| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ablfacrp.k | . . . . . 6
⊢ 𝐾 = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑀} | 
| 2 |  | ablfacrp.l | . . . . . 6
⊢ 𝐿 = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} | 
| 3 | 1, 2 | ineq12i 4217 | . . . . 5
⊢ (𝐾 ∩ 𝐿) = ({𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑀} ∩ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁}) | 
| 4 |  | inrab 4315 | . . . . 5
⊢ ({𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑀} ∩ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁}) = {𝑥 ∈ 𝐵 ∣ ((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁)} | 
| 5 | 3, 4 | eqtri 2764 | . . . 4
⊢ (𝐾 ∩ 𝐿) = {𝑥 ∈ 𝐵 ∣ ((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁)} | 
| 6 |  | ablfacrp.b | . . . . . . . . . . . . . 14
⊢ 𝐵 = (Base‘𝐺) | 
| 7 |  | ablfacrp.o | . . . . . . . . . . . . . 14
⊢ 𝑂 = (od‘𝐺) | 
| 8 | 6, 7 | odcl 19555 | . . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝐵 → (𝑂‘𝑥) ∈
ℕ0) | 
| 9 | 8 | adantl 481 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑂‘𝑥) ∈
ℕ0) | 
| 10 | 9 | nn0zd 12641 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑂‘𝑥) ∈ ℤ) | 
| 11 |  | ablfacrp.m | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ ℕ) | 
| 12 | 11 | nnzd 12642 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| 13 | 12 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑀 ∈ ℤ) | 
| 14 |  | ablfacrp.n | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ ℕ) | 
| 15 | 14 | nnzd 12642 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈ ℤ) | 
| 16 | 15 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ ℤ) | 
| 17 |  | dvdsgcd 16582 | . . . . . . . . . . 11
⊢ (((𝑂‘𝑥) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁) → (𝑂‘𝑥) ∥ (𝑀 gcd 𝑁))) | 
| 18 | 10, 13, 16, 17 | syl3anc 1372 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁) → (𝑂‘𝑥) ∥ (𝑀 gcd 𝑁))) | 
| 19 | 18 | 3impia 1117 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ ((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁)) → (𝑂‘𝑥) ∥ (𝑀 gcd 𝑁)) | 
| 20 |  | ablfacrp.1 | . . . . . . . . . 10
⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) | 
| 21 | 20 | 3ad2ant1 1133 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ ((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁)) → (𝑀 gcd 𝑁) = 1) | 
| 22 | 19, 21 | breqtrd 5168 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ ((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁)) → (𝑂‘𝑥) ∥ 1) | 
| 23 |  | simp2 1137 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ ((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁)) → 𝑥 ∈ 𝐵) | 
| 24 |  | dvds1 16357 | . . . . . . . . 9
⊢ ((𝑂‘𝑥) ∈ ℕ0 → ((𝑂‘𝑥) ∥ 1 ↔ (𝑂‘𝑥) = 1)) | 
| 25 | 23, 8, 24 | 3syl 18 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ ((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁)) → ((𝑂‘𝑥) ∥ 1 ↔ (𝑂‘𝑥) = 1)) | 
| 26 | 22, 25 | mpbid 232 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ ((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁)) → (𝑂‘𝑥) = 1) | 
| 27 |  | ablfacrp.g | . . . . . . . . . 10
⊢ (𝜑 → 𝐺 ∈ Abel) | 
| 28 |  | ablgrp 19804 | . . . . . . . . . 10
⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | 
| 29 | 27, 28 | syl 17 | . . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ Grp) | 
| 30 | 29 | 3ad2ant1 1133 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ ((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁)) → 𝐺 ∈ Grp) | 
| 31 |  | ablfacrp.z | . . . . . . . . 9
⊢  0 =
(0g‘𝐺) | 
| 32 | 7, 31, 6 | odeq1 19579 | . . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((𝑂‘𝑥) = 1 ↔ 𝑥 = 0 )) | 
| 33 | 30, 23, 32 | syl2anc 584 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ ((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁)) → ((𝑂‘𝑥) = 1 ↔ 𝑥 = 0 )) | 
| 34 | 26, 33 | mpbid 232 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ ((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁)) → 𝑥 = 0 ) | 
| 35 |  | velsn 4641 | . . . . . 6
⊢ (𝑥 ∈ { 0 } ↔ 𝑥 = 0 ) | 
| 36 | 34, 35 | sylibr 234 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ ((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁)) → 𝑥 ∈ { 0 }) | 
| 37 | 36 | rabssdv 4074 | . . . 4
⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ ((𝑂‘𝑥) ∥ 𝑀 ∧ (𝑂‘𝑥) ∥ 𝑁)} ⊆ { 0 }) | 
| 38 | 5, 37 | eqsstrid 4021 | . . 3
⊢ (𝜑 → (𝐾 ∩ 𝐿) ⊆ { 0 }) | 
| 39 | 7, 6 | oddvdssubg 19874 | . . . . . . . 8
⊢ ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑀} ∈ (SubGrp‘𝐺)) | 
| 40 | 27, 12, 39 | syl2anc 584 | . . . . . . 7
⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑀} ∈ (SubGrp‘𝐺)) | 
| 41 | 1, 40 | eqeltrid 2844 | . . . . . 6
⊢ (𝜑 → 𝐾 ∈ (SubGrp‘𝐺)) | 
| 42 | 31 | subg0cl 19153 | . . . . . 6
⊢ (𝐾 ∈ (SubGrp‘𝐺) → 0 ∈ 𝐾) | 
| 43 | 41, 42 | syl 17 | . . . . 5
⊢ (𝜑 → 0 ∈ 𝐾) | 
| 44 | 7, 6 | oddvdssubg 19874 | . . . . . . . 8
⊢ ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺)) | 
| 45 | 27, 15, 44 | syl2anc 584 | . . . . . . 7
⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺)) | 
| 46 | 2, 45 | eqeltrid 2844 | . . . . . 6
⊢ (𝜑 → 𝐿 ∈ (SubGrp‘𝐺)) | 
| 47 | 31 | subg0cl 19153 | . . . . . 6
⊢ (𝐿 ∈ (SubGrp‘𝐺) → 0 ∈ 𝐿) | 
| 48 | 46, 47 | syl 17 | . . . . 5
⊢ (𝜑 → 0 ∈ 𝐿) | 
| 49 | 43, 48 | elind 4199 | . . . 4
⊢ (𝜑 → 0 ∈ (𝐾 ∩ 𝐿)) | 
| 50 | 49 | snssd 4808 | . . 3
⊢ (𝜑 → { 0 } ⊆ (𝐾 ∩ 𝐿)) | 
| 51 | 38, 50 | eqssd 4000 | . 2
⊢ (𝜑 → (𝐾 ∩ 𝐿) = { 0 }) | 
| 52 |  | ablfacrp.s | . . . . . 6
⊢  ⊕ =
(LSSum‘𝐺) | 
| 53 | 52 | lsmsubg2 19878 | . . . . 5
⊢ ((𝐺 ∈ Abel ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐿 ∈ (SubGrp‘𝐺)) → (𝐾 ⊕ 𝐿) ∈ (SubGrp‘𝐺)) | 
| 54 | 27, 41, 46, 53 | syl3anc 1372 | . . . 4
⊢ (𝜑 → (𝐾 ⊕ 𝐿) ∈ (SubGrp‘𝐺)) | 
| 55 | 6 | subgss 19146 | . . . 4
⊢ ((𝐾 ⊕ 𝐿) ∈ (SubGrp‘𝐺) → (𝐾 ⊕ 𝐿) ⊆ 𝐵) | 
| 56 | 54, 55 | syl 17 | . . 3
⊢ (𝜑 → (𝐾 ⊕ 𝐿) ⊆ 𝐵) | 
| 57 |  | eqid 2736 | . . . . . 6
⊢
(.g‘𝐺) = (.g‘𝐺) | 
| 58 | 6, 57 | mulg1 19100 | . . . . 5
⊢ (𝑔 ∈ 𝐵 → (1(.g‘𝐺)𝑔) = 𝑔) | 
| 59 | 58 | adantl 481 | . . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐵) → (1(.g‘𝐺)𝑔) = 𝑔) | 
| 60 |  | bezout 16581 | . . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
∃𝑎 ∈ ℤ
∃𝑏 ∈ ℤ
(𝑀 gcd 𝑁) = ((𝑀 · 𝑎) + (𝑁 · 𝑏))) | 
| 61 | 12, 15, 60 | syl2anc 584 | . . . . . 6
⊢ (𝜑 → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑀 gcd 𝑁) = ((𝑀 · 𝑎) + (𝑁 · 𝑏))) | 
| 62 | 61 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐵) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑀 gcd 𝑁) = ((𝑀 · 𝑎) + (𝑁 · 𝑏))) | 
| 63 | 20 | ad2antrr 726 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑀 gcd 𝑁) = 1) | 
| 64 | 63 | eqeq1d 2738 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑀 gcd 𝑁) = ((𝑀 · 𝑎) + (𝑁 · 𝑏)) ↔ 1 = ((𝑀 · 𝑎) + (𝑁 · 𝑏)))) | 
| 65 | 12 | ad2antrr 726 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑀 ∈ ℤ) | 
| 66 |  | simprl 770 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑎 ∈ ℤ) | 
| 67 | 65, 66 | zmulcld 12730 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑀 · 𝑎) ∈ ℤ) | 
| 68 | 67 | zcnd 12725 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑀 · 𝑎) ∈ ℂ) | 
| 69 | 15 | ad2antrr 726 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑁 ∈ ℤ) | 
| 70 |  | simprr 772 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑏 ∈ ℤ) | 
| 71 | 69, 70 | zmulcld 12730 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑁 · 𝑏) ∈ ℤ) | 
| 72 | 71 | zcnd 12725 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑁 · 𝑏) ∈ ℂ) | 
| 73 | 68, 72 | addcomd 11464 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑀 · 𝑎) + (𝑁 · 𝑏)) = ((𝑁 · 𝑏) + (𝑀 · 𝑎))) | 
| 74 | 73 | oveq1d 7447 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑀 · 𝑎) + (𝑁 · 𝑏))(.g‘𝐺)𝑔) = (((𝑁 · 𝑏) + (𝑀 · 𝑎))(.g‘𝐺)𝑔)) | 
| 75 | 29 | ad2antrr 726 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐺 ∈ Grp) | 
| 76 |  | simplr 768 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑔 ∈ 𝐵) | 
| 77 |  | eqid 2736 | . . . . . . . . . . . 12
⊢
(+g‘𝐺) = (+g‘𝐺) | 
| 78 | 6, 57, 77 | mulgdir 19125 | . . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ ((𝑁 · 𝑏) ∈ ℤ ∧ (𝑀 · 𝑎) ∈ ℤ ∧ 𝑔 ∈ 𝐵)) → (((𝑁 · 𝑏) + (𝑀 · 𝑎))(.g‘𝐺)𝑔) = (((𝑁 · 𝑏)(.g‘𝐺)𝑔)(+g‘𝐺)((𝑀 · 𝑎)(.g‘𝐺)𝑔))) | 
| 79 | 75, 71, 67, 76, 78 | syl13anc 1373 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑁 · 𝑏) + (𝑀 · 𝑎))(.g‘𝐺)𝑔) = (((𝑁 · 𝑏)(.g‘𝐺)𝑔)(+g‘𝐺)((𝑀 · 𝑎)(.g‘𝐺)𝑔))) | 
| 80 | 74, 79 | eqtrd 2776 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑀 · 𝑎) + (𝑁 · 𝑏))(.g‘𝐺)𝑔) = (((𝑁 · 𝑏)(.g‘𝐺)𝑔)(+g‘𝐺)((𝑀 · 𝑎)(.g‘𝐺)𝑔))) | 
| 81 | 41 | ad2antrr 726 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐾 ∈ (SubGrp‘𝐺)) | 
| 82 | 46 | ad2antrr 726 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐿 ∈ (SubGrp‘𝐺)) | 
| 83 | 6, 57 | mulgcl 19110 | . . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ (𝑁 · 𝑏) ∈ ℤ ∧ 𝑔 ∈ 𝐵) → ((𝑁 · 𝑏)(.g‘𝐺)𝑔) ∈ 𝐵) | 
| 84 | 75, 71, 76, 83 | syl3anc 1372 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑁 · 𝑏)(.g‘𝐺)𝑔) ∈ 𝐵) | 
| 85 | 6, 7 | odcl 19555 | . . . . . . . . . . . . . . . 16
⊢ (𝑔 ∈ 𝐵 → (𝑂‘𝑔) ∈
ℕ0) | 
| 86 | 85 | ad2antlr 727 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂‘𝑔) ∈
ℕ0) | 
| 87 | 86 | nn0zd 12641 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂‘𝑔) ∈ ℤ) | 
| 88 | 65, 69 | zmulcld 12730 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑀 · 𝑁) ∈ ℤ) | 
| 89 |  | ablfacrp.2 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (♯‘𝐵) = (𝑀 · 𝑁)) | 
| 90 | 11, 14 | nnmulcld 12320 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑀 · 𝑁) ∈ ℕ) | 
| 91 | 90 | nnnn0d 12589 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑀 · 𝑁) ∈
ℕ0) | 
| 92 | 89, 91 | eqeltrd 2840 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (♯‘𝐵) ∈
ℕ0) | 
| 93 | 6 | fvexi 6919 | . . . . . . . . . . . . . . . . . . 19
⊢ 𝐵 ∈ V | 
| 94 |  | hashclb 14398 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝐵 ∈ V → (𝐵 ∈ Fin ↔
(♯‘𝐵) ∈
ℕ0)) | 
| 95 | 93, 94 | ax-mp 5 | . . . . . . . . . . . . . . . . . 18
⊢ (𝐵 ∈ Fin ↔
(♯‘𝐵) ∈
ℕ0) | 
| 96 | 92, 95 | sylibr 234 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐵 ∈ Fin) | 
| 97 | 96 | ad2antrr 726 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐵 ∈ Fin) | 
| 98 | 6, 7 | oddvds2 19585 | . . . . . . . . . . . . . . . 16
⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑔 ∈ 𝐵) → (𝑂‘𝑔) ∥ (♯‘𝐵)) | 
| 99 | 75, 97, 76, 98 | syl3anc 1372 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂‘𝑔) ∥ (♯‘𝐵)) | 
| 100 | 89 | ad2antrr 726 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (♯‘𝐵) = (𝑀 · 𝑁)) | 
| 101 | 99, 100 | breqtrd 5168 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂‘𝑔) ∥ (𝑀 · 𝑁)) | 
| 102 | 87, 88, 70, 101 | dvdsmultr1d 16335 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂‘𝑔) ∥ ((𝑀 · 𝑁) · 𝑏)) | 
| 103 | 65 | zcnd 12725 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑀 ∈ ℂ) | 
| 104 | 69 | zcnd 12725 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑁 ∈ ℂ) | 
| 105 | 70 | zcnd 12725 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑏 ∈ ℂ) | 
| 106 | 103, 104,
105 | mulassd 11285 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑀 · 𝑁) · 𝑏) = (𝑀 · (𝑁 · 𝑏))) | 
| 107 | 102, 106 | breqtrd 5168 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂‘𝑔) ∥ (𝑀 · (𝑁 · 𝑏))) | 
| 108 | 6, 7, 57 | odmulgid 19573 | . . . . . . . . . . . . 13
⊢ (((𝐺 ∈ Grp ∧ 𝑔 ∈ 𝐵 ∧ (𝑁 · 𝑏) ∈ ℤ) ∧ 𝑀 ∈ ℤ) → ((𝑂‘((𝑁 · 𝑏)(.g‘𝐺)𝑔)) ∥ 𝑀 ↔ (𝑂‘𝑔) ∥ (𝑀 · (𝑁 · 𝑏)))) | 
| 109 | 75, 76, 71, 65, 108 | syl31anc 1374 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑂‘((𝑁 · 𝑏)(.g‘𝐺)𝑔)) ∥ 𝑀 ↔ (𝑂‘𝑔) ∥ (𝑀 · (𝑁 · 𝑏)))) | 
| 110 | 107, 109 | mpbird 257 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂‘((𝑁 · 𝑏)(.g‘𝐺)𝑔)) ∥ 𝑀) | 
| 111 |  | fveq2 6905 | . . . . . . . . . . . . 13
⊢ (𝑥 = ((𝑁 · 𝑏)(.g‘𝐺)𝑔) → (𝑂‘𝑥) = (𝑂‘((𝑁 · 𝑏)(.g‘𝐺)𝑔))) | 
| 112 | 111 | breq1d 5152 | . . . . . . . . . . . 12
⊢ (𝑥 = ((𝑁 · 𝑏)(.g‘𝐺)𝑔) → ((𝑂‘𝑥) ∥ 𝑀 ↔ (𝑂‘((𝑁 · 𝑏)(.g‘𝐺)𝑔)) ∥ 𝑀)) | 
| 113 | 112, 1 | elrab2 3694 | . . . . . . . . . . 11
⊢ (((𝑁 · 𝑏)(.g‘𝐺)𝑔) ∈ 𝐾 ↔ (((𝑁 · 𝑏)(.g‘𝐺)𝑔) ∈ 𝐵 ∧ (𝑂‘((𝑁 · 𝑏)(.g‘𝐺)𝑔)) ∥ 𝑀)) | 
| 114 | 84, 110, 113 | sylanbrc 583 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑁 · 𝑏)(.g‘𝐺)𝑔) ∈ 𝐾) | 
| 115 | 6, 57 | mulgcl 19110 | . . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ (𝑀 · 𝑎) ∈ ℤ ∧ 𝑔 ∈ 𝐵) → ((𝑀 · 𝑎)(.g‘𝐺)𝑔) ∈ 𝐵) | 
| 116 | 75, 67, 76, 115 | syl3anc 1372 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑀 · 𝑎)(.g‘𝐺)𝑔) ∈ 𝐵) | 
| 117 | 87, 88, 66, 101 | dvdsmultr1d 16335 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂‘𝑔) ∥ ((𝑀 · 𝑁) · 𝑎)) | 
| 118 |  | zcn 12620 | . . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ ℤ → 𝑎 ∈
ℂ) | 
| 119 | 118 | ad2antrl 728 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑎 ∈ ℂ) | 
| 120 |  | mulass 11244 | . . . . . . . . . . . . . . 15
⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑎 ∈ ℂ) → ((𝑀 · 𝑁) · 𝑎) = (𝑀 · (𝑁 · 𝑎))) | 
| 121 |  | mul12 11427 | . . . . . . . . . . . . . . 15
⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (𝑀 · (𝑁 · 𝑎)) = (𝑁 · (𝑀 · 𝑎))) | 
| 122 | 120, 121 | eqtrd 2776 | . . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑎 ∈ ℂ) → ((𝑀 · 𝑁) · 𝑎) = (𝑁 · (𝑀 · 𝑎))) | 
| 123 | 103, 104,
119, 122 | syl3anc 1372 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑀 · 𝑁) · 𝑎) = (𝑁 · (𝑀 · 𝑎))) | 
| 124 | 117, 123 | breqtrd 5168 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂‘𝑔) ∥ (𝑁 · (𝑀 · 𝑎))) | 
| 125 | 6, 7, 57 | odmulgid 19573 | . . . . . . . . . . . . 13
⊢ (((𝐺 ∈ Grp ∧ 𝑔 ∈ 𝐵 ∧ (𝑀 · 𝑎) ∈ ℤ) ∧ 𝑁 ∈ ℤ) → ((𝑂‘((𝑀 · 𝑎)(.g‘𝐺)𝑔)) ∥ 𝑁 ↔ (𝑂‘𝑔) ∥ (𝑁 · (𝑀 · 𝑎)))) | 
| 126 | 75, 76, 67, 69, 125 | syl31anc 1374 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑂‘((𝑀 · 𝑎)(.g‘𝐺)𝑔)) ∥ 𝑁 ↔ (𝑂‘𝑔) ∥ (𝑁 · (𝑀 · 𝑎)))) | 
| 127 | 124, 126 | mpbird 257 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂‘((𝑀 · 𝑎)(.g‘𝐺)𝑔)) ∥ 𝑁) | 
| 128 |  | fveq2 6905 | . . . . . . . . . . . . 13
⊢ (𝑥 = ((𝑀 · 𝑎)(.g‘𝐺)𝑔) → (𝑂‘𝑥) = (𝑂‘((𝑀 · 𝑎)(.g‘𝐺)𝑔))) | 
| 129 | 128 | breq1d 5152 | . . . . . . . . . . . 12
⊢ (𝑥 = ((𝑀 · 𝑎)(.g‘𝐺)𝑔) → ((𝑂‘𝑥) ∥ 𝑁 ↔ (𝑂‘((𝑀 · 𝑎)(.g‘𝐺)𝑔)) ∥ 𝑁)) | 
| 130 | 129, 2 | elrab2 3694 | . . . . . . . . . . 11
⊢ (((𝑀 · 𝑎)(.g‘𝐺)𝑔) ∈ 𝐿 ↔ (((𝑀 · 𝑎)(.g‘𝐺)𝑔) ∈ 𝐵 ∧ (𝑂‘((𝑀 · 𝑎)(.g‘𝐺)𝑔)) ∥ 𝑁)) | 
| 131 | 116, 127,
130 | sylanbrc 583 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑀 · 𝑎)(.g‘𝐺)𝑔) ∈ 𝐿) | 
| 132 | 77, 52 | lsmelvali 19669 | . . . . . . . . . 10
⊢ (((𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐿 ∈ (SubGrp‘𝐺)) ∧ (((𝑁 · 𝑏)(.g‘𝐺)𝑔) ∈ 𝐾 ∧ ((𝑀 · 𝑎)(.g‘𝐺)𝑔) ∈ 𝐿)) → (((𝑁 · 𝑏)(.g‘𝐺)𝑔)(+g‘𝐺)((𝑀 · 𝑎)(.g‘𝐺)𝑔)) ∈ (𝐾 ⊕ 𝐿)) | 
| 133 | 81, 82, 114, 131, 132 | syl22anc 838 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑁 · 𝑏)(.g‘𝐺)𝑔)(+g‘𝐺)((𝑀 · 𝑎)(.g‘𝐺)𝑔)) ∈ (𝐾 ⊕ 𝐿)) | 
| 134 | 80, 133 | eqeltrd 2840 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑀 · 𝑎) + (𝑁 · 𝑏))(.g‘𝐺)𝑔) ∈ (𝐾 ⊕ 𝐿)) | 
| 135 |  | oveq1 7439 | . . . . . . . . 9
⊢ (1 =
((𝑀 · 𝑎) + (𝑁 · 𝑏)) → (1(.g‘𝐺)𝑔) = (((𝑀 · 𝑎) + (𝑁 · 𝑏))(.g‘𝐺)𝑔)) | 
| 136 | 135 | eleq1d 2825 | . . . . . . . 8
⊢ (1 =
((𝑀 · 𝑎) + (𝑁 · 𝑏)) → ((1(.g‘𝐺)𝑔) ∈ (𝐾 ⊕ 𝐿) ↔ (((𝑀 · 𝑎) + (𝑁 · 𝑏))(.g‘𝐺)𝑔) ∈ (𝐾 ⊕ 𝐿))) | 
| 137 | 134, 136 | syl5ibrcom 247 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (1 = ((𝑀 · 𝑎) + (𝑁 · 𝑏)) → (1(.g‘𝐺)𝑔) ∈ (𝐾 ⊕ 𝐿))) | 
| 138 | 64, 137 | sylbid 240 | . . . . . 6
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑀 gcd 𝑁) = ((𝑀 · 𝑎) + (𝑁 · 𝑏)) → (1(.g‘𝐺)𝑔) ∈ (𝐾 ⊕ 𝐿))) | 
| 139 | 138 | rexlimdvva 3212 | . . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐵) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑀 gcd 𝑁) = ((𝑀 · 𝑎) + (𝑁 · 𝑏)) → (1(.g‘𝐺)𝑔) ∈ (𝐾 ⊕ 𝐿))) | 
| 140 | 62, 139 | mpd 15 | . . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐵) → (1(.g‘𝐺)𝑔) ∈ (𝐾 ⊕ 𝐿)) | 
| 141 | 59, 140 | eqeltrrd 2841 | . . 3
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐵) → 𝑔 ∈ (𝐾 ⊕ 𝐿)) | 
| 142 | 56, 141 | eqelssd 4004 | . 2
⊢ (𝜑 → (𝐾 ⊕ 𝐿) = 𝐵) | 
| 143 | 51, 142 | jca 511 | 1
⊢ (𝜑 → ((𝐾 ∩ 𝐿) = { 0 } ∧ (𝐾 ⊕ 𝐿) = 𝐵)) |