MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfacrp Structured version   Visualization version   GIF version

Theorem ablfacrp 20101
Description: A finite abelian group whose order factors into relatively prime integers, itself "factors" into two subgroups 𝐾, 𝐿 that have trivial intersection and whose product is the whole group. Lemma 6.1C.2 of [Shapiro], p. 199. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
ablfacrp.b 𝐵 = (Base‘𝐺)
ablfacrp.o 𝑂 = (od‘𝐺)
ablfacrp.k 𝐾 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀}
ablfacrp.l 𝐿 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}
ablfacrp.g (𝜑𝐺 ∈ Abel)
ablfacrp.m (𝜑𝑀 ∈ ℕ)
ablfacrp.n (𝜑𝑁 ∈ ℕ)
ablfacrp.1 (𝜑 → (𝑀 gcd 𝑁) = 1)
ablfacrp.2 (𝜑 → (♯‘𝐵) = (𝑀 · 𝑁))
ablfacrp.z 0 = (0g𝐺)
ablfacrp.s = (LSSum‘𝐺)
Assertion
Ref Expression
ablfacrp (𝜑 → ((𝐾𝐿) = { 0 } ∧ (𝐾 𝐿) = 𝐵))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝑂   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥   𝑥, 0
Allowed substitution hints:   (𝑥)   𝐾(𝑥)   𝐿(𝑥)

Proof of Theorem ablfacrp
Dummy variables 𝑎 𝑏 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ablfacrp.k . . . . . 6 𝐾 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀}
2 ablfacrp.l . . . . . 6 𝐿 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}
31, 2ineq12i 4226 . . . . 5 (𝐾𝐿) = ({𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀} ∩ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁})
4 inrab 4322 . . . . 5 ({𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀} ∩ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}) = {𝑥𝐵 ∣ ((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁)}
53, 4eqtri 2763 . . . 4 (𝐾𝐿) = {𝑥𝐵 ∣ ((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁)}
6 ablfacrp.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝐺)
7 ablfacrp.o . . . . . . . . . . . . . 14 𝑂 = (od‘𝐺)
86, 7odcl 19569 . . . . . . . . . . . . 13 (𝑥𝐵 → (𝑂𝑥) ∈ ℕ0)
98adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥𝐵) → (𝑂𝑥) ∈ ℕ0)
109nn0zd 12637 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → (𝑂𝑥) ∈ ℤ)
11 ablfacrp.m . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ)
1211nnzd 12638 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
1312adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → 𝑀 ∈ ℤ)
14 ablfacrp.n . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℕ)
1514nnzd 12638 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
1615adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → 𝑁 ∈ ℤ)
17 dvdsgcd 16578 . . . . . . . . . . 11 (((𝑂𝑥) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁) → (𝑂𝑥) ∥ (𝑀 gcd 𝑁)))
1810, 13, 16, 17syl3anc 1370 . . . . . . . . . 10 ((𝜑𝑥𝐵) → (((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁) → (𝑂𝑥) ∥ (𝑀 gcd 𝑁)))
19183impia 1116 . . . . . . . . 9 ((𝜑𝑥𝐵 ∧ ((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁)) → (𝑂𝑥) ∥ (𝑀 gcd 𝑁))
20 ablfacrp.1 . . . . . . . . . 10 (𝜑 → (𝑀 gcd 𝑁) = 1)
21203ad2ant1 1132 . . . . . . . . 9 ((𝜑𝑥𝐵 ∧ ((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁)) → (𝑀 gcd 𝑁) = 1)
2219, 21breqtrd 5174 . . . . . . . 8 ((𝜑𝑥𝐵 ∧ ((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁)) → (𝑂𝑥) ∥ 1)
23 simp2 1136 . . . . . . . . 9 ((𝜑𝑥𝐵 ∧ ((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁)) → 𝑥𝐵)
24 dvds1 16353 . . . . . . . . 9 ((𝑂𝑥) ∈ ℕ0 → ((𝑂𝑥) ∥ 1 ↔ (𝑂𝑥) = 1))
2523, 8, 243syl 18 . . . . . . . 8 ((𝜑𝑥𝐵 ∧ ((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁)) → ((𝑂𝑥) ∥ 1 ↔ (𝑂𝑥) = 1))
2622, 25mpbid 232 . . . . . . 7 ((𝜑𝑥𝐵 ∧ ((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁)) → (𝑂𝑥) = 1)
27 ablfacrp.g . . . . . . . . . 10 (𝜑𝐺 ∈ Abel)
28 ablgrp 19818 . . . . . . . . . 10 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
2927, 28syl 17 . . . . . . . . 9 (𝜑𝐺 ∈ Grp)
30293ad2ant1 1132 . . . . . . . 8 ((𝜑𝑥𝐵 ∧ ((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁)) → 𝐺 ∈ Grp)
31 ablfacrp.z . . . . . . . . 9 0 = (0g𝐺)
327, 31, 6odeq1 19593 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((𝑂𝑥) = 1 ↔ 𝑥 = 0 ))
3330, 23, 32syl2anc 584 . . . . . . 7 ((𝜑𝑥𝐵 ∧ ((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁)) → ((𝑂𝑥) = 1 ↔ 𝑥 = 0 ))
3426, 33mpbid 232 . . . . . 6 ((𝜑𝑥𝐵 ∧ ((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁)) → 𝑥 = 0 )
35 velsn 4647 . . . . . 6 (𝑥 ∈ { 0 } ↔ 𝑥 = 0 )
3634, 35sylibr 234 . . . . 5 ((𝜑𝑥𝐵 ∧ ((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁)) → 𝑥 ∈ { 0 })
3736rabssdv 4085 . . . 4 (𝜑 → {𝑥𝐵 ∣ ((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁)} ⊆ { 0 })
385, 37eqsstrid 4044 . . 3 (𝜑 → (𝐾𝐿) ⊆ { 0 })
397, 6oddvdssubg 19888 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀} ∈ (SubGrp‘𝐺))
4027, 12, 39syl2anc 584 . . . . . . 7 (𝜑 → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀} ∈ (SubGrp‘𝐺))
411, 40eqeltrid 2843 . . . . . 6 (𝜑𝐾 ∈ (SubGrp‘𝐺))
4231subg0cl 19165 . . . . . 6 (𝐾 ∈ (SubGrp‘𝐺) → 0𝐾)
4341, 42syl 17 . . . . 5 (𝜑0𝐾)
447, 6oddvdssubg 19888 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺))
4527, 15, 44syl2anc 584 . . . . . . 7 (𝜑 → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺))
462, 45eqeltrid 2843 . . . . . 6 (𝜑𝐿 ∈ (SubGrp‘𝐺))
4731subg0cl 19165 . . . . . 6 (𝐿 ∈ (SubGrp‘𝐺) → 0𝐿)
4846, 47syl 17 . . . . 5 (𝜑0𝐿)
4943, 48elind 4210 . . . 4 (𝜑0 ∈ (𝐾𝐿))
5049snssd 4814 . . 3 (𝜑 → { 0 } ⊆ (𝐾𝐿))
5138, 50eqssd 4013 . 2 (𝜑 → (𝐾𝐿) = { 0 })
52 ablfacrp.s . . . . . 6 = (LSSum‘𝐺)
5352lsmsubg2 19892 . . . . 5 ((𝐺 ∈ Abel ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐿 ∈ (SubGrp‘𝐺)) → (𝐾 𝐿) ∈ (SubGrp‘𝐺))
5427, 41, 46, 53syl3anc 1370 . . . 4 (𝜑 → (𝐾 𝐿) ∈ (SubGrp‘𝐺))
556subgss 19158 . . . 4 ((𝐾 𝐿) ∈ (SubGrp‘𝐺) → (𝐾 𝐿) ⊆ 𝐵)
5654, 55syl 17 . . 3 (𝜑 → (𝐾 𝐿) ⊆ 𝐵)
57 eqid 2735 . . . . . 6 (.g𝐺) = (.g𝐺)
586, 57mulg1 19112 . . . . 5 (𝑔𝐵 → (1(.g𝐺)𝑔) = 𝑔)
5958adantl 481 . . . 4 ((𝜑𝑔𝐵) → (1(.g𝐺)𝑔) = 𝑔)
60 bezout 16577 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑀 gcd 𝑁) = ((𝑀 · 𝑎) + (𝑁 · 𝑏)))
6112, 15, 60syl2anc 584 . . . . . 6 (𝜑 → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑀 gcd 𝑁) = ((𝑀 · 𝑎) + (𝑁 · 𝑏)))
6261adantr 480 . . . . 5 ((𝜑𝑔𝐵) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑀 gcd 𝑁) = ((𝑀 · 𝑎) + (𝑁 · 𝑏)))
6320ad2antrr 726 . . . . . . . 8 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑀 gcd 𝑁) = 1)
6463eqeq1d 2737 . . . . . . 7 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑀 gcd 𝑁) = ((𝑀 · 𝑎) + (𝑁 · 𝑏)) ↔ 1 = ((𝑀 · 𝑎) + (𝑁 · 𝑏))))
6512ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑀 ∈ ℤ)
66 simprl 771 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑎 ∈ ℤ)
6765, 66zmulcld 12726 . . . . . . . . . . . . 13 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑀 · 𝑎) ∈ ℤ)
6867zcnd 12721 . . . . . . . . . . . 12 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑀 · 𝑎) ∈ ℂ)
6915ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑁 ∈ ℤ)
70 simprr 773 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑏 ∈ ℤ)
7169, 70zmulcld 12726 . . . . . . . . . . . . 13 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑁 · 𝑏) ∈ ℤ)
7271zcnd 12721 . . . . . . . . . . . 12 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑁 · 𝑏) ∈ ℂ)
7368, 72addcomd 11461 . . . . . . . . . . 11 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑀 · 𝑎) + (𝑁 · 𝑏)) = ((𝑁 · 𝑏) + (𝑀 · 𝑎)))
7473oveq1d 7446 . . . . . . . . . 10 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑀 · 𝑎) + (𝑁 · 𝑏))(.g𝐺)𝑔) = (((𝑁 · 𝑏) + (𝑀 · 𝑎))(.g𝐺)𝑔))
7529ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐺 ∈ Grp)
76 simplr 769 . . . . . . . . . . 11 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑔𝐵)
77 eqid 2735 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
786, 57, 77mulgdir 19137 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ ((𝑁 · 𝑏) ∈ ℤ ∧ (𝑀 · 𝑎) ∈ ℤ ∧ 𝑔𝐵)) → (((𝑁 · 𝑏) + (𝑀 · 𝑎))(.g𝐺)𝑔) = (((𝑁 · 𝑏)(.g𝐺)𝑔)(+g𝐺)((𝑀 · 𝑎)(.g𝐺)𝑔)))
7975, 71, 67, 76, 78syl13anc 1371 . . . . . . . . . 10 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑁 · 𝑏) + (𝑀 · 𝑎))(.g𝐺)𝑔) = (((𝑁 · 𝑏)(.g𝐺)𝑔)(+g𝐺)((𝑀 · 𝑎)(.g𝐺)𝑔)))
8074, 79eqtrd 2775 . . . . . . . . 9 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑀 · 𝑎) + (𝑁 · 𝑏))(.g𝐺)𝑔) = (((𝑁 · 𝑏)(.g𝐺)𝑔)(+g𝐺)((𝑀 · 𝑎)(.g𝐺)𝑔)))
8141ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐾 ∈ (SubGrp‘𝐺))
8246ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐿 ∈ (SubGrp‘𝐺))
836, 57mulgcl 19122 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑁 · 𝑏) ∈ ℤ ∧ 𝑔𝐵) → ((𝑁 · 𝑏)(.g𝐺)𝑔) ∈ 𝐵)
8475, 71, 76, 83syl3anc 1370 . . . . . . . . . . 11 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑁 · 𝑏)(.g𝐺)𝑔) ∈ 𝐵)
856, 7odcl 19569 . . . . . . . . . . . . . . . 16 (𝑔𝐵 → (𝑂𝑔) ∈ ℕ0)
8685ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂𝑔) ∈ ℕ0)
8786nn0zd 12637 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂𝑔) ∈ ℤ)
8865, 69zmulcld 12726 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑀 · 𝑁) ∈ ℤ)
89 ablfacrp.2 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (♯‘𝐵) = (𝑀 · 𝑁))
9011, 14nnmulcld 12317 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑀 · 𝑁) ∈ ℕ)
9190nnnn0d 12585 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑀 · 𝑁) ∈ ℕ0)
9289, 91eqeltrd 2839 . . . . . . . . . . . . . . . . . 18 (𝜑 → (♯‘𝐵) ∈ ℕ0)
936fvexi 6921 . . . . . . . . . . . . . . . . . . 19 𝐵 ∈ V
94 hashclb 14394 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ V → (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0))
9593, 94ax-mp 5 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0)
9692, 95sylibr 234 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ Fin)
9796ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐵 ∈ Fin)
986, 7oddvds2 19599 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑔𝐵) → (𝑂𝑔) ∥ (♯‘𝐵))
9975, 97, 76, 98syl3anc 1370 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂𝑔) ∥ (♯‘𝐵))
10089ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (♯‘𝐵) = (𝑀 · 𝑁))
10199, 100breqtrd 5174 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂𝑔) ∥ (𝑀 · 𝑁))
10287, 88, 70, 101dvdsmultr1d 16331 . . . . . . . . . . . . 13 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂𝑔) ∥ ((𝑀 · 𝑁) · 𝑏))
10365zcnd 12721 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑀 ∈ ℂ)
10469zcnd 12721 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑁 ∈ ℂ)
10570zcnd 12721 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑏 ∈ ℂ)
106103, 104, 105mulassd 11282 . . . . . . . . . . . . 13 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑀 · 𝑁) · 𝑏) = (𝑀 · (𝑁 · 𝑏)))
107102, 106breqtrd 5174 . . . . . . . . . . . 12 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂𝑔) ∥ (𝑀 · (𝑁 · 𝑏)))
1086, 7, 57odmulgid 19587 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝑔𝐵 ∧ (𝑁 · 𝑏) ∈ ℤ) ∧ 𝑀 ∈ ℤ) → ((𝑂‘((𝑁 · 𝑏)(.g𝐺)𝑔)) ∥ 𝑀 ↔ (𝑂𝑔) ∥ (𝑀 · (𝑁 · 𝑏))))
10975, 76, 71, 65, 108syl31anc 1372 . . . . . . . . . . . 12 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑂‘((𝑁 · 𝑏)(.g𝐺)𝑔)) ∥ 𝑀 ↔ (𝑂𝑔) ∥ (𝑀 · (𝑁 · 𝑏))))
110107, 109mpbird 257 . . . . . . . . . . 11 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂‘((𝑁 · 𝑏)(.g𝐺)𝑔)) ∥ 𝑀)
111 fveq2 6907 . . . . . . . . . . . . 13 (𝑥 = ((𝑁 · 𝑏)(.g𝐺)𝑔) → (𝑂𝑥) = (𝑂‘((𝑁 · 𝑏)(.g𝐺)𝑔)))
112111breq1d 5158 . . . . . . . . . . . 12 (𝑥 = ((𝑁 · 𝑏)(.g𝐺)𝑔) → ((𝑂𝑥) ∥ 𝑀 ↔ (𝑂‘((𝑁 · 𝑏)(.g𝐺)𝑔)) ∥ 𝑀))
113112, 1elrab2 3698 . . . . . . . . . . 11 (((𝑁 · 𝑏)(.g𝐺)𝑔) ∈ 𝐾 ↔ (((𝑁 · 𝑏)(.g𝐺)𝑔) ∈ 𝐵 ∧ (𝑂‘((𝑁 · 𝑏)(.g𝐺)𝑔)) ∥ 𝑀))
11484, 110, 113sylanbrc 583 . . . . . . . . . 10 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑁 · 𝑏)(.g𝐺)𝑔) ∈ 𝐾)
1156, 57mulgcl 19122 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑀 · 𝑎) ∈ ℤ ∧ 𝑔𝐵) → ((𝑀 · 𝑎)(.g𝐺)𝑔) ∈ 𝐵)
11675, 67, 76, 115syl3anc 1370 . . . . . . . . . . 11 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑀 · 𝑎)(.g𝐺)𝑔) ∈ 𝐵)
11787, 88, 66, 101dvdsmultr1d 16331 . . . . . . . . . . . . 13 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂𝑔) ∥ ((𝑀 · 𝑁) · 𝑎))
118 zcn 12616 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
119118ad2antrl 728 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑎 ∈ ℂ)
120 mulass 11241 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑎 ∈ ℂ) → ((𝑀 · 𝑁) · 𝑎) = (𝑀 · (𝑁 · 𝑎)))
121 mul12 11424 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (𝑀 · (𝑁 · 𝑎)) = (𝑁 · (𝑀 · 𝑎)))
122120, 121eqtrd 2775 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑎 ∈ ℂ) → ((𝑀 · 𝑁) · 𝑎) = (𝑁 · (𝑀 · 𝑎)))
123103, 104, 119, 122syl3anc 1370 . . . . . . . . . . . . 13 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑀 · 𝑁) · 𝑎) = (𝑁 · (𝑀 · 𝑎)))
124117, 123breqtrd 5174 . . . . . . . . . . . 12 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂𝑔) ∥ (𝑁 · (𝑀 · 𝑎)))
1256, 7, 57odmulgid 19587 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝑔𝐵 ∧ (𝑀 · 𝑎) ∈ ℤ) ∧ 𝑁 ∈ ℤ) → ((𝑂‘((𝑀 · 𝑎)(.g𝐺)𝑔)) ∥ 𝑁 ↔ (𝑂𝑔) ∥ (𝑁 · (𝑀 · 𝑎))))
12675, 76, 67, 69, 125syl31anc 1372 . . . . . . . . . . . 12 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑂‘((𝑀 · 𝑎)(.g𝐺)𝑔)) ∥ 𝑁 ↔ (𝑂𝑔) ∥ (𝑁 · (𝑀 · 𝑎))))
127124, 126mpbird 257 . . . . . . . . . . 11 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂‘((𝑀 · 𝑎)(.g𝐺)𝑔)) ∥ 𝑁)
128 fveq2 6907 . . . . . . . . . . . . 13 (𝑥 = ((𝑀 · 𝑎)(.g𝐺)𝑔) → (𝑂𝑥) = (𝑂‘((𝑀 · 𝑎)(.g𝐺)𝑔)))
129128breq1d 5158 . . . . . . . . . . . 12 (𝑥 = ((𝑀 · 𝑎)(.g𝐺)𝑔) → ((𝑂𝑥) ∥ 𝑁 ↔ (𝑂‘((𝑀 · 𝑎)(.g𝐺)𝑔)) ∥ 𝑁))
130129, 2elrab2 3698 . . . . . . . . . . 11 (((𝑀 · 𝑎)(.g𝐺)𝑔) ∈ 𝐿 ↔ (((𝑀 · 𝑎)(.g𝐺)𝑔) ∈ 𝐵 ∧ (𝑂‘((𝑀 · 𝑎)(.g𝐺)𝑔)) ∥ 𝑁))
131116, 127, 130sylanbrc 583 . . . . . . . . . 10 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑀 · 𝑎)(.g𝐺)𝑔) ∈ 𝐿)
13277, 52lsmelvali 19683 . . . . . . . . . 10 (((𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐿 ∈ (SubGrp‘𝐺)) ∧ (((𝑁 · 𝑏)(.g𝐺)𝑔) ∈ 𝐾 ∧ ((𝑀 · 𝑎)(.g𝐺)𝑔) ∈ 𝐿)) → (((𝑁 · 𝑏)(.g𝐺)𝑔)(+g𝐺)((𝑀 · 𝑎)(.g𝐺)𝑔)) ∈ (𝐾 𝐿))
13381, 82, 114, 131, 132syl22anc 839 . . . . . . . . 9 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑁 · 𝑏)(.g𝐺)𝑔)(+g𝐺)((𝑀 · 𝑎)(.g𝐺)𝑔)) ∈ (𝐾 𝐿))
13480, 133eqeltrd 2839 . . . . . . . 8 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑀 · 𝑎) + (𝑁 · 𝑏))(.g𝐺)𝑔) ∈ (𝐾 𝐿))
135 oveq1 7438 . . . . . . . . 9 (1 = ((𝑀 · 𝑎) + (𝑁 · 𝑏)) → (1(.g𝐺)𝑔) = (((𝑀 · 𝑎) + (𝑁 · 𝑏))(.g𝐺)𝑔))
136135eleq1d 2824 . . . . . . . 8 (1 = ((𝑀 · 𝑎) + (𝑁 · 𝑏)) → ((1(.g𝐺)𝑔) ∈ (𝐾 𝐿) ↔ (((𝑀 · 𝑎) + (𝑁 · 𝑏))(.g𝐺)𝑔) ∈ (𝐾 𝐿)))
137134, 136syl5ibrcom 247 . . . . . . 7 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (1 = ((𝑀 · 𝑎) + (𝑁 · 𝑏)) → (1(.g𝐺)𝑔) ∈ (𝐾 𝐿)))
13864, 137sylbid 240 . . . . . 6 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑀 gcd 𝑁) = ((𝑀 · 𝑎) + (𝑁 · 𝑏)) → (1(.g𝐺)𝑔) ∈ (𝐾 𝐿)))
139138rexlimdvva 3211 . . . . 5 ((𝜑𝑔𝐵) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑀 gcd 𝑁) = ((𝑀 · 𝑎) + (𝑁 · 𝑏)) → (1(.g𝐺)𝑔) ∈ (𝐾 𝐿)))
14062, 139mpd 15 . . . 4 ((𝜑𝑔𝐵) → (1(.g𝐺)𝑔) ∈ (𝐾 𝐿))
14159, 140eqeltrrd 2840 . . 3 ((𝜑𝑔𝐵) → 𝑔 ∈ (𝐾 𝐿))
14256, 141eqelssd 4017 . 2 (𝜑 → (𝐾 𝐿) = 𝐵)
14351, 142jca 511 1 (𝜑 → ((𝐾𝐿) = { 0 } ∧ (𝐾 𝐿) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wrex 3068  {crab 3433  Vcvv 3478  cin 3962  wss 3963  {csn 4631   class class class wbr 5148  cfv 6563  (class class class)co 7431  Fincfn 8984  cc 11151  1c1 11154   + caddc 11156   · cmul 11158  cn 12264  0cn0 12524  cz 12611  chash 14366  cdvds 16287   gcd cgcd 16528  Basecbs 17245  +gcplusg 17298  0gc0g 17486  Grpcgrp 18964  .gcmg 19098  SubGrpcsubg 19151  odcod 19557  LSSumclsm 19667  Abelcabl 19814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-omul 8510  df-er 8744  df-ec 8746  df-qs 8750  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-acn 9980  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-dvds 16288  df-gcd 16529  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-eqg 19156  df-cntz 19348  df-od 19561  df-lsm 19669  df-cmn 19815  df-abl 19816
This theorem is referenced by:  ablfacrp2  20102  ablfac1b  20105
  Copyright terms: Public domain W3C validator