MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coskpi Structured version   Visualization version   GIF version

Theorem coskpi 26438
Description: The absolute value of the cosine of an integer multiple of π is 1. (Contributed by NM, 19-Aug-2008.)
Assertion
Ref Expression
coskpi (𝐾 ∈ ℤ → (abs‘(cos‘(𝐾 · π))) = 1)

Proof of Theorem coskpi
StepHypRef Expression
1 zcn 12540 . . . . . . . . . 10 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
2 2cn 12262 . . . . . . . . . . 11 2 ∈ ℂ
3 picn 26373 . . . . . . . . . . 11 π ∈ ℂ
4 mul12 11345 . . . . . . . . . . 11 ((𝐾 ∈ ℂ ∧ 2 ∈ ℂ ∧ π ∈ ℂ) → (𝐾 · (2 · π)) = (2 · (𝐾 · π)))
52, 3, 4mp3an23 1455 . . . . . . . . . 10 (𝐾 ∈ ℂ → (𝐾 · (2 · π)) = (2 · (𝐾 · π)))
61, 5syl 17 . . . . . . . . 9 (𝐾 ∈ ℤ → (𝐾 · (2 · π)) = (2 · (𝐾 · π)))
76fveq2d 6864 . . . . . . . 8 (𝐾 ∈ ℤ → (cos‘(𝐾 · (2 · π))) = (cos‘(2 · (𝐾 · π))))
8 cos2kpi 26399 . . . . . . . 8 (𝐾 ∈ ℤ → (cos‘(𝐾 · (2 · π))) = 1)
9 zre 12539 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
10 pire 26372 . . . . . . . . . . 11 π ∈ ℝ
11 remulcl 11159 . . . . . . . . . . 11 ((𝐾 ∈ ℝ ∧ π ∈ ℝ) → (𝐾 · π) ∈ ℝ)
129, 10, 11sylancl 586 . . . . . . . . . 10 (𝐾 ∈ ℤ → (𝐾 · π) ∈ ℝ)
1312recnd 11208 . . . . . . . . 9 (𝐾 ∈ ℤ → (𝐾 · π) ∈ ℂ)
14 cos2t 16152 . . . . . . . . 9 ((𝐾 · π) ∈ ℂ → (cos‘(2 · (𝐾 · π))) = ((2 · ((cos‘(𝐾 · π))↑2)) − 1))
1513, 14syl 17 . . . . . . . 8 (𝐾 ∈ ℤ → (cos‘(2 · (𝐾 · π))) = ((2 · ((cos‘(𝐾 · π))↑2)) − 1))
167, 8, 153eqtr3rd 2774 . . . . . . 7 (𝐾 ∈ ℤ → ((2 · ((cos‘(𝐾 · π))↑2)) − 1) = 1)
1712recoscld 16118 . . . . . . . . . . 11 (𝐾 ∈ ℤ → (cos‘(𝐾 · π)) ∈ ℝ)
1817recnd 11208 . . . . . . . . . 10 (𝐾 ∈ ℤ → (cos‘(𝐾 · π)) ∈ ℂ)
1918sqcld 14115 . . . . . . . . 9 (𝐾 ∈ ℤ → ((cos‘(𝐾 · π))↑2) ∈ ℂ)
20 mulcl 11158 . . . . . . . . 9 ((2 ∈ ℂ ∧ ((cos‘(𝐾 · π))↑2) ∈ ℂ) → (2 · ((cos‘(𝐾 · π))↑2)) ∈ ℂ)
212, 19, 20sylancr 587 . . . . . . . 8 (𝐾 ∈ ℤ → (2 · ((cos‘(𝐾 · π))↑2)) ∈ ℂ)
22 ax-1cn 11132 . . . . . . . . 9 1 ∈ ℂ
23 subadd 11430 . . . . . . . . 9 (((2 · ((cos‘(𝐾 · π))↑2)) ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · ((cos‘(𝐾 · π))↑2)) − 1) = 1 ↔ (1 + 1) = (2 · ((cos‘(𝐾 · π))↑2))))
2422, 22, 23mp3an23 1455 . . . . . . . 8 ((2 · ((cos‘(𝐾 · π))↑2)) ∈ ℂ → (((2 · ((cos‘(𝐾 · π))↑2)) − 1) = 1 ↔ (1 + 1) = (2 · ((cos‘(𝐾 · π))↑2))))
2521, 24syl 17 . . . . . . 7 (𝐾 ∈ ℤ → (((2 · ((cos‘(𝐾 · π))↑2)) − 1) = 1 ↔ (1 + 1) = (2 · ((cos‘(𝐾 · π))↑2))))
2616, 25mpbid 232 . . . . . 6 (𝐾 ∈ ℤ → (1 + 1) = (2 · ((cos‘(𝐾 · π))↑2)))
27 2t1e2 12350 . . . . . . 7 (2 · 1) = 2
28 df-2 12250 . . . . . . 7 2 = (1 + 1)
2927, 28eqtr2i 2754 . . . . . 6 (1 + 1) = (2 · 1)
3026, 29eqtr3di 2780 . . . . 5 (𝐾 ∈ ℤ → (2 · ((cos‘(𝐾 · π))↑2)) = (2 · 1))
31 2cnne0 12397 . . . . . . 7 (2 ∈ ℂ ∧ 2 ≠ 0)
32 mulcan 11821 . . . . . . 7 ((((cos‘(𝐾 · π))↑2) ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((2 · ((cos‘(𝐾 · π))↑2)) = (2 · 1) ↔ ((cos‘(𝐾 · π))↑2) = 1))
3322, 31, 32mp3an23 1455 . . . . . 6 (((cos‘(𝐾 · π))↑2) ∈ ℂ → ((2 · ((cos‘(𝐾 · π))↑2)) = (2 · 1) ↔ ((cos‘(𝐾 · π))↑2) = 1))
3419, 33syl 17 . . . . 5 (𝐾 ∈ ℤ → ((2 · ((cos‘(𝐾 · π))↑2)) = (2 · 1) ↔ ((cos‘(𝐾 · π))↑2) = 1))
3530, 34mpbid 232 . . . 4 (𝐾 ∈ ℤ → ((cos‘(𝐾 · π))↑2) = 1)
36 sq1 14166 . . . 4 (1↑2) = 1
3735, 36eqtr4di 2783 . . 3 (𝐾 ∈ ℤ → ((cos‘(𝐾 · π))↑2) = (1↑2))
38 1re 11180 . . . 4 1 ∈ ℝ
39 sqabs 15279 . . . 4 (((cos‘(𝐾 · π)) ∈ ℝ ∧ 1 ∈ ℝ) → (((cos‘(𝐾 · π))↑2) = (1↑2) ↔ (abs‘(cos‘(𝐾 · π))) = (abs‘1)))
4017, 38, 39sylancl 586 . . 3 (𝐾 ∈ ℤ → (((cos‘(𝐾 · π))↑2) = (1↑2) ↔ (abs‘(cos‘(𝐾 · π))) = (abs‘1)))
4137, 40mpbid 232 . 2 (𝐾 ∈ ℤ → (abs‘(cos‘(𝐾 · π))) = (abs‘1))
42 abs1 15269 . 2 (abs‘1) = 1
4341, 42eqtrdi 2781 1 (𝐾 ∈ ℤ → (abs‘(cos‘(𝐾 · π))) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  cfv 6513  (class class class)co 7389  cc 11072  cr 11073  0cc0 11074  1c1 11075   + caddc 11077   · cmul 11079  cmin 11411  2c2 12242  cz 12535  cexp 14032  abscabs 15206  cosccos 16036  πcpi 16038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-inf2 9600  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152  ax-addf 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-of 7655  df-om 7845  df-1st 7970  df-2nd 7971  df-supp 8142  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-er 8673  df-map 8803  df-pm 8804  df-ixp 8873  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-fsupp 9319  df-fi 9368  df-sup 9399  df-inf 9400  df-oi 9469  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-uz 12800  df-q 12914  df-rp 12958  df-xneg 13078  df-xadd 13079  df-xmul 13080  df-ioo 13316  df-ioc 13317  df-ico 13318  df-icc 13319  df-fz 13475  df-fzo 13622  df-fl 13760  df-seq 13973  df-exp 14033  df-fac 14245  df-bc 14274  df-hash 14302  df-shft 15039  df-cj 15071  df-re 15072  df-im 15073  df-sqrt 15207  df-abs 15208  df-limsup 15443  df-clim 15460  df-rlim 15461  df-sum 15659  df-ef 16039  df-sin 16041  df-cos 16042  df-pi 16044  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-rest 17391  df-topn 17392  df-0g 17410  df-gsum 17411  df-topgen 17412  df-pt 17413  df-prds 17416  df-xrs 17471  df-qtop 17476  df-imas 17477  df-xps 17479  df-mre 17553  df-mrc 17554  df-acs 17556  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-submnd 18717  df-mulg 19006  df-cntz 19255  df-cmn 19718  df-psmet 21262  df-xmet 21263  df-met 21264  df-bl 21265  df-mopn 21266  df-fbas 21267  df-fg 21268  df-cnfld 21271  df-top 22787  df-topon 22804  df-topsp 22826  df-bases 22839  df-cld 22912  df-ntr 22913  df-cls 22914  df-nei 22991  df-lp 23029  df-perf 23030  df-cn 23120  df-cnp 23121  df-haus 23208  df-tx 23455  df-hmeo 23648  df-fil 23739  df-fm 23831  df-flim 23832  df-flf 23833  df-xms 24214  df-ms 24215  df-tms 24216  df-cncf 24777  df-limc 25773  df-dv 25774
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator