| Step | Hyp | Ref
| Expression |
| 1 | | ablfacrp.k |
. . . . . 6
⊢ 𝐾 = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑀} |
| 2 | | ablfacrp.l |
. . . . . 6
⊢ 𝐿 = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} |
| 3 | 1, 2 | ineq12i 4198 |
. . . . 5
⊢ (𝐾 ∩ 𝐿) = ({𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑀} ∩ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁}) |
| 4 | | inrab 4296 |
. . . . 5
⊢ ({𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑀} ∩ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁}) = {𝑥 ∈ 𝐵 ∣ ((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁)} |
| 5 | 3, 4 | eqtri 2759 |
. . . 4
⊢ (𝐾 ∩ 𝐿) = {𝑥 ∈ 𝐵 ∣ ((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁)} |
| 6 | | ablfacrp.b |
. . . . . . . . . . . . . 14
⊢ 𝐵 = (Base‘𝐺) |
| 7 | | ablfacrp.o |
. . . . . . . . . . . . . 14
⊢ 𝑂 = (od‘𝐺) |
| 8 | 6, 7 | odcl 19522 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝐵 → (𝑂‘𝑥) ∈
ℕ0) |
| 9 | 8 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑂‘𝑥) ∈
ℕ0) |
| 10 | 9 | nn0zd 12619 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑂‘𝑥) ∈ ℤ) |
| 11 | | ablfacrp.m |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 12 | 11 | nnzd 12620 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 13 | 12 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑀 ∈ ℤ) |
| 14 | | ablfacrp.n |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 15 | 14 | nnzd 12620 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 16 | 15 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ ℤ) |
| 17 | | dvdsgcd 16568 |
. . . . . . . . . . 11
⊢ (((𝑂‘𝑥) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁) → (𝑂‘𝑥) ∥ (𝑀 gcd 𝑁))) |
| 18 | 10, 13, 16, 17 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁) → (𝑂‘𝑥) ∥ (𝑀 gcd 𝑁))) |
| 19 | 18 | 3impia 1117 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ ((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁)) → (𝑂‘𝑥) ∥ (𝑀 gcd 𝑁)) |
| 20 | | ablfacrp.1 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) |
| 21 | 20 | 3ad2ant1 1133 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ ((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁)) → (𝑀 gcd 𝑁) = 1) |
| 22 | 19, 21 | breqtrd 5150 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ ((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁)) → (𝑂‘𝑥) ∥ 1) |
| 23 | | simp2 1137 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ ((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁)) → 𝑥 ∈ 𝐵) |
| 24 | | dvds1 16343 |
. . . . . . . . 9
⊢ ((𝑂‘𝑥) ∈ ℕ0 → ((𝑂‘𝑥) ∥ 1 ↔ (𝑂‘𝑥) = 1)) |
| 25 | 23, 8, 24 | 3syl 18 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ ((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁)) → ((𝑂‘𝑥) ∥ 1 ↔ (𝑂‘𝑥) = 1)) |
| 26 | 22, 25 | mpbid 232 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ ((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁)) → (𝑂‘𝑥) = 1) |
| 27 | | ablfacrp.g |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 ∈ Abel) |
| 28 | | ablgrp 19771 |
. . . . . . . . . 10
⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
| 29 | 27, 28 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ Grp) |
| 30 | 29 | 3ad2ant1 1133 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ ((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁)) → 𝐺 ∈ Grp) |
| 31 | | ablfacrp.z |
. . . . . . . . 9
⊢ 0 =
(0g‘𝐺) |
| 32 | 7, 31, 6 | odeq1 19546 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((𝑂‘𝑥) = 1 ↔ 𝑥 = 0 )) |
| 33 | 30, 23, 32 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ ((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁)) → ((𝑂‘𝑥) = 1 ↔ 𝑥 = 0 )) |
| 34 | 26, 33 | mpbid 232 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ ((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁)) → 𝑥 = 0 ) |
| 35 | | velsn 4622 |
. . . . . 6
⊢ (𝑥 ∈ { 0 } ↔ 𝑥 = 0 ) |
| 36 | 34, 35 | sylibr 234 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ ((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁)) → 𝑥 ∈ { 0 }) |
| 37 | 36 | rabssdv 4055 |
. . . 4
⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ ((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁)} ⊆ { 0 }) |
| 38 | 5, 37 | eqsstrid 4002 |
. . 3
⊢ (𝜑 → (𝐾 ∩ 𝐿) ⊆ { 0 }) |
| 39 | 7, 6 | oddvdssubg 19841 |
. . . . . . . 8
⊢ ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑀} ∈ (SubGrp‘𝐺)) |
| 40 | 27, 12, 39 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑀} ∈ (SubGrp‘𝐺)) |
| 41 | 1, 40 | eqeltrid 2839 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ (SubGrp‘𝐺)) |
| 42 | 31 | subg0cl 19122 |
. . . . . 6
⊢ (𝐾 ∈ (SubGrp‘𝐺) → 0 ∈ 𝐾) |
| 43 | 41, 42 | syl 17 |
. . . . 5
⊢ (𝜑 → 0 ∈ 𝐾) |
| 44 | 7, 6 | oddvdssubg 19841 |
. . . . . . . 8
⊢ ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺)) |
| 45 | 27, 15, 44 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺)) |
| 46 | 2, 45 | eqeltrid 2839 |
. . . . . 6
⊢ (𝜑 → 𝐿 ∈ (SubGrp‘𝐺)) |
| 47 | 31 | subg0cl 19122 |
. . . . . 6
⊢ (𝐿 ∈ (SubGrp‘𝐺) → 0 ∈ 𝐿) |
| 48 | 46, 47 | syl 17 |
. . . . 5
⊢ (𝜑 → 0 ∈ 𝐿) |
| 49 | 43, 48 | elind 4180 |
. . . 4
⊢ (𝜑 → 0 ∈ (𝐾 ∩ 𝐿)) |
| 50 | 49 | snssd 4790 |
. . 3
⊢ (𝜑 → { 0 } ⊆ (𝐾 ∩ 𝐿)) |
| 51 | 38, 50 | eqssd 3981 |
. 2
⊢ (𝜑 → (𝐾 ∩ 𝐿) = { 0 }) |
| 52 | | ablfacrp.s |
. . . . . 6
⊢ ⊕ =
(LSSum‘𝐺) |
| 53 | 52 | lsmsubg2 19845 |
. . . . 5
⊢ ((𝐺 ∈ Abel ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐿 ∈ (SubGrp‘𝐺)) → (𝐾 ⊕ 𝐿) ∈ (SubGrp‘𝐺)) |
| 54 | 27, 41, 46, 53 | syl3anc 1373 |
. . . 4
⊢ (𝜑 → (𝐾 ⊕ 𝐿) ∈ (SubGrp‘𝐺)) |
| 55 | 6 | subgss 19115 |
. . . 4
⊢ ((𝐾 ⊕ 𝐿) ∈ (SubGrp‘𝐺) → (𝐾 ⊕ 𝐿) ⊆ 𝐵) |
| 56 | 54, 55 | syl 17 |
. . 3
⊢ (𝜑 → (𝐾 ⊕ 𝐿) ⊆ 𝐵) |
| 57 | | eqid 2736 |
. . . . . 6
⊢
(.g‘𝐺) = (.g‘𝐺) |
| 58 | 6, 57 | mulg1 19069 |
. . . . 5
⊢ (𝑔 ∈ 𝐵 → (1(.g‘𝐺)𝑔) = 𝑔) |
| 59 | 58 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐵) → (1(.g‘𝐺)𝑔) = 𝑔) |
| 60 | | bezout 16567 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
∃𝑎 ∈ ℤ
∃𝑏 ∈ ℤ
(𝑀 gcd 𝑁) = ((𝑀 · 𝑎) + (𝑁 · 𝑏))) |
| 61 | 12, 15, 60 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑀 gcd 𝑁) = ((𝑀 · 𝑎) + (𝑁 · 𝑏))) |
| 62 | 61 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐵) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑀 gcd 𝑁) = ((𝑀 · 𝑎) + (𝑁 · 𝑏))) |
| 63 | 20 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑀 gcd 𝑁) = 1) |
| 64 | 63 | eqeq1d 2738 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑀 gcd 𝑁) = ((𝑀 · 𝑎) + (𝑁 · 𝑏)) ↔ 1 = ((𝑀 · 𝑎) + (𝑁 · 𝑏)))) |
| 65 | 12 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑀 ∈ ℤ) |
| 66 | | simprl 770 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑎 ∈ ℤ) |
| 67 | 65, 66 | zmulcld 12708 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑀 · 𝑎) ∈ ℤ) |
| 68 | 67 | zcnd 12703 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑀 · 𝑎) ∈ ℂ) |
| 69 | 15 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑁 ∈ ℤ) |
| 70 | | simprr 772 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑏 ∈ ℤ) |
| 71 | 69, 70 | zmulcld 12708 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑁 · 𝑏) ∈ ℤ) |
| 72 | 71 | zcnd 12703 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑁 · 𝑏) ∈ ℂ) |
| 73 | 68, 72 | addcomd 11442 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑀 · 𝑎) + (𝑁 · 𝑏)) = ((𝑁 · 𝑏) + (𝑀 · 𝑎))) |
| 74 | 73 | oveq1d 7425 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑀 · 𝑎) + (𝑁 · 𝑏))(.g‘𝐺)𝑔) = (((𝑁 · 𝑏) + (𝑀 · 𝑎))(.g‘𝐺)𝑔)) |
| 75 | 29 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐺 ∈ Grp) |
| 76 | | simplr 768 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑔 ∈ 𝐵) |
| 77 | | eqid 2736 |
. . . . . . . . . . . 12
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 78 | 6, 57, 77 | mulgdir 19094 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ ((𝑁 · 𝑏) ∈ ℤ ∧ (𝑀 · 𝑎) ∈ ℤ ∧ 𝑔 ∈ 𝐵)) → (((𝑁 · 𝑏) + (𝑀 · 𝑎))(.g‘𝐺)𝑔) = (((𝑁 · 𝑏)(.g‘𝐺)𝑔)(+g‘𝐺)((𝑀 · 𝑎)(.g‘𝐺)𝑔))) |
| 79 | 75, 71, 67, 76, 78 | syl13anc 1374 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑁 · 𝑏) + (𝑀 · 𝑎))(.g‘𝐺)𝑔) = (((𝑁 · 𝑏)(.g‘𝐺)𝑔)(+g‘𝐺)((𝑀 · 𝑎)(.g‘𝐺)𝑔))) |
| 80 | 74, 79 | eqtrd 2771 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑀 · 𝑎) + (𝑁 · 𝑏))(.g‘𝐺)𝑔) = (((𝑁 · 𝑏)(.g‘𝐺)𝑔)(+g‘𝐺)((𝑀 · 𝑎)(.g‘𝐺)𝑔))) |
| 81 | 41 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐾 ∈ (SubGrp‘𝐺)) |
| 82 | 46 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐿 ∈ (SubGrp‘𝐺)) |
| 83 | 6, 57 | mulgcl 19079 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ (𝑁 · 𝑏) ∈ ℤ ∧ 𝑔 ∈ 𝐵) → ((𝑁 · 𝑏)(.g‘𝐺)𝑔) ∈ 𝐵) |
| 84 | 75, 71, 76, 83 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑁 · 𝑏)(.g‘𝐺)𝑔) ∈ 𝐵) |
| 85 | 6, 7 | odcl 19522 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 ∈ 𝐵 → (𝑂‘𝑔) ∈
ℕ0) |
| 86 | 85 | ad2antlr 727 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂‘𝑔) ∈
ℕ0) |
| 87 | 86 | nn0zd 12619 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂‘𝑔) ∈ ℤ) |
| 88 | 65, 69 | zmulcld 12708 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑀 · 𝑁) ∈ ℤ) |
| 89 | | ablfacrp.2 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (♯‘𝐵) = (𝑀 · 𝑁)) |
| 90 | 11, 14 | nnmulcld 12298 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑀 · 𝑁) ∈ ℕ) |
| 91 | 90 | nnnn0d 12567 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑀 · 𝑁) ∈
ℕ0) |
| 92 | 89, 91 | eqeltrd 2835 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (♯‘𝐵) ∈
ℕ0) |
| 93 | 6 | fvexi 6895 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐵 ∈ V |
| 94 | | hashclb 14381 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐵 ∈ V → (𝐵 ∈ Fin ↔
(♯‘𝐵) ∈
ℕ0)) |
| 95 | 93, 94 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 ∈ Fin ↔
(♯‘𝐵) ∈
ℕ0) |
| 96 | 92, 95 | sylibr 234 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐵 ∈ Fin) |
| 97 | 96 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐵 ∈ Fin) |
| 98 | 6, 7 | oddvds2 19552 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑔 ∈ 𝐵) → (𝑂‘𝑔) ∥ (♯‘𝐵)) |
| 99 | 75, 97, 76, 98 | syl3anc 1373 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂‘𝑔) ∥ (♯‘𝐵)) |
| 100 | 89 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (♯‘𝐵) = (𝑀 · 𝑁)) |
| 101 | 99, 100 | breqtrd 5150 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂‘𝑔) ∥ (𝑀 · 𝑁)) |
| 102 | 87, 88, 70, 101 | dvdsmultr1d 16321 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂‘𝑔) ∥ ((𝑀 · 𝑁) · 𝑏)) |
| 103 | 65 | zcnd 12703 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑀 ∈ ℂ) |
| 104 | 69 | zcnd 12703 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑁 ∈ ℂ) |
| 105 | 70 | zcnd 12703 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑏 ∈ ℂ) |
| 106 | 103, 104,
105 | mulassd 11263 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑀 · 𝑁) · 𝑏) = (𝑀 · (𝑁 · 𝑏))) |
| 107 | 102, 106 | breqtrd 5150 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂‘𝑔) ∥ (𝑀 · (𝑁 · 𝑏))) |
| 108 | 6, 7, 57 | odmulgid 19540 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ Grp ∧ 𝑔 ∈ 𝐵 ∧ (𝑁 · 𝑏) ∈ ℤ) ∧ 𝑀 ∈ ℤ) → ((𝑂‘((𝑁 · 𝑏)(.g‘𝐺)𝑔)) ∥ 𝑀 ↔ (𝑂‘𝑔) ∥ (𝑀 · (𝑁 · 𝑏)))) |
| 109 | 75, 76, 71, 65, 108 | syl31anc 1375 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑂‘((𝑁 · 𝑏)(.g‘𝐺)𝑔)) ∥ 𝑀 ↔ (𝑂‘𝑔) ∥ (𝑀 · (𝑁 · 𝑏)))) |
| 110 | 107, 109 | mpbird 257 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂‘((𝑁 · 𝑏)(.g‘𝐺)𝑔)) ∥ 𝑀) |
| 111 | | fveq2 6881 |
. . . . . . . . . . . . 13
⊢ (𝑥 = ((𝑁 · 𝑏)(.g‘𝐺)𝑔) → (𝑂‘𝑥) = (𝑂‘((𝑁 · 𝑏)(.g‘𝐺)𝑔))) |
| 112 | 111 | breq1d 5134 |
. . . . . . . . . . . 12
⊢ (𝑥 = ((𝑁 · 𝑏)(.g‘𝐺)𝑔) → ((𝑂‘𝑥) ∥ 𝑀 ↔ (𝑂‘((𝑁 · 𝑏)(.g‘𝐺)𝑔)) ∥ 𝑀)) |
| 113 | 112, 1 | elrab2 3679 |
. . . . . . . . . . 11
⊢ (((𝑁 · 𝑏)(.g‘𝐺)𝑔) ∈ 𝐾 ↔ (((𝑁 · 𝑏)(.g‘𝐺)𝑔) ∈ 𝐵 ∧ (𝑂‘((𝑁 · 𝑏)(.g‘𝐺)𝑔)) ∥ 𝑀)) |
| 114 | 84, 110, 113 | sylanbrc 583 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑁 · 𝑏)(.g‘𝐺)𝑔) ∈ 𝐾) |
| 115 | 6, 57 | mulgcl 19079 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ (𝑀 · 𝑎) ∈ ℤ ∧ 𝑔 ∈ 𝐵) → ((𝑀 · 𝑎)(.g‘𝐺)𝑔) ∈ 𝐵) |
| 116 | 75, 67, 76, 115 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑀 · 𝑎)(.g‘𝐺)𝑔) ∈ 𝐵) |
| 117 | 87, 88, 66, 101 | dvdsmultr1d 16321 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂‘𝑔) ∥ ((𝑀 · 𝑁) · 𝑎)) |
| 118 | | zcn 12598 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ ℤ → 𝑎 ∈
ℂ) |
| 119 | 118 | ad2antrl 728 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑎 ∈ ℂ) |
| 120 | | mulass 11222 |
. . . . . . . . . . . . . . 15
⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑎 ∈ ℂ) → ((𝑀 · 𝑁) · 𝑎) = (𝑀 · (𝑁 · 𝑎))) |
| 121 | | mul12 11405 |
. . . . . . . . . . . . . . 15
⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (𝑀 · (𝑁 · 𝑎)) = (𝑁 · (𝑀 · 𝑎))) |
| 122 | 120, 121 | eqtrd 2771 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑎 ∈ ℂ) → ((𝑀 · 𝑁) · 𝑎) = (𝑁 · (𝑀 · 𝑎))) |
| 123 | 103, 104,
119, 122 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑀 · 𝑁) · 𝑎) = (𝑁 · (𝑀 · 𝑎))) |
| 124 | 117, 123 | breqtrd 5150 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂‘𝑔) ∥ (𝑁 · (𝑀 · 𝑎))) |
| 125 | 6, 7, 57 | odmulgid 19540 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ Grp ∧ 𝑔 ∈ 𝐵 ∧ (𝑀 · 𝑎) ∈ ℤ) ∧ 𝑁 ∈ ℤ) → ((𝑂‘((𝑀 · 𝑎)(.g‘𝐺)𝑔)) ∥ 𝑁 ↔ (𝑂‘𝑔) ∥ (𝑁 · (𝑀 · 𝑎)))) |
| 126 | 75, 76, 67, 69, 125 | syl31anc 1375 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑂‘((𝑀 · 𝑎)(.g‘𝐺)𝑔)) ∥ 𝑁 ↔ (𝑂‘𝑔) ∥ (𝑁 · (𝑀 · 𝑎)))) |
| 127 | 124, 126 | mpbird 257 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂‘((𝑀 · 𝑎)(.g‘𝐺)𝑔)) ∥ 𝑁) |
| 128 | | fveq2 6881 |
. . . . . . . . . . . . 13
⊢ (𝑥 = ((𝑀 · 𝑎)(.g‘𝐺)𝑔) → (𝑂‘𝑥) = (𝑂‘((𝑀 · 𝑎)(.g‘𝐺)𝑔))) |
| 129 | 128 | breq1d 5134 |
. . . . . . . . . . . 12
⊢ (𝑥 = ((𝑀 · 𝑎)(.g‘𝐺)𝑔) → ((𝑂‘𝑥) ∥ 𝑁 ↔ (𝑂‘((𝑀 · 𝑎)(.g‘𝐺)𝑔)) ∥ 𝑁)) |
| 130 | 129, 2 | elrab2 3679 |
. . . . . . . . . . 11
⊢ (((𝑀 · 𝑎)(.g‘𝐺)𝑔) ∈ 𝐿 ↔ (((𝑀 · 𝑎)(.g‘𝐺)𝑔) ∈ 𝐵 ∧ (𝑂‘((𝑀 · 𝑎)(.g‘𝐺)𝑔)) ∥ 𝑁)) |
| 131 | 116, 127,
130 | sylanbrc 583 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑀 · 𝑎)(.g‘𝐺)𝑔) ∈ 𝐿) |
| 132 | 77, 52 | lsmelvali 19636 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐿 ∈ (SubGrp‘𝐺)) ∧ (((𝑁 · 𝑏)(.g‘𝐺)𝑔) ∈ 𝐾 ∧ ((𝑀 · 𝑎)(.g‘𝐺)𝑔) ∈ 𝐿)) → (((𝑁 · 𝑏)(.g‘𝐺)𝑔)(+g‘𝐺)((𝑀 · 𝑎)(.g‘𝐺)𝑔)) ∈ (𝐾 ⊕ 𝐿)) |
| 133 | 81, 82, 114, 131, 132 | syl22anc 838 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑁 · 𝑏)(.g‘𝐺)𝑔)(+g‘𝐺)((𝑀 · 𝑎)(.g‘𝐺)𝑔)) ∈ (𝐾 ⊕ 𝐿)) |
| 134 | 80, 133 | eqeltrd 2835 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑀 · 𝑎) + (𝑁 · 𝑏))(.g‘𝐺)𝑔) ∈ (𝐾 ⊕ 𝐿)) |
| 135 | | oveq1 7417 |
. . . . . . . . 9
⊢ (1 =
((𝑀 · 𝑎) + (𝑁 · 𝑏)) → (1(.g‘𝐺)𝑔) = (((𝑀 · 𝑎) + (𝑁 · 𝑏))(.g‘𝐺)𝑔)) |
| 136 | 135 | eleq1d 2820 |
. . . . . . . 8
⊢ (1 =
((𝑀 · 𝑎) + (𝑁 · 𝑏)) → ((1(.g‘𝐺)𝑔) ∈ (𝐾 ⊕ 𝐿) ↔ (((𝑀 · 𝑎) + (𝑁 · 𝑏))(.g‘𝐺)𝑔) ∈ (𝐾 ⊕ 𝐿))) |
| 137 | 134, 136 | syl5ibrcom 247 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (1 = ((𝑀 · 𝑎) + (𝑁 · 𝑏)) → (1(.g‘𝐺)𝑔) ∈ (𝐾 ⊕ 𝐿))) |
| 138 | 64, 137 | sylbid 240 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑀 gcd 𝑁) = ((𝑀 · 𝑎) + (𝑁 · 𝑏)) → (1(.g‘𝐺)𝑔) ∈ (𝐾 ⊕ 𝐿))) |
| 139 | 138 | rexlimdvva 3202 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐵) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑀 gcd 𝑁) = ((𝑀 · 𝑎) + (𝑁 · 𝑏)) → (1(.g‘𝐺)𝑔) ∈ (𝐾 ⊕ 𝐿))) |
| 140 | 62, 139 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐵) → (1(.g‘𝐺)𝑔) ∈ (𝐾 ⊕ 𝐿)) |
| 141 | 59, 140 | eqeltrrd 2836 |
. . 3
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐵) → 𝑔 ∈ (𝐾 ⊕ 𝐿)) |
| 142 | 56, 141 | eqelssd 3985 |
. 2
⊢ (𝜑 → (𝐾 ⊕ 𝐿) = 𝐵) |
| 143 | 51, 142 | jca 511 |
1
⊢ (𝜑 → ((𝐾 ∩ 𝐿) = { 0 } ∧ (𝐾 ⊕ 𝐿) = 𝐵)) |