MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrissd Structured version   Visualization version   GIF version

Theorem mrissd 17597
Description: An independent set of a Moore system is a subset of the base set. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mriss.1 𝐼 = (mrInd‘𝐴)
mrissd.2 (𝜑𝐴 ∈ (Moore‘𝑋))
mrissd.3 (𝜑𝑆𝐼)
Assertion
Ref Expression
mrissd (𝜑𝑆𝑋)

Proof of Theorem mrissd
StepHypRef Expression
1 mrissd.2 . 2 (𝜑𝐴 ∈ (Moore‘𝑋))
2 mrissd.3 . 2 (𝜑𝑆𝐼)
3 mriss.1 . . 3 𝐼 = (mrInd‘𝐴)
43mriss 17596 . 2 ((𝐴 ∈ (Moore‘𝑋) ∧ 𝑆𝐼) → 𝑆𝑋)
51, 2, 4syl2anc 584 1 (𝜑𝑆𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3914  cfv 6511  Moorecmre 17543  mrIndcmri 17545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fv 6519  df-mre 17547  df-mri 17549
This theorem is referenced by:  ismri2dad  17598  mrieqv2d  17600  mrissmrcd  17601  mrissmrid  17602  mreexmrid  17604  mreexexlem2d  17606  mreexexlem3d  17607  mreexdomd  17610  mreexfidimd  17611  acsmap2d  18514  acsinfdimd  18517
  Copyright terms: Public domain W3C validator