MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismri2dd Structured version   Visualization version   GIF version

Theorem ismri2dd 17583
Description: Definition of independence of a subset of the base set in a Moore system. One-way deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
ismri2.1 𝑁 = (mrClsβ€˜π΄)
ismri2.2 𝐼 = (mrIndβ€˜π΄)
ismri2d.3 (πœ‘ β†’ 𝐴 ∈ (Mooreβ€˜π‘‹))
ismri2d.4 (πœ‘ β†’ 𝑆 βŠ† 𝑋)
ismri2dd.5 (πœ‘ β†’ βˆ€π‘₯ ∈ 𝑆 Β¬ π‘₯ ∈ (π‘β€˜(𝑆 βˆ– {π‘₯})))
Assertion
Ref Expression
ismri2dd (πœ‘ β†’ 𝑆 ∈ 𝐼)
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝑆
Allowed substitution hints:   πœ‘(π‘₯)   𝐼(π‘₯)   𝑁(π‘₯)   𝑋(π‘₯)

Proof of Theorem ismri2dd
StepHypRef Expression
1 ismri2dd.5 . 2 (πœ‘ β†’ βˆ€π‘₯ ∈ 𝑆 Β¬ π‘₯ ∈ (π‘β€˜(𝑆 βˆ– {π‘₯})))
2 ismri2.1 . . 3 𝑁 = (mrClsβ€˜π΄)
3 ismri2.2 . . 3 𝐼 = (mrIndβ€˜π΄)
4 ismri2d.3 . . 3 (πœ‘ β†’ 𝐴 ∈ (Mooreβ€˜π‘‹))
5 ismri2d.4 . . 3 (πœ‘ β†’ 𝑆 βŠ† 𝑋)
62, 3, 4, 5ismri2d 17582 . 2 (πœ‘ β†’ (𝑆 ∈ 𝐼 ↔ βˆ€π‘₯ ∈ 𝑆 Β¬ π‘₯ ∈ (π‘β€˜(𝑆 βˆ– {π‘₯}))))
71, 6mpbird 257 1 (πœ‘ β†’ 𝑆 ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   = wceq 1540   ∈ wcel 2105  βˆ€wral 3060   βˆ– cdif 3945   βŠ† wss 3948  {csn 4628  β€˜cfv 6543  Moorecmre 17531  mrClscmrc 17532  mrIndcmri 17533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fv 6551  df-mre 17535  df-mri 17537
This theorem is referenced by:  mrissmrid  17590  mreexmrid  17592  acsfiindd  18511
  Copyright terms: Public domain W3C validator