| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ismri2dd | Structured version Visualization version GIF version | ||
| Description: Definition of independence of a subset of the base set in a Moore system. One-way deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ismri2.1 | ⊢ 𝑁 = (mrCls‘𝐴) |
| ismri2.2 | ⊢ 𝐼 = (mrInd‘𝐴) |
| ismri2d.3 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
| ismri2d.4 | ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
| ismri2dd.5 | ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) |
| Ref | Expression |
|---|---|
| ismri2dd | ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismri2dd.5 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) | |
| 2 | ismri2.1 | . . 3 ⊢ 𝑁 = (mrCls‘𝐴) | |
| 3 | ismri2.2 | . . 3 ⊢ 𝐼 = (mrInd‘𝐴) | |
| 4 | ismri2d.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
| 5 | ismri2d.4 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) | |
| 6 | 2, 3, 4, 5 | ismri2d 17549 | . 2 ⊢ (𝜑 → (𝑆 ∈ 𝐼 ↔ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
| 7 | 1, 6 | mpbird 257 | 1 ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2113 ∀wral 3049 ∖ cdif 3896 ⊆ wss 3899 {csn 4577 ‘cfv 6489 Moorecmre 17494 mrClscmrc 17495 mrIndcmri 17496 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-iota 6445 df-fun 6491 df-fv 6497 df-mre 17498 df-mri 17500 |
| This theorem is referenced by: mrissmrid 17557 mreexmrid 17559 acsfiindd 18469 |
| Copyright terms: Public domain | W3C validator |