MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mriss Structured version   Visualization version   GIF version

Theorem mriss 17652
Description: An independent set of a Moore system is a subset of the base set. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
mriss.1 𝐼 = (mrInd‘𝐴)
Assertion
Ref Expression
mriss ((𝐴 ∈ (Moore‘𝑋) ∧ 𝑆𝐼) → 𝑆𝑋)

Proof of Theorem mriss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (mrCls‘𝐴) = (mrCls‘𝐴)
2 mriss.1 . . 3 𝐼 = (mrInd‘𝐴)
31, 2ismri 17648 . 2 (𝐴 ∈ (Moore‘𝑋) → (𝑆𝐼 ↔ (𝑆𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ ((mrCls‘𝐴)‘(𝑆 ∖ {𝑥})))))
43simprbda 498 1 ((𝐴 ∈ (Moore‘𝑋) ∧ 𝑆𝐼) → 𝑆𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3052  cdif 3928  wss 3931  {csn 4606  cfv 6536  Moorecmre 17599  mrClscmrc 17600  mrIndcmri 17601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fv 6544  df-mre 17603  df-mri 17605
This theorem is referenced by:  mrissd  17653
  Copyright terms: Public domain W3C validator