| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > demoivre | Structured version Visualization version GIF version | ||
| Description: De Moivre's Formula. Proof by induction given at http://en.wikipedia.org/wiki/De_Moivre's_formula, but restricted to nonnegative integer powers. See also demoivreALT 16169 for an alternate longer proof not using the exponential function. (Contributed by NM, 24-Jul-2007.) |
| Ref | Expression |
|---|---|
| demoivre | ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn 11127 | . . . 4 ⊢ i ∈ ℂ | |
| 2 | mulcl 11152 | . . . 4 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
| 3 | 1, 2 | mpan 690 | . . 3 ⊢ (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ) |
| 4 | efexp 16069 | . . 3 ⊢ (((i · 𝐴) ∈ ℂ ∧ 𝑁 ∈ ℤ) → (exp‘(𝑁 · (i · 𝐴))) = ((exp‘(i · 𝐴))↑𝑁)) | |
| 5 | 3, 4 | sylan 580 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (exp‘(𝑁 · (i · 𝐴))) = ((exp‘(i · 𝐴))↑𝑁)) |
| 6 | zcn 12534 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 7 | mul12 11339 | . . . . . . 7 ⊢ ((𝑁 ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑁 · (i · 𝐴)) = (i · (𝑁 · 𝐴))) | |
| 8 | 1, 7 | mp3an2 1451 | . . . . . 6 ⊢ ((𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑁 · (i · 𝐴)) = (i · (𝑁 · 𝐴))) |
| 9 | 8 | fveq2d 6862 | . . . . 5 ⊢ ((𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (exp‘(𝑁 · (i · 𝐴))) = (exp‘(i · (𝑁 · 𝐴)))) |
| 10 | mulcl 11152 | . . . . . 6 ⊢ ((𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑁 · 𝐴) ∈ ℂ) | |
| 11 | efival 16120 | . . . . . 6 ⊢ ((𝑁 · 𝐴) ∈ ℂ → (exp‘(i · (𝑁 · 𝐴))) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴))))) | |
| 12 | 10, 11 | syl 17 | . . . . 5 ⊢ ((𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (exp‘(i · (𝑁 · 𝐴))) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴))))) |
| 13 | 9, 12 | eqtrd 2764 | . . . 4 ⊢ ((𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (exp‘(𝑁 · (i · 𝐴))) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴))))) |
| 14 | 13 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (exp‘(𝑁 · (i · 𝐴))) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴))))) |
| 15 | 6, 14 | sylan2 593 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (exp‘(𝑁 · (i · 𝐴))) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴))))) |
| 16 | efival 16120 | . . . 4 ⊢ (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴)))) | |
| 17 | 16 | oveq1d 7402 | . . 3 ⊢ (𝐴 ∈ ℂ → ((exp‘(i · 𝐴))↑𝑁) = (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁)) |
| 18 | 17 | adantr 480 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → ((exp‘(i · 𝐴))↑𝑁) = (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁)) |
| 19 | 5, 15, 18 | 3eqtr3rd 2773 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ici 11070 + caddc 11071 · cmul 11073 ℤcz 12529 ↑cexp 14026 expce 16027 sincsin 16029 cosccos 16030 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-ico 13312 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-fac 14239 df-bc 14268 df-hash 14296 df-shft 15033 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-limsup 15437 df-clim 15454 df-rlim 15455 df-sum 15653 df-ef 16033 df-sin 16035 df-cos 16036 |
| This theorem is referenced by: basellem3 26993 |
| Copyright terms: Public domain | W3C validator |