ↾s
(Base‘𝑋)) = 𝑋) |
49 | 47, 48 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑋 ↾s (Base‘𝑋)) = 𝑋) |
50 | 46, 49 | eqtrd 2794 |
. . 3
⊢ (𝜑 → (𝑋 ↾s ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴))) = 𝑋) |
51 | 50, 47 | eqeltrd 2853 |
. 2
⊢ (𝜑 → (𝑋 ↾s ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴))) ∈ LNoeM) |
52 | | eqid 2759 |
. . 3
⊢
(0g‘𝑋) = (0g‘𝑋) |
53 | | eqid 2759 |
. . 3
⊢ (◡(𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴)) “ {(0g‘𝑋)}) = (◡(𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴)) “ {(0g‘𝑋)}) |
54 | | eqid 2759 |
. . 3
⊢ (𝑍 ↾s (◡(𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴)) “ {(0g‘𝑋)})) = (𝑍 ↾s (◡(𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴)) “ {(0g‘𝑋)})) |
55 | | eqid 2759 |
. . 3
⊢ (𝑋 ↾s ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴))) = (𝑋 ↾s ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴))) |
56 | 52, 53, 54, 55 | lmhmlnmsplit 40394 |
. 2
⊢ (((𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴)) ∈ (𝑍 LMHom 𝑋) ∧ (𝑍 ↾s (◡(𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴)) “ {(0g‘𝑋)})) ∈ LNoeM ∧ (𝑋 ↾s ran (𝑥 ∈ (Base‘𝑍) ↦ (𝑥 ↾ 𝐴))) ∈ LNoeM) → 𝑍 ∈ LNoeM) |
57 | 14, 41, 51, 56 | syl3anc 1369 |
1
⊢ (𝜑 → 𝑍 ∈ LNoeM) |