MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mriss Structured version   Visualization version   GIF version

Theorem mriss 17585
Description: An independent set of a Moore system is a subset of the base set. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
mriss.1 𝐼 = (mrIndβ€˜π΄)
Assertion
Ref Expression
mriss ((𝐴 ∈ (Mooreβ€˜π‘‹) ∧ 𝑆 ∈ 𝐼) β†’ 𝑆 βŠ† 𝑋)

Proof of Theorem mriss
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . 3 (mrClsβ€˜π΄) = (mrClsβ€˜π΄)
2 mriss.1 . . 3 𝐼 = (mrIndβ€˜π΄)
31, 2ismri 17581 . 2 (𝐴 ∈ (Mooreβ€˜π‘‹) β†’ (𝑆 ∈ 𝐼 ↔ (𝑆 βŠ† 𝑋 ∧ βˆ€π‘₯ ∈ 𝑆 Β¬ π‘₯ ∈ ((mrClsβ€˜π΄)β€˜(𝑆 βˆ– {π‘₯})))))
43simprbda 497 1 ((𝐴 ∈ (Mooreβ€˜π‘‹) ∧ 𝑆 ∈ 𝐼) β†’ 𝑆 βŠ† 𝑋)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 394   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059   βˆ– cdif 3946   βŠ† wss 3949  {csn 4629  β€˜cfv 6544  Moorecmre 17532  mrClscmrc 17533  mrIndcmri 17534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-iota 6496  df-fun 6546  df-fv 6552  df-mre 17536  df-mri 17538
This theorem is referenced by:  mrissd  17586
  Copyright terms: Public domain W3C validator