MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrissd Structured version   Visualization version   GIF version

Theorem mrissd 17681
Description: An independent set of a Moore system is a subset of the base set. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mriss.1 𝐼 = (mrInd‘𝐴)
mrissd.2 (𝜑𝐴 ∈ (Moore‘𝑋))
mrissd.3 (𝜑𝑆𝐼)
Assertion
Ref Expression
mrissd (𝜑𝑆𝑋)

Proof of Theorem mrissd
StepHypRef Expression
1 mrissd.2 . 2 (𝜑𝐴 ∈ (Moore‘𝑋))
2 mrissd.3 . 2 (𝜑𝑆𝐼)
3 mriss.1 . . 3 𝐼 = (mrInd‘𝐴)
43mriss 17680 . 2 ((𝐴 ∈ (Moore‘𝑋) ∧ 𝑆𝐼) → 𝑆𝑋)
51, 2, 4syl2anc 584 1 (𝜑𝑆𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wss 3963  cfv 6563  Moorecmre 17627  mrIndcmri 17629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fv 6571  df-mre 17631  df-mri 17633
This theorem is referenced by:  ismri2dad  17682  mrieqv2d  17684  mrissmrcd  17685  mrissmrid  17686  mreexmrid  17688  mreexexlem2d  17690  mreexexlem3d  17691  mreexdomd  17694  mreexfidimd  17695  acsmap2d  18613  acsinfdimd  18616
  Copyright terms: Public domain W3C validator