MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismri Structured version   Visualization version   GIF version

Theorem ismri 17598
Description: Criterion for a set to be an independent set of a Moore system. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
ismri.1 𝑁 = (mrCls‘𝐴)
ismri.2 𝐼 = (mrInd‘𝐴)
Assertion
Ref Expression
ismri (𝐴 ∈ (Moore‘𝑋) → (𝑆𝐼 ↔ (𝑆𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑆
Allowed substitution hints:   𝐼(𝑥)   𝑁(𝑥)   𝑋(𝑥)

Proof of Theorem ismri
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 ismri.1 . . . . 5 𝑁 = (mrCls‘𝐴)
2 ismri.2 . . . . 5 𝐼 = (mrInd‘𝐴)
31, 2mrisval 17597 . . . 4 (𝐴 ∈ (Moore‘𝑋) → 𝐼 = {𝑠 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))})
43eleq2d 2815 . . 3 (𝐴 ∈ (Moore‘𝑋) → (𝑆𝐼𝑆 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))}))
5 difeq1 4090 . . . . . . . 8 (𝑠 = 𝑆 → (𝑠 ∖ {𝑥}) = (𝑆 ∖ {𝑥}))
65fveq2d 6869 . . . . . . 7 (𝑠 = 𝑆 → (𝑁‘(𝑠 ∖ {𝑥})) = (𝑁‘(𝑆 ∖ {𝑥})))
76eleq2d 2815 . . . . . 6 (𝑠 = 𝑆 → (𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))
87notbid 318 . . . . 5 (𝑠 = 𝑆 → (¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))
98raleqbi1dv 3314 . . . 4 (𝑠 = 𝑆 → (∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})) ↔ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))
109elrab 3667 . . 3 (𝑆 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))} ↔ (𝑆 ∈ 𝒫 𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))
114, 10bitrdi 287 . 2 (𝐴 ∈ (Moore‘𝑋) → (𝑆𝐼 ↔ (𝑆 ∈ 𝒫 𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))))
12 elfvex 6903 . . . 4 (𝐴 ∈ (Moore‘𝑋) → 𝑋 ∈ V)
13 elpw2g 5296 . . . 4 (𝑋 ∈ V → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
1412, 13syl 17 . . 3 (𝐴 ∈ (Moore‘𝑋) → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
1514anbi1d 631 . 2 (𝐴 ∈ (Moore‘𝑋) → ((𝑆 ∈ 𝒫 𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) ↔ (𝑆𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))))
1611, 15bitrd 279 1 (𝐴 ∈ (Moore‘𝑋) → (𝑆𝐼 ↔ (𝑆𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3046  {crab 3411  Vcvv 3455  cdif 3919  wss 3922  𝒫 cpw 4571  {csn 4597  cfv 6519  Moorecmre 17549  mrClscmrc 17550  mrIndcmri 17551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-iota 6472  df-fun 6521  df-fv 6527  df-mre 17553  df-mri 17555
This theorem is referenced by:  ismri2  17599  mriss  17602  lbsacsbs  21072
  Copyright terms: Public domain W3C validator