Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mriss | Structured version Visualization version GIF version |
Description: An independent set of a Moore system is a subset of the base set. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
mriss.1 | ⊢ 𝐼 = (mrInd‘𝐴) |
Ref | Expression |
---|---|
mriss | ⊢ ((𝐴 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐼) → 𝑆 ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (mrCls‘𝐴) = (mrCls‘𝐴) | |
2 | mriss.1 | . . 3 ⊢ 𝐼 = (mrInd‘𝐴) | |
3 | 1, 2 | ismri 17338 | . 2 ⊢ (𝐴 ∈ (Moore‘𝑋) → (𝑆 ∈ 𝐼 ↔ (𝑆 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ((mrCls‘𝐴)‘(𝑆 ∖ {𝑥}))))) |
4 | 3 | simprbda 499 | 1 ⊢ ((𝐴 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐼) → 𝑆 ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∀wral 3066 ∖ cdif 3889 ⊆ wss 3892 {csn 4567 ‘cfv 6432 Moorecmre 17289 mrClscmrc 17290 mrIndcmri 17291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-iota 6390 df-fun 6434 df-fv 6440 df-mre 17293 df-mri 17295 |
This theorem is referenced by: mrissd 17343 |
Copyright terms: Public domain | W3C validator |