| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mrissd | Structured version Visualization version GIF version | ||
| Description: An independent set of a Moore system is a subset of the base set. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| mriss.1 | ⊢ 𝐼 = (mrInd‘𝐴) |
| mrissd.2 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
| mrissd.3 | ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
| Ref | Expression |
|---|---|
| mrissd | ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrissd.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
| 2 | mrissd.3 | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝐼) | |
| 3 | mriss.1 | . . 3 ⊢ 𝐼 = (mrInd‘𝐴) | |
| 4 | 3 | mriss 17596 | . 2 ⊢ ((𝐴 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐼) → 𝑆 ⊆ 𝑋) |
| 5 | 1, 2, 4 | syl2anc 584 | 1 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 ‘cfv 6511 Moorecmre 17543 mrIndcmri 17545 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fv 6519 df-mre 17547 df-mri 17549 |
| This theorem is referenced by: ismri2dad 17598 mrieqv2d 17600 mrissmrcd 17601 mrissmrid 17602 mreexmrid 17604 mreexexlem2d 17606 mreexexlem3d 17607 mreexdomd 17610 mreexfidimd 17611 acsmap2d 18514 acsinfdimd 18517 |
| Copyright terms: Public domain | W3C validator |