![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ismri | Structured version Visualization version GIF version |
Description: Criterion for a set to be an independent set of a Moore system. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ismri.1 | ⊢ 𝑁 = (mrCls‘𝐴) |
ismri.2 | ⊢ 𝐼 = (mrInd‘𝐴) |
Ref | Expression |
---|---|
ismri | ⊢ (𝐴 ∈ (Moore‘𝑋) → (𝑆 ∈ 𝐼 ↔ (𝑆 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismri.1 | . . . . 5 ⊢ 𝑁 = (mrCls‘𝐴) | |
2 | ismri.2 | . . . . 5 ⊢ 𝐼 = (mrInd‘𝐴) | |
3 | 1, 2 | mrisval 17688 | . . . 4 ⊢ (𝐴 ∈ (Moore‘𝑋) → 𝐼 = {𝑠 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))}) |
4 | 3 | eleq2d 2830 | . . 3 ⊢ (𝐴 ∈ (Moore‘𝑋) → (𝑆 ∈ 𝐼 ↔ 𝑆 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))})) |
5 | difeq1 4142 | . . . . . . . 8 ⊢ (𝑠 = 𝑆 → (𝑠 ∖ {𝑥}) = (𝑆 ∖ {𝑥})) | |
6 | 5 | fveq2d 6924 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (𝑁‘(𝑠 ∖ {𝑥})) = (𝑁‘(𝑆 ∖ {𝑥}))) |
7 | 6 | eleq2d 2830 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
8 | 7 | notbid 318 | . . . . 5 ⊢ (𝑠 = 𝑆 → (¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
9 | 8 | raleqbi1dv 3346 | . . . 4 ⊢ (𝑠 = 𝑆 → (∀𝑥 ∈ 𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})) ↔ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
10 | 9 | elrab 3708 | . . 3 ⊢ (𝑆 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))} ↔ (𝑆 ∈ 𝒫 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
11 | 4, 10 | bitrdi 287 | . 2 ⊢ (𝐴 ∈ (Moore‘𝑋) → (𝑆 ∈ 𝐼 ↔ (𝑆 ∈ 𝒫 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))) |
12 | elfvex 6958 | . . . 4 ⊢ (𝐴 ∈ (Moore‘𝑋) → 𝑋 ∈ V) | |
13 | elpw2g 5351 | . . . 4 ⊢ (𝑋 ∈ V → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) | |
14 | 12, 13 | syl 17 | . . 3 ⊢ (𝐴 ∈ (Moore‘𝑋) → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) |
15 | 14 | anbi1d 630 | . 2 ⊢ (𝐴 ∈ (Moore‘𝑋) → ((𝑆 ∈ 𝒫 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) ↔ (𝑆 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))) |
16 | 11, 15 | bitrd 279 | 1 ⊢ (𝐴 ∈ (Moore‘𝑋) → (𝑆 ∈ 𝐼 ↔ (𝑆 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {crab 3443 Vcvv 3488 ∖ cdif 3973 ⊆ wss 3976 𝒫 cpw 4622 {csn 4648 ‘cfv 6573 Moorecmre 17640 mrClscmrc 17641 mrIndcmri 17642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fv 6581 df-mre 17644 df-mri 17646 |
This theorem is referenced by: ismri2 17690 mriss 17693 lbsacsbs 21181 |
Copyright terms: Public domain | W3C validator |