| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ismri2dd | Structured version Visualization version GIF version | ||
| Description: Definition of independence of a subset of the base set in a Moore system. One-way deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ismri2.1 | ⊢ 𝑁 = (mrCls‘𝐴) |
| ismri2.2 | ⊢ 𝐼 = (mrInd‘𝐴) |
| ismri2d.3 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
| ismri2d.4 | ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
| ismri2dd.5 | ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) |
| Ref | Expression |
|---|---|
| ismri2dd | ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismri2dd.5 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) | |
| 2 | ismri2.1 | . . 3 ⊢ 𝑁 = (mrCls‘𝐴) | |
| 3 | ismri2.2 | . . 3 ⊢ 𝐼 = (mrInd‘𝐴) | |
| 4 | ismri2d.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
| 5 | ismri2d.4 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) | |
| 6 | 2, 3, 4, 5 | ismri2d 17600 | . 2 ⊢ (𝜑 → (𝑆 ∈ 𝐼 ↔ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
| 7 | 1, 6 | mpbird 257 | 1 ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3046 ∖ cdif 3919 ⊆ wss 3922 {csn 4597 ‘cfv 6519 Moorecmre 17549 mrClscmrc 17550 mrIndcmri 17551 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-iota 6472 df-fun 6521 df-fv 6527 df-mre 17553 df-mri 17555 |
| This theorem is referenced by: mrissmrid 17608 mreexmrid 17610 acsfiindd 18518 |
| Copyright terms: Public domain | W3C validator |