Step | Hyp | Ref
| Expression |
1 | | ablfacrp.k |
. . . . . 6
⊢ 𝐾 = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑀} |
2 | | ablfacrp.l |
. . . . . 6
⊢ 𝐿 = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} |
3 | 1, 2 | ineq12i 4144 |
. . . . 5
⊢ (𝐾 ∩ 𝐿) = ({𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑀} ∩ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁}) |
4 | | inrab 4240 |
. . . . 5
⊢ ({𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑀} ∩ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁}) = {𝑥 ∈ 𝐵 ∣ ((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁)} |
5 | 3, 4 | eqtri 2766 |
. . . 4
⊢ (𝐾 ∩ 𝐿) = {𝑥 ∈ 𝐵 ∣ ((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁)} |
6 | | ablfacrp.b |
. . . . . . . . . . . . . 14
⊢ 𝐵 = (Base‘𝐺) |
7 | | ablfacrp.o |
. . . . . . . . . . . . . 14
⊢ 𝑂 = (od‘𝐺) |
8 | 6, 7 | odcl 19144 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝐵 → (𝑂‘𝑥) ∈
ℕ0) |
9 | 8 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑂‘𝑥) ∈
ℕ0) |
10 | 9 | nn0zd 12424 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑂‘𝑥) ∈ ℤ) |
11 | | ablfacrp.m |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ ℕ) |
12 | 11 | nnzd 12425 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ ℤ) |
13 | 12 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑀 ∈ ℤ) |
14 | | ablfacrp.n |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ ℕ) |
15 | 14 | nnzd 12425 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈ ℤ) |
16 | 15 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ ℤ) |
17 | | dvdsgcd 16252 |
. . . . . . . . . . 11
⊢ (((𝑂‘𝑥) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁) → (𝑂‘𝑥) ∥ (𝑀 gcd 𝑁))) |
18 | 10, 13, 16, 17 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁) → (𝑂‘𝑥) ∥ (𝑀 gcd 𝑁))) |
19 | 18 | 3impia 1116 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ ((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁)) → (𝑂‘𝑥) ∥ (𝑀 gcd 𝑁)) |
20 | | ablfacrp.1 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) |
21 | 20 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ ((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁)) → (𝑀 gcd 𝑁) = 1) |
22 | 19, 21 | breqtrd 5100 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ ((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁)) → (𝑂‘𝑥) ∥ 1) |
23 | | simp2 1136 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ ((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁)) → 𝑥 ∈ 𝐵) |
24 | | dvds1 16028 |
. . . . . . . . 9
⊢ ((𝑂‘𝑥) ∈ ℕ0 → ((𝑂‘𝑥) ∥ 1 ↔ (𝑂‘𝑥) = 1)) |
25 | 23, 8, 24 | 3syl 18 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ ((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁)) → ((𝑂‘𝑥) ∥ 1 ↔ (𝑂‘𝑥) = 1)) |
26 | 22, 25 | mpbid 231 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ ((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁)) → (𝑂‘𝑥) = 1) |
27 | | ablfacrp.g |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 ∈ Abel) |
28 | | ablgrp 19391 |
. . . . . . . . . 10
⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
29 | 27, 28 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ Grp) |
30 | 29 | 3ad2ant1 1132 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ ((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁)) → 𝐺 ∈ Grp) |
31 | | ablfacrp.z |
. . . . . . . . 9
⊢ 0 =
(0g‘𝐺) |
32 | 7, 31, 6 | odeq1 19167 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((𝑂‘𝑥) = 1 ↔ 𝑥 = 0 )) |
33 | 30, 23, 32 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ ((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁)) → ((𝑂‘𝑥) = 1 ↔ 𝑥 = 0 )) |
34 | 26, 33 | mpbid 231 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ ((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁)) → 𝑥 = 0 ) |
35 | | velsn 4577 |
. . . . . 6
⊢ (𝑥 ∈ { 0 } ↔ 𝑥 = 0 ) |
36 | 34, 35 | sylibr 233 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ ((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁)) → 𝑥 ∈ { 0 }) |
37 | 36 | rabssdv 4008 |
. . . 4
⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ ((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁)} ⊆ { 0 }) |
38 | 5, 37 | eqsstrid 3969 |
. . 3
⊢ (𝜑 → (𝐾 ∩ 𝐿) ⊆ { 0 }) |
39 | 7, 6 | oddvdssubg 19456 |
. . . . . . . 8
⊢ ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑀} ∈ (SubGrp‘𝐺)) |
40 | 27, 12, 39 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑀} ∈ (SubGrp‘𝐺)) |
41 | 1, 40 | eqeltrid 2843 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ (SubGrp‘𝐺)) |
42 | 31 | subg0cl 18763 |
. . . . . 6
⊢ (𝐾 ∈ (SubGrp‘𝐺) → 0 ∈ 𝐾) |
43 | 41, 42 | syl 17 |
. . . . 5
⊢ (𝜑 → 0 ∈ 𝐾) |
44 | 7, 6 | oddvdssubg 19456 |
. . . . . . . 8
⊢ ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺)) |
45 | 27, 15, 44 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺)) |
46 | 2, 45 | eqeltrid 2843 |
. . . . . 6
⊢ (𝜑 → 𝐿 ∈ (SubGrp‘𝐺)) |
47 | 31 | subg0cl 18763 |
. . . . . 6
⊢ (𝐿 ∈ (SubGrp‘𝐺) → 0 ∈ 𝐿) |
48 | 46, 47 | syl 17 |
. . . . 5
⊢ (𝜑 → 0 ∈ 𝐿) |
49 | 43, 48 | elind 4128 |
. . . 4
⊢ (𝜑 → 0 ∈ (𝐾 ∩ 𝐿)) |
50 | 49 | snssd 4742 |
. . 3
⊢ (𝜑 → { 0 } ⊆ (𝐾 ∩ 𝐿)) |
51 | 38, 50 | eqssd 3938 |
. 2
⊢ (𝜑 → (𝐾 ∩ 𝐿) = { 0 }) |
52 | | ablfacrp.s |
. . . . . 6
⊢ ⊕ =
(LSSum‘𝐺) |
53 | 52 | lsmsubg2 19460 |
. . . . 5
⊢ ((𝐺 ∈ Abel ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐿 ∈ (SubGrp‘𝐺)) → (𝐾 ⊕ 𝐿) ∈ (SubGrp‘𝐺)) |
54 | 27, 41, 46, 53 | syl3anc 1370 |
. . . 4
⊢ (𝜑 → (𝐾 ⊕ 𝐿) ∈ (SubGrp‘𝐺)) |
55 | 6 | subgss 18756 |
. . . 4
⊢ ((𝐾 ⊕ 𝐿) ∈ (SubGrp‘𝐺) → (𝐾 ⊕ 𝐿) ⊆ 𝐵) |
56 | 54, 55 | syl 17 |
. . 3
⊢ (𝜑 → (𝐾 ⊕ 𝐿) ⊆ 𝐵) |
57 | | eqid 2738 |
. . . . . 6
⊢
(.g‘𝐺) = (.g‘𝐺) |
58 | 6, 57 | mulg1 18711 |
. . . . 5
⊢ (𝑔 ∈ 𝐵 → (1(.g‘𝐺)𝑔) = 𝑔) |
59 | 58 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐵) → (1(.g‘𝐺)𝑔) = 𝑔) |
60 | | bezout 16251 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
∃𝑎 ∈ ℤ
∃𝑏 ∈ ℤ
(𝑀 gcd 𝑁) = ((𝑀 · 𝑎) + (𝑁 · 𝑏))) |
61 | 12, 15, 60 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑀 gcd 𝑁) = ((𝑀 · 𝑎) + (𝑁 · 𝑏))) |
62 | 61 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐵) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑀 gcd 𝑁) = ((𝑀 · 𝑎) + (𝑁 · 𝑏))) |
63 | 20 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑀 gcd 𝑁) = 1) |
64 | 63 | eqeq1d 2740 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑀 gcd 𝑁) = ((𝑀 · 𝑎) + (𝑁 · 𝑏)) ↔ 1 = ((𝑀 · 𝑎) + (𝑁 · 𝑏)))) |
65 | 12 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑀 ∈ ℤ) |
66 | | simprl 768 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑎 ∈ ℤ) |
67 | 65, 66 | zmulcld 12432 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑀 · 𝑎) ∈ ℤ) |
68 | 67 | zcnd 12427 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑀 · 𝑎) ∈ ℂ) |
69 | 15 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑁 ∈ ℤ) |
70 | | simprr 770 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑏 ∈ ℤ) |
71 | 69, 70 | zmulcld 12432 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑁 · 𝑏) ∈ ℤ) |
72 | 71 | zcnd 12427 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑁 · 𝑏) ∈ ℂ) |
73 | 68, 72 | addcomd 11177 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑀 · 𝑎) + (𝑁 · 𝑏)) = ((𝑁 · 𝑏) + (𝑀 · 𝑎))) |
74 | 73 | oveq1d 7290 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑀 · 𝑎) + (𝑁 · 𝑏))(.g‘𝐺)𝑔) = (((𝑁 · 𝑏) + (𝑀 · 𝑎))(.g‘𝐺)𝑔)) |
75 | 29 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐺 ∈ Grp) |
76 | | simplr 766 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑔 ∈ 𝐵) |
77 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(+g‘𝐺) = (+g‘𝐺) |
78 | 6, 57, 77 | mulgdir 18735 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ ((𝑁 · 𝑏) ∈ ℤ ∧ (𝑀 · 𝑎) ∈ ℤ ∧ 𝑔 ∈ 𝐵)) → (((𝑁 · 𝑏) + (𝑀 · 𝑎))(.g‘𝐺)𝑔) = (((𝑁 · 𝑏)(.g‘𝐺)𝑔)(+g‘𝐺)((𝑀 · 𝑎)(.g‘𝐺)𝑔))) |
79 | 75, 71, 67, 76, 78 | syl13anc 1371 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑁 · 𝑏) + (𝑀 · 𝑎))(.g‘𝐺)𝑔) = (((𝑁 · 𝑏)(.g‘𝐺)𝑔)(+g‘𝐺)((𝑀 · 𝑎)(.g‘𝐺)𝑔))) |
80 | 74, 79 | eqtrd 2778 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑀 · 𝑎) + (𝑁 · 𝑏))(.g‘𝐺)𝑔) = (((𝑁 · 𝑏)(.g‘𝐺)𝑔)(+g‘𝐺)((𝑀 · 𝑎)(.g‘𝐺)𝑔))) |
81 | 41 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐾 ∈ (SubGrp‘𝐺)) |
82 | 46 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐿 ∈ (SubGrp‘𝐺)) |
83 | 6, 57 | mulgcl 18721 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ (𝑁 · 𝑏) ∈ ℤ ∧ 𝑔 ∈ 𝐵) → ((𝑁 · 𝑏)(.g‘𝐺)𝑔) ∈ 𝐵) |
84 | 75, 71, 76, 83 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑁 · 𝑏)(.g‘𝐺)𝑔) ∈ 𝐵) |
85 | 6, 7 | odcl 19144 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 ∈ 𝐵 → (𝑂‘𝑔) ∈
ℕ0) |
86 | 85 | ad2antlr 724 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂‘𝑔) ∈
ℕ0) |
87 | 86 | nn0zd 12424 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂‘𝑔) ∈ ℤ) |
88 | 65, 69 | zmulcld 12432 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑀 · 𝑁) ∈ ℤ) |
89 | | ablfacrp.2 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (♯‘𝐵) = (𝑀 · 𝑁)) |
90 | 11, 14 | nnmulcld 12026 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑀 · 𝑁) ∈ ℕ) |
91 | 90 | nnnn0d 12293 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑀 · 𝑁) ∈
ℕ0) |
92 | 89, 91 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (♯‘𝐵) ∈
ℕ0) |
93 | 6 | fvexi 6788 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐵 ∈ V |
94 | | hashclb 14073 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐵 ∈ V → (𝐵 ∈ Fin ↔
(♯‘𝐵) ∈
ℕ0)) |
95 | 93, 94 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 ∈ Fin ↔
(♯‘𝐵) ∈
ℕ0) |
96 | 92, 95 | sylibr 233 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐵 ∈ Fin) |
97 | 96 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐵 ∈ Fin) |
98 | 6, 7 | oddvds2 19173 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑔 ∈ 𝐵) → (𝑂‘𝑔) ∥ (♯‘𝐵)) |
99 | 75, 97, 76, 98 | syl3anc 1370 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂‘𝑔) ∥ (♯‘𝐵)) |
100 | 89 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (♯‘𝐵) = (𝑀 · 𝑁)) |
101 | 99, 100 | breqtrd 5100 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂‘𝑔) ∥ (𝑀 · 𝑁)) |
102 | 87, 88, 70, 101 | dvdsmultr1d 16006 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂‘𝑔) ∥ ((𝑀 · 𝑁) · 𝑏)) |
103 | 65 | zcnd 12427 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑀 ∈ ℂ) |
104 | 69 | zcnd 12427 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑁 ∈ ℂ) |
105 | 70 | zcnd 12427 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑏 ∈ ℂ) |
106 | 103, 104,
105 | mulassd 10998 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑀 · 𝑁) · 𝑏) = (𝑀 · (𝑁 · 𝑏))) |
107 | 102, 106 | breqtrd 5100 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂‘𝑔) ∥ (𝑀 · (𝑁 · 𝑏))) |
108 | 6, 7, 57 | odmulgid 19161 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ Grp ∧ 𝑔 ∈ 𝐵 ∧ (𝑁 · 𝑏) ∈ ℤ) ∧ 𝑀 ∈ ℤ) → ((𝑂‘((𝑁 · 𝑏)(.g‘𝐺)𝑔)) ∥ 𝑀 ↔ (𝑂‘𝑔) ∥ (𝑀 · (𝑁 · 𝑏)))) |
109 | 75, 76, 71, 65, 108 | syl31anc 1372 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑂‘((𝑁 · 𝑏)(.g‘𝐺)𝑔)) ∥ 𝑀 ↔ (𝑂‘𝑔) ∥ (𝑀 · (𝑁 · 𝑏)))) |
110 | 107, 109 | mpbird 256 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂‘((𝑁 · 𝑏)(.g‘𝐺)𝑔)) ∥ 𝑀) |
111 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑥 = ((𝑁 · 𝑏)(.g‘𝐺)𝑔) → (𝑂‘𝑥) = (𝑂‘((𝑁 · 𝑏)(.g‘𝐺)𝑔))) |
112 | 111 | breq1d 5084 |
. . . . . . . . . . . 12
⊢ (𝑥 = ((𝑁 · 𝑏)(.g‘𝐺)𝑔) → ((𝑂‘𝑥) ∥ 𝑀 ↔ (𝑂‘((𝑁 · 𝑏)(.g‘𝐺)𝑔)) ∥ 𝑀)) |
113 | 112, 1 | elrab2 3627 |
. . . . . . . . . . 11
⊢ (((𝑁 · 𝑏)(.g‘𝐺)𝑔) ∈ 𝐾 ↔ (((𝑁 · 𝑏)(.g‘𝐺)𝑔) ∈ 𝐵 ∧ (𝑂‘((𝑁 · 𝑏)(.g‘𝐺)𝑔)) ∥ 𝑀)) |
114 | 84, 110, 113 | sylanbrc 583 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑁 · 𝑏)(.g‘𝐺)𝑔) ∈ 𝐾) |
115 | 6, 57 | mulgcl 18721 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ (𝑀 · 𝑎) ∈ ℤ ∧ 𝑔 ∈ 𝐵) → ((𝑀 · 𝑎)(.g‘𝐺)𝑔) ∈ 𝐵) |
116 | 75, 67, 76, 115 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑀 · 𝑎)(.g‘𝐺)𝑔) ∈ 𝐵) |
117 | 87, 88, 66, 101 | dvdsmultr1d 16006 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂‘𝑔) ∥ ((𝑀 · 𝑁) · 𝑎)) |
118 | | zcn 12324 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ ℤ → 𝑎 ∈
ℂ) |
119 | 118 | ad2antrl 725 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑎 ∈ ℂ) |
120 | | mulass 10959 |
. . . . . . . . . . . . . . 15
⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑎 ∈ ℂ) → ((𝑀 · 𝑁) · 𝑎) = (𝑀 · (𝑁 · 𝑎))) |
121 | | mul12 11140 |
. . . . . . . . . . . . . . 15
⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (𝑀 · (𝑁 · 𝑎)) = (𝑁 · (𝑀 · 𝑎))) |
122 | 120, 121 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑎 ∈ ℂ) → ((𝑀 · 𝑁) · 𝑎) = (𝑁 · (𝑀 · 𝑎))) |
123 | 103, 104,
119, 122 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑀 · 𝑁) · 𝑎) = (𝑁 · (𝑀 · 𝑎))) |
124 | 117, 123 | breqtrd 5100 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂‘𝑔) ∥ (𝑁 · (𝑀 · 𝑎))) |
125 | 6, 7, 57 | odmulgid 19161 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ Grp ∧ 𝑔 ∈ 𝐵 ∧ (𝑀 · 𝑎) ∈ ℤ) ∧ 𝑁 ∈ ℤ) → ((𝑂‘((𝑀 · 𝑎)(.g‘𝐺)𝑔)) ∥ 𝑁 ↔ (𝑂‘𝑔) ∥ (𝑁 · (𝑀 · 𝑎)))) |
126 | 75, 76, 67, 69, 125 | syl31anc 1372 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑂‘((𝑀 · 𝑎)(.g‘𝐺)𝑔)) ∥ 𝑁 ↔ (𝑂‘𝑔) ∥ (𝑁 · (𝑀 · 𝑎)))) |
127 | 124, 126 | mpbird 256 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂‘((𝑀 · 𝑎)(.g‘𝐺)𝑔)) ∥ 𝑁) |
128 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑥 = ((𝑀 · 𝑎)(.g‘𝐺)𝑔) → (𝑂‘𝑥) = (𝑂‘((𝑀 · 𝑎)(.g‘𝐺)𝑔))) |
129 | 128 | breq1d 5084 |
. . . . . . . . . . . 12
⊢ (𝑥 = ((𝑀 · 𝑎)(.g‘𝐺)𝑔) → ((𝑂‘𝑥) ∥ 𝑁 ↔ (𝑂‘((𝑀 · 𝑎)(.g‘𝐺)𝑔)) ∥ 𝑁)) |
130 | 129, 2 | elrab2 3627 |
. . . . . . . . . . 11
⊢ (((𝑀 · 𝑎)(.g‘𝐺)𝑔) ∈ 𝐿 ↔ (((𝑀 · 𝑎)(.g‘𝐺)𝑔) ∈ 𝐵 ∧ (𝑂‘((𝑀 · 𝑎)(.g‘𝐺)𝑔)) ∥ 𝑁)) |
131 | 116, 127,
130 | sylanbrc 583 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑀 · 𝑎)(.g‘𝐺)𝑔) ∈ 𝐿) |
132 | 77, 52 | lsmelvali 19255 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐿 ∈ (SubGrp‘𝐺)) ∧ (((𝑁 · 𝑏)(.g‘𝐺)𝑔) ∈ 𝐾 ∧ ((𝑀 · 𝑎)(.g‘𝐺)𝑔) ∈ 𝐿)) → (((𝑁 · 𝑏)(.g‘𝐺)𝑔)(+g‘𝐺)((𝑀 · 𝑎)(.g‘𝐺)𝑔)) ∈ (𝐾 ⊕ 𝐿)) |
133 | 81, 82, 114, 131, 132 | syl22anc 836 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑁 · 𝑏)(.g‘𝐺)𝑔)(+g‘𝐺)((𝑀 · 𝑎)(.g‘𝐺)𝑔)) ∈ (𝐾 ⊕ 𝐿)) |
134 | 80, 133 | eqeltrd 2839 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑀 · 𝑎) + (𝑁 · 𝑏))(.g‘𝐺)𝑔) ∈ (𝐾 ⊕ 𝐿)) |
135 | | oveq1 7282 |
. . . . . . . . 9
⊢ (1 =
((𝑀 · 𝑎) + (𝑁 · 𝑏)) → (1(.g‘𝐺)𝑔) = (((𝑀 · 𝑎) + (𝑁 · 𝑏))(.g‘𝐺)𝑔)) |
136 | 135 | eleq1d 2823 |
. . . . . . . 8
⊢ (1 =
((𝑀 · 𝑎) + (𝑁 · 𝑏)) → ((1(.g‘𝐺)𝑔) ∈ (𝐾 ⊕ 𝐿) ↔ (((𝑀 · 𝑎) + (𝑁 · 𝑏))(.g‘𝐺)𝑔) ∈ (𝐾 ⊕ 𝐿))) |
137 | 134, 136 | syl5ibrcom 246 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (1 = ((𝑀 · 𝑎) + (𝑁 · 𝑏)) → (1(.g‘𝐺)𝑔) ∈ (𝐾 ⊕ 𝐿))) |
138 | 64, 137 | sylbid 239 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑀 gcd 𝑁) = ((𝑀 · 𝑎) + (𝑁 · 𝑏)) → (1(.g‘𝐺)𝑔) ∈ (𝐾 ⊕ 𝐿))) |
139 | 138 | rexlimdvva 3223 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐵) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑀 gcd 𝑁) = ((𝑀 · 𝑎) + (𝑁 · 𝑏)) → (1(.g‘𝐺)𝑔) ∈ (𝐾 ⊕ 𝐿))) |
140 | 62, 139 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐵) → (1(.g‘𝐺)𝑔) ∈ (𝐾 ⊕ 𝐿)) |
141 | 59, 140 | eqeltrrd 2840 |
. . 3
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐵) → 𝑔 ∈ (𝐾 ⊕ 𝐿)) |
142 | 56, 141 | eqelssd 3942 |
. 2
⊢ (𝜑 → (𝐾 ⊕ 𝐿) = 𝐵) |
143 | 51, 142 | jca 512 |
1
⊢ (𝜑 → ((𝐾 ∩ 𝐿) = { 0 } ∧ (𝐾 ⊕ 𝐿) = 𝐵)) |