MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrissd Structured version   Visualization version   GIF version

Theorem mrissd 17649
Description: An independent set of a Moore system is a subset of the base set. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mriss.1 𝐼 = (mrInd‘𝐴)
mrissd.2 (𝜑𝐴 ∈ (Moore‘𝑋))
mrissd.3 (𝜑𝑆𝐼)
Assertion
Ref Expression
mrissd (𝜑𝑆𝑋)

Proof of Theorem mrissd
StepHypRef Expression
1 mrissd.2 . 2 (𝜑𝐴 ∈ (Moore‘𝑋))
2 mrissd.3 . 2 (𝜑𝑆𝐼)
3 mriss.1 . . 3 𝐼 = (mrInd‘𝐴)
43mriss 17648 . 2 ((𝐴 ∈ (Moore‘𝑋) ∧ 𝑆𝐼) → 𝑆𝑋)
51, 2, 4syl2anc 582 1 (𝜑𝑆𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  wss 3947  cfv 6554  Moorecmre 17595  mrIndcmri 17597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-iota 6506  df-fun 6556  df-fv 6562  df-mre 17599  df-mri 17601
This theorem is referenced by:  ismri2dad  17650  mrieqv2d  17652  mrissmrcd  17653  mrissmrid  17654  mreexmrid  17656  mreexexlem2d  17658  mreexexlem3d  17659  mreexdomd  17662  mreexfidimd  17663  acsmap2d  18580  acsinfdimd  18583
  Copyright terms: Public domain W3C validator