Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mrissd | Structured version Visualization version GIF version |
Description: An independent set of a Moore system is a subset of the base set. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
mriss.1 | ⊢ 𝐼 = (mrInd‘𝐴) |
mrissd.2 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
mrissd.3 | ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
Ref | Expression |
---|---|
mrissd | ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrissd.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
2 | mrissd.3 | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝐼) | |
3 | mriss.1 | . . 3 ⊢ 𝐼 = (mrInd‘𝐴) | |
4 | 3 | mriss 17433 | . 2 ⊢ ((𝐴 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐼) → 𝑆 ⊆ 𝑋) |
5 | 1, 2, 4 | syl2anc 584 | 1 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ⊆ wss 3897 ‘cfv 6473 Moorecmre 17380 mrIndcmri 17382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6425 df-fun 6475 df-fv 6481 df-mre 17384 df-mri 17386 |
This theorem is referenced by: ismri2dad 17435 mrieqv2d 17437 mrissmrcd 17438 mrissmrid 17439 mreexmrid 17441 mreexexlem2d 17443 mreexexlem3d 17444 mreexdomd 17447 mreexfidimd 17448 acsmap2d 18362 acsinfdimd 18365 |
Copyright terms: Public domain | W3C validator |