MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mriss Structured version   Visualization version   GIF version

Theorem mriss 17693
Description: An independent set of a Moore system is a subset of the base set. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
mriss.1 𝐼 = (mrInd‘𝐴)
Assertion
Ref Expression
mriss ((𝐴 ∈ (Moore‘𝑋) ∧ 𝑆𝐼) → 𝑆𝑋)

Proof of Theorem mriss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . 3 (mrCls‘𝐴) = (mrCls‘𝐴)
2 mriss.1 . . 3 𝐼 = (mrInd‘𝐴)
31, 2ismri 17689 . 2 (𝐴 ∈ (Moore‘𝑋) → (𝑆𝐼 ↔ (𝑆𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ ((mrCls‘𝐴)‘(𝑆 ∖ {𝑥})))))
43simprbda 498 1 ((𝐴 ∈ (Moore‘𝑋) ∧ 𝑆𝐼) → 𝑆𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  cdif 3973  wss 3976  {csn 4648  cfv 6573  Moorecmre 17640  mrClscmrc 17641  mrIndcmri 17642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fv 6581  df-mre 17644  df-mri 17646
This theorem is referenced by:  mrissd  17694
  Copyright terms: Public domain W3C validator