MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  demoivre Structured version   Visualization version   GIF version

Theorem demoivre 15909
Description: De Moivre's Formula. Proof by induction given at http://en.wikipedia.org/wiki/De_Moivre's_formula, but restricted to nonnegative integer powers. See also demoivreALT 15910 for an alternate longer proof not using the exponential function. (Contributed by NM, 24-Jul-2007.)
Assertion
Ref Expression
demoivre ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴)))))

Proof of Theorem demoivre
StepHypRef Expression
1 ax-icn 10930 . . . 4 i ∈ ℂ
2 mulcl 10955 . . . 4 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
31, 2mpan 687 . . 3 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
4 efexp 15810 . . 3 (((i · 𝐴) ∈ ℂ ∧ 𝑁 ∈ ℤ) → (exp‘(𝑁 · (i · 𝐴))) = ((exp‘(i · 𝐴))↑𝑁))
53, 4sylan 580 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (exp‘(𝑁 · (i · 𝐴))) = ((exp‘(i · 𝐴))↑𝑁))
6 zcn 12324 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
7 mul12 11140 . . . . . . 7 ((𝑁 ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑁 · (i · 𝐴)) = (i · (𝑁 · 𝐴)))
81, 7mp3an2 1448 . . . . . 6 ((𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑁 · (i · 𝐴)) = (i · (𝑁 · 𝐴)))
98fveq2d 6778 . . . . 5 ((𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (exp‘(𝑁 · (i · 𝐴))) = (exp‘(i · (𝑁 · 𝐴))))
10 mulcl 10955 . . . . . 6 ((𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑁 · 𝐴) ∈ ℂ)
11 efival 15861 . . . . . 6 ((𝑁 · 𝐴) ∈ ℂ → (exp‘(i · (𝑁 · 𝐴))) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴)))))
1210, 11syl 17 . . . . 5 ((𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (exp‘(i · (𝑁 · 𝐴))) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴)))))
139, 12eqtrd 2778 . . . 4 ((𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (exp‘(𝑁 · (i · 𝐴))) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴)))))
1413ancoms 459 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (exp‘(𝑁 · (i · 𝐴))) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴)))))
156, 14sylan2 593 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (exp‘(𝑁 · (i · 𝐴))) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴)))))
16 efival 15861 . . . 4 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴))))
1716oveq1d 7290 . . 3 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴))↑𝑁) = (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁))
1817adantr 481 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → ((exp‘(i · 𝐴))↑𝑁) = (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁))
195, 15, 183eqtr3rd 2787 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  cc 10869  ici 10873   + caddc 10874   · cmul 10876  cz 12319  cexp 13782  expce 15771  sincsin 15773  cosccos 15774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-ico 13085  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780
This theorem is referenced by:  basellem3  26232
  Copyright terms: Public domain W3C validator