| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > demoivre | Structured version Visualization version GIF version | ||
| Description: De Moivre's Formula. Proof by induction given at http://en.wikipedia.org/wiki/De_Moivre's_formula, but restricted to nonnegative integer powers. See also demoivreALT 16237 for an alternate longer proof not using the exponential function. (Contributed by NM, 24-Jul-2007.) |
| Ref | Expression |
|---|---|
| demoivre | ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn 11214 | . . . 4 ⊢ i ∈ ℂ | |
| 2 | mulcl 11239 | . . . 4 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
| 3 | 1, 2 | mpan 690 | . . 3 ⊢ (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ) |
| 4 | efexp 16137 | . . 3 ⊢ (((i · 𝐴) ∈ ℂ ∧ 𝑁 ∈ ℤ) → (exp‘(𝑁 · (i · 𝐴))) = ((exp‘(i · 𝐴))↑𝑁)) | |
| 5 | 3, 4 | sylan 580 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (exp‘(𝑁 · (i · 𝐴))) = ((exp‘(i · 𝐴))↑𝑁)) |
| 6 | zcn 12618 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 7 | mul12 11426 | . . . . . . 7 ⊢ ((𝑁 ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑁 · (i · 𝐴)) = (i · (𝑁 · 𝐴))) | |
| 8 | 1, 7 | mp3an2 1451 | . . . . . 6 ⊢ ((𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑁 · (i · 𝐴)) = (i · (𝑁 · 𝐴))) |
| 9 | 8 | fveq2d 6910 | . . . . 5 ⊢ ((𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (exp‘(𝑁 · (i · 𝐴))) = (exp‘(i · (𝑁 · 𝐴)))) |
| 10 | mulcl 11239 | . . . . . 6 ⊢ ((𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑁 · 𝐴) ∈ ℂ) | |
| 11 | efival 16188 | . . . . . 6 ⊢ ((𝑁 · 𝐴) ∈ ℂ → (exp‘(i · (𝑁 · 𝐴))) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴))))) | |
| 12 | 10, 11 | syl 17 | . . . . 5 ⊢ ((𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (exp‘(i · (𝑁 · 𝐴))) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴))))) |
| 13 | 9, 12 | eqtrd 2777 | . . . 4 ⊢ ((𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (exp‘(𝑁 · (i · 𝐴))) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴))))) |
| 14 | 13 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (exp‘(𝑁 · (i · 𝐴))) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴))))) |
| 15 | 6, 14 | sylan2 593 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (exp‘(𝑁 · (i · 𝐴))) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴))))) |
| 16 | efival 16188 | . . . 4 ⊢ (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴)))) | |
| 17 | 16 | oveq1d 7446 | . . 3 ⊢ (𝐴 ∈ ℂ → ((exp‘(i · 𝐴))↑𝑁) = (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁)) |
| 18 | 17 | adantr 480 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → ((exp‘(i · 𝐴))↑𝑁) = (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁)) |
| 19 | 5, 15, 18 | 3eqtr3rd 2786 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ‘cfv 6561 (class class class)co 7431 ℂcc 11153 ici 11157 + caddc 11158 · cmul 11160 ℤcz 12613 ↑cexp 14102 expce 16097 sincsin 16099 cosccos 16100 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-pm 8869 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-inf 9483 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-ico 13393 df-fz 13548 df-fzo 13695 df-fl 13832 df-seq 14043 df-exp 14103 df-fac 14313 df-bc 14342 df-hash 14370 df-shft 15106 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-limsup 15507 df-clim 15524 df-rlim 15525 df-sum 15723 df-ef 16103 df-sin 16105 df-cos 16106 |
| This theorem is referenced by: basellem3 27126 |
| Copyright terms: Public domain | W3C validator |