| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coskpi | Structured version Visualization version GIF version | ||
| Description: The absolute value of the cosine of an integer multiple of π is 1. (Contributed by NM, 19-Aug-2008.) |
| Ref | Expression |
|---|---|
| coskpi | ⊢ (𝐾 ∈ ℤ → (abs‘(cos‘(𝐾 · π))) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 12540 | . . . . . . . . . 10 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℂ) | |
| 2 | 2cn 12262 | . . . . . . . . . . 11 ⊢ 2 ∈ ℂ | |
| 3 | picn 26373 | . . . . . . . . . . 11 ⊢ π ∈ ℂ | |
| 4 | mul12 11345 | . . . . . . . . . . 11 ⊢ ((𝐾 ∈ ℂ ∧ 2 ∈ ℂ ∧ π ∈ ℂ) → (𝐾 · (2 · π)) = (2 · (𝐾 · π))) | |
| 5 | 2, 3, 4 | mp3an23 1455 | . . . . . . . . . 10 ⊢ (𝐾 ∈ ℂ → (𝐾 · (2 · π)) = (2 · (𝐾 · π))) |
| 6 | 1, 5 | syl 17 | . . . . . . . . 9 ⊢ (𝐾 ∈ ℤ → (𝐾 · (2 · π)) = (2 · (𝐾 · π))) |
| 7 | 6 | fveq2d 6864 | . . . . . . . 8 ⊢ (𝐾 ∈ ℤ → (cos‘(𝐾 · (2 · π))) = (cos‘(2 · (𝐾 · π)))) |
| 8 | cos2kpi 26399 | . . . . . . . 8 ⊢ (𝐾 ∈ ℤ → (cos‘(𝐾 · (2 · π))) = 1) | |
| 9 | zre 12539 | . . . . . . . . . . 11 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℝ) | |
| 10 | pire 26372 | . . . . . . . . . . 11 ⊢ π ∈ ℝ | |
| 11 | remulcl 11159 | . . . . . . . . . . 11 ⊢ ((𝐾 ∈ ℝ ∧ π ∈ ℝ) → (𝐾 · π) ∈ ℝ) | |
| 12 | 9, 10, 11 | sylancl 586 | . . . . . . . . . 10 ⊢ (𝐾 ∈ ℤ → (𝐾 · π) ∈ ℝ) |
| 13 | 12 | recnd 11208 | . . . . . . . . 9 ⊢ (𝐾 ∈ ℤ → (𝐾 · π) ∈ ℂ) |
| 14 | cos2t 16152 | . . . . . . . . 9 ⊢ ((𝐾 · π) ∈ ℂ → (cos‘(2 · (𝐾 · π))) = ((2 · ((cos‘(𝐾 · π))↑2)) − 1)) | |
| 15 | 13, 14 | syl 17 | . . . . . . . 8 ⊢ (𝐾 ∈ ℤ → (cos‘(2 · (𝐾 · π))) = ((2 · ((cos‘(𝐾 · π))↑2)) − 1)) |
| 16 | 7, 8, 15 | 3eqtr3rd 2774 | . . . . . . 7 ⊢ (𝐾 ∈ ℤ → ((2 · ((cos‘(𝐾 · π))↑2)) − 1) = 1) |
| 17 | 12 | recoscld 16118 | . . . . . . . . . . 11 ⊢ (𝐾 ∈ ℤ → (cos‘(𝐾 · π)) ∈ ℝ) |
| 18 | 17 | recnd 11208 | . . . . . . . . . 10 ⊢ (𝐾 ∈ ℤ → (cos‘(𝐾 · π)) ∈ ℂ) |
| 19 | 18 | sqcld 14115 | . . . . . . . . 9 ⊢ (𝐾 ∈ ℤ → ((cos‘(𝐾 · π))↑2) ∈ ℂ) |
| 20 | mulcl 11158 | . . . . . . . . 9 ⊢ ((2 ∈ ℂ ∧ ((cos‘(𝐾 · π))↑2) ∈ ℂ) → (2 · ((cos‘(𝐾 · π))↑2)) ∈ ℂ) | |
| 21 | 2, 19, 20 | sylancr 587 | . . . . . . . 8 ⊢ (𝐾 ∈ ℤ → (2 · ((cos‘(𝐾 · π))↑2)) ∈ ℂ) |
| 22 | ax-1cn 11132 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
| 23 | subadd 11430 | . . . . . . . . 9 ⊢ (((2 · ((cos‘(𝐾 · π))↑2)) ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · ((cos‘(𝐾 · π))↑2)) − 1) = 1 ↔ (1 + 1) = (2 · ((cos‘(𝐾 · π))↑2)))) | |
| 24 | 22, 22, 23 | mp3an23 1455 | . . . . . . . 8 ⊢ ((2 · ((cos‘(𝐾 · π))↑2)) ∈ ℂ → (((2 · ((cos‘(𝐾 · π))↑2)) − 1) = 1 ↔ (1 + 1) = (2 · ((cos‘(𝐾 · π))↑2)))) |
| 25 | 21, 24 | syl 17 | . . . . . . 7 ⊢ (𝐾 ∈ ℤ → (((2 · ((cos‘(𝐾 · π))↑2)) − 1) = 1 ↔ (1 + 1) = (2 · ((cos‘(𝐾 · π))↑2)))) |
| 26 | 16, 25 | mpbid 232 | . . . . . 6 ⊢ (𝐾 ∈ ℤ → (1 + 1) = (2 · ((cos‘(𝐾 · π))↑2))) |
| 27 | 2t1e2 12350 | . . . . . . 7 ⊢ (2 · 1) = 2 | |
| 28 | df-2 12250 | . . . . . . 7 ⊢ 2 = (1 + 1) | |
| 29 | 27, 28 | eqtr2i 2754 | . . . . . 6 ⊢ (1 + 1) = (2 · 1) |
| 30 | 26, 29 | eqtr3di 2780 | . . . . 5 ⊢ (𝐾 ∈ ℤ → (2 · ((cos‘(𝐾 · π))↑2)) = (2 · 1)) |
| 31 | 2cnne0 12397 | . . . . . . 7 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
| 32 | mulcan 11821 | . . . . . . 7 ⊢ ((((cos‘(𝐾 · π))↑2) ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((2 · ((cos‘(𝐾 · π))↑2)) = (2 · 1) ↔ ((cos‘(𝐾 · π))↑2) = 1)) | |
| 33 | 22, 31, 32 | mp3an23 1455 | . . . . . 6 ⊢ (((cos‘(𝐾 · π))↑2) ∈ ℂ → ((2 · ((cos‘(𝐾 · π))↑2)) = (2 · 1) ↔ ((cos‘(𝐾 · π))↑2) = 1)) |
| 34 | 19, 33 | syl 17 | . . . . 5 ⊢ (𝐾 ∈ ℤ → ((2 · ((cos‘(𝐾 · π))↑2)) = (2 · 1) ↔ ((cos‘(𝐾 · π))↑2) = 1)) |
| 35 | 30, 34 | mpbid 232 | . . . 4 ⊢ (𝐾 ∈ ℤ → ((cos‘(𝐾 · π))↑2) = 1) |
| 36 | sq1 14166 | . . . 4 ⊢ (1↑2) = 1 | |
| 37 | 35, 36 | eqtr4di 2783 | . . 3 ⊢ (𝐾 ∈ ℤ → ((cos‘(𝐾 · π))↑2) = (1↑2)) |
| 38 | 1re 11180 | . . . 4 ⊢ 1 ∈ ℝ | |
| 39 | sqabs 15279 | . . . 4 ⊢ (((cos‘(𝐾 · π)) ∈ ℝ ∧ 1 ∈ ℝ) → (((cos‘(𝐾 · π))↑2) = (1↑2) ↔ (abs‘(cos‘(𝐾 · π))) = (abs‘1))) | |
| 40 | 17, 38, 39 | sylancl 586 | . . 3 ⊢ (𝐾 ∈ ℤ → (((cos‘(𝐾 · π))↑2) = (1↑2) ↔ (abs‘(cos‘(𝐾 · π))) = (abs‘1))) |
| 41 | 37, 40 | mpbid 232 | . 2 ⊢ (𝐾 ∈ ℤ → (abs‘(cos‘(𝐾 · π))) = (abs‘1)) |
| 42 | abs1 15269 | . 2 ⊢ (abs‘1) = 1 | |
| 43 | 41, 42 | eqtrdi 2781 | 1 ⊢ (𝐾 ∈ ℤ → (abs‘(cos‘(𝐾 · π))) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ‘cfv 6513 (class class class)co 7389 ℂcc 11072 ℝcr 11073 0cc0 11074 1c1 11075 + caddc 11077 · cmul 11079 − cmin 11411 2c2 12242 ℤcz 12535 ↑cexp 14032 abscabs 15206 cosccos 16036 πcpi 16038 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-inf2 9600 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 ax-addf 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-iin 4960 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-se 5594 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-isom 6522 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-of 7655 df-om 7845 df-1st 7970 df-2nd 7971 df-supp 8142 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-2o 8437 df-er 8673 df-map 8803 df-pm 8804 df-ixp 8873 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-fsupp 9319 df-fi 9368 df-sup 9399 df-inf 9400 df-oi 9469 df-card 9898 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-q 12914 df-rp 12958 df-xneg 13078 df-xadd 13079 df-xmul 13080 df-ioo 13316 df-ioc 13317 df-ico 13318 df-icc 13319 df-fz 13475 df-fzo 13622 df-fl 13760 df-seq 13973 df-exp 14033 df-fac 14245 df-bc 14274 df-hash 14302 df-shft 15039 df-cj 15071 df-re 15072 df-im 15073 df-sqrt 15207 df-abs 15208 df-limsup 15443 df-clim 15460 df-rlim 15461 df-sum 15659 df-ef 16039 df-sin 16041 df-cos 16042 df-pi 16044 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-hom 17250 df-cco 17251 df-rest 17391 df-topn 17392 df-0g 17410 df-gsum 17411 df-topgen 17412 df-pt 17413 df-prds 17416 df-xrs 17471 df-qtop 17476 df-imas 17477 df-xps 17479 df-mre 17553 df-mrc 17554 df-acs 17556 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-submnd 18717 df-mulg 19006 df-cntz 19255 df-cmn 19718 df-psmet 21262 df-xmet 21263 df-met 21264 df-bl 21265 df-mopn 21266 df-fbas 21267 df-fg 21268 df-cnfld 21271 df-top 22787 df-topon 22804 df-topsp 22826 df-bases 22839 df-cld 22912 df-ntr 22913 df-cls 22914 df-nei 22991 df-lp 23029 df-perf 23030 df-cn 23120 df-cnp 23121 df-haus 23208 df-tx 23455 df-hmeo 23648 df-fil 23739 df-fm 23831 df-flim 23832 df-flf 23833 df-xms 24214 df-ms 24215 df-tms 24216 df-cncf 24777 df-limc 25773 df-dv 25774 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |