Proof of Theorem efif1olem4
Step | Hyp | Ref
| Expression |
1 | | efif1olem4.3 |
. . . . . 6
⊢ (𝜑 → 𝐷 ⊆ ℝ) |
2 | 1 | sselda 3926 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐷) → 𝑤 ∈ ℝ) |
3 | | ax-icn 10929 |
. . . . . . . . 9
⊢ i ∈
ℂ |
4 | | recn 10960 |
. . . . . . . . 9
⊢ (𝑤 ∈ ℝ → 𝑤 ∈
ℂ) |
5 | | mulcl 10954 |
. . . . . . . . 9
⊢ ((i
∈ ℂ ∧ 𝑤
∈ ℂ) → (i · 𝑤) ∈ ℂ) |
6 | 3, 4, 5 | sylancr 587 |
. . . . . . . 8
⊢ (𝑤 ∈ ℝ → (i
· 𝑤) ∈
ℂ) |
7 | | efcl 15788 |
. . . . . . . 8
⊢ ((i
· 𝑤) ∈ ℂ
→ (exp‘(i · 𝑤)) ∈ ℂ) |
8 | 6, 7 | syl 17 |
. . . . . . 7
⊢ (𝑤 ∈ ℝ →
(exp‘(i · 𝑤))
∈ ℂ) |
9 | | absefi 15901 |
. . . . . . 7
⊢ (𝑤 ∈ ℝ →
(abs‘(exp‘(i · 𝑤))) = 1) |
10 | | absf 15045 |
. . . . . . . . 9
⊢
abs:ℂ⟶ℝ |
11 | | ffn 6597 |
. . . . . . . . 9
⊢
(abs:ℂ⟶ℝ → abs Fn ℂ) |
12 | 10, 11 | ax-mp 5 |
. . . . . . . 8
⊢ abs Fn
ℂ |
13 | | fniniseg 6932 |
. . . . . . . 8
⊢ (abs Fn
ℂ → ((exp‘(i · 𝑤)) ∈ (◡abs “ {1}) ↔ ((exp‘(i
· 𝑤)) ∈ ℂ
∧ (abs‘(exp‘(i · 𝑤))) = 1))) |
14 | 12, 13 | ax-mp 5 |
. . . . . . 7
⊢
((exp‘(i · 𝑤)) ∈ (◡abs “ {1}) ↔ ((exp‘(i
· 𝑤)) ∈ ℂ
∧ (abs‘(exp‘(i · 𝑤))) = 1)) |
15 | 8, 9, 14 | sylanbrc 583 |
. . . . . 6
⊢ (𝑤 ∈ ℝ →
(exp‘(i · 𝑤))
∈ (◡abs “
{1})) |
16 | | efif1o.2 |
. . . . . 6
⊢ 𝐶 = (◡abs “ {1}) |
17 | 15, 16 | eleqtrrdi 2852 |
. . . . 5
⊢ (𝑤 ∈ ℝ →
(exp‘(i · 𝑤))
∈ 𝐶) |
18 | 2, 17 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐷) → (exp‘(i · 𝑤)) ∈ 𝐶) |
19 | | efif1o.1 |
. . . 4
⊢ 𝐹 = (𝑤 ∈ 𝐷 ↦ (exp‘(i · 𝑤))) |
20 | 18, 19 | fmptd 6983 |
. . 3
⊢ (𝜑 → 𝐹:𝐷⟶𝐶) |
21 | 1 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → 𝐷 ⊆ ℝ) |
22 | | simplrl 774 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → 𝑥 ∈ 𝐷) |
23 | 21, 22 | sseldd 3927 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → 𝑥 ∈ ℝ) |
24 | 23 | recnd 11002 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → 𝑥 ∈ ℂ) |
25 | | simplrr 775 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → 𝑦 ∈ 𝐷) |
26 | 21, 25 | sseldd 3927 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → 𝑦 ∈ ℝ) |
27 | 26 | recnd 11002 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → 𝑦 ∈ ℂ) |
28 | 24, 27 | subcld 11330 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (𝑥 − 𝑦) ∈ ℂ) |
29 | | 2re 12045 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℝ |
30 | | pire 25611 |
. . . . . . . . . . . 12
⊢ π
∈ ℝ |
31 | 29, 30 | remulcli 10990 |
. . . . . . . . . . 11
⊢ (2
· π) ∈ ℝ |
32 | 31 | recni 10988 |
. . . . . . . . . 10
⊢ (2
· π) ∈ ℂ |
33 | | 2pos 12074 |
. . . . . . . . . . . 12
⊢ 0 <
2 |
34 | | pipos 25613 |
. . . . . . . . . . . 12
⊢ 0 <
π |
35 | 29, 30, 33, 34 | mulgt0ii 11106 |
. . . . . . . . . . 11
⊢ 0 < (2
· π) |
36 | 31, 35 | gt0ne0ii 11509 |
. . . . . . . . . 10
⊢ (2
· π) ≠ 0 |
37 | | divcl 11637 |
. . . . . . . . . 10
⊢ (((𝑥 − 𝑦) ∈ ℂ ∧ (2 · π)
∈ ℂ ∧ (2 · π) ≠ 0) → ((𝑥 − 𝑦) / (2 · π)) ∈
ℂ) |
38 | 32, 36, 37 | mp3an23 1452 |
. . . . . . . . 9
⊢ ((𝑥 − 𝑦) ∈ ℂ → ((𝑥 − 𝑦) / (2 · π)) ∈
ℂ) |
39 | 28, 38 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → ((𝑥 − 𝑦) / (2 · π)) ∈
ℂ) |
40 | | absdiv 15003 |
. . . . . . . . . . . . 13
⊢ (((𝑥 − 𝑦) ∈ ℂ ∧ (2 · π)
∈ ℂ ∧ (2 · π) ≠ 0) → (abs‘((𝑥 − 𝑦) / (2 · π))) = ((abs‘(𝑥 − 𝑦)) / (abs‘(2 ·
π)))) |
41 | 32, 36, 40 | mp3an23 1452 |
. . . . . . . . . . . 12
⊢ ((𝑥 − 𝑦) ∈ ℂ → (abs‘((𝑥 − 𝑦) / (2 · π))) = ((abs‘(𝑥 − 𝑦)) / (abs‘(2 ·
π)))) |
42 | 28, 41 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (abs‘((𝑥 − 𝑦) / (2 · π))) = ((abs‘(𝑥 − 𝑦)) / (abs‘(2 ·
π)))) |
43 | | 0re 10976 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℝ |
44 | 43, 31, 35 | ltleii 11096 |
. . . . . . . . . . . . 13
⊢ 0 ≤ (2
· π) |
45 | | absid 15004 |
. . . . . . . . . . . . 13
⊢ (((2
· π) ∈ ℝ ∧ 0 ≤ (2 · π)) →
(abs‘(2 · π)) = (2 · π)) |
46 | 31, 44, 45 | mp2an 689 |
. . . . . . . . . . . 12
⊢
(abs‘(2 · π)) = (2 · π) |
47 | 46 | oveq2i 7280 |
. . . . . . . . . . 11
⊢
((abs‘(𝑥
− 𝑦)) / (abs‘(2
· π))) = ((abs‘(𝑥 − 𝑦)) / (2 · π)) |
48 | 42, 47 | eqtrdi 2796 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (abs‘((𝑥 − 𝑦) / (2 · π))) = ((abs‘(𝑥 − 𝑦)) / (2 · π))) |
49 | | efif1olem4.4 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (abs‘(𝑥 − 𝑦)) < (2 · π)) |
50 | 49 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (abs‘(𝑥 − 𝑦)) < (2 · π)) |
51 | 32 | mulid1i 10978 |
. . . . . . . . . . . 12
⊢ ((2
· π) · 1) = (2 · π) |
52 | 50, 51 | breqtrrdi 5121 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (abs‘(𝑥 − 𝑦)) < ((2 · π) ·
1)) |
53 | 28 | abscld 15144 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (abs‘(𝑥 − 𝑦)) ∈ ℝ) |
54 | | 1re 10974 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℝ |
55 | 31, 35 | pm3.2i 471 |
. . . . . . . . . . . . 13
⊢ ((2
· π) ∈ ℝ ∧ 0 < (2 · π)) |
56 | | ltdivmul 11848 |
. . . . . . . . . . . . 13
⊢
(((abs‘(𝑥
− 𝑦)) ∈ ℝ
∧ 1 ∈ ℝ ∧ ((2 · π) ∈ ℝ ∧ 0 < (2
· π))) → (((abs‘(𝑥 − 𝑦)) / (2 · π)) < 1 ↔
(abs‘(𝑥 − 𝑦)) < ((2 · π)
· 1))) |
57 | 54, 55, 56 | mp3an23 1452 |
. . . . . . . . . . . 12
⊢
((abs‘(𝑥
− 𝑦)) ∈ ℝ
→ (((abs‘(𝑥
− 𝑦)) / (2 ·
π)) < 1 ↔ (abs‘(𝑥 − 𝑦)) < ((2 · π) ·
1))) |
58 | 53, 57 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (((abs‘(𝑥 − 𝑦)) / (2 · π)) < 1 ↔
(abs‘(𝑥 − 𝑦)) < ((2 · π)
· 1))) |
59 | 52, 58 | mpbird 256 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → ((abs‘(𝑥 − 𝑦)) / (2 · π)) <
1) |
60 | 48, 59 | eqbrtrd 5101 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (abs‘((𝑥 − 𝑦) / (2 · π))) <
1) |
61 | 32, 36 | pm3.2i 471 |
. . . . . . . . . . . . . 14
⊢ ((2
· π) ∈ ℂ ∧ (2 · π) ≠ 0) |
62 | | ine0 11408 |
. . . . . . . . . . . . . . 15
⊢ i ≠
0 |
63 | 3, 62 | pm3.2i 471 |
. . . . . . . . . . . . . 14
⊢ (i ∈
ℂ ∧ i ≠ 0) |
64 | | divcan5 11675 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 − 𝑦) ∈ ℂ ∧ ((2 · π)
∈ ℂ ∧ (2 · π) ≠ 0) ∧ (i ∈ ℂ ∧ i
≠ 0)) → ((i · (𝑥 − 𝑦)) / (i · (2 · π))) =
((𝑥 − 𝑦) / (2 ·
π))) |
65 | 61, 63, 64 | mp3an23 1452 |
. . . . . . . . . . . . 13
⊢ ((𝑥 − 𝑦) ∈ ℂ → ((i · (𝑥 − 𝑦)) / (i · (2 · π))) =
((𝑥 − 𝑦) / (2 ·
π))) |
66 | 28, 65 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → ((i · (𝑥 − 𝑦)) / (i · (2 · π))) =
((𝑥 − 𝑦) / (2 ·
π))) |
67 | 3 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → i ∈ ℂ) |
68 | 67, 24, 27 | subdid 11429 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (i · (𝑥 − 𝑦)) = ((i · 𝑥) − (i · 𝑦))) |
69 | 68 | fveq2d 6773 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (exp‘(i · (𝑥 − 𝑦))) = (exp‘((i · 𝑥) − (i · 𝑦)))) |
70 | | mulcl 10954 |
. . . . . . . . . . . . . . . 16
⊢ ((i
∈ ℂ ∧ 𝑥
∈ ℂ) → (i · 𝑥) ∈ ℂ) |
71 | 3, 24, 70 | sylancr 587 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (i · 𝑥) ∈ ℂ) |
72 | | mulcl 10954 |
. . . . . . . . . . . . . . . 16
⊢ ((i
∈ ℂ ∧ 𝑦
∈ ℂ) → (i · 𝑦) ∈ ℂ) |
73 | 3, 27, 72 | sylancr 587 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (i · 𝑦) ∈ ℂ) |
74 | | efsub 15805 |
. . . . . . . . . . . . . . 15
⊢ (((i
· 𝑥) ∈ ℂ
∧ (i · 𝑦) ∈
ℂ) → (exp‘((i · 𝑥) − (i · 𝑦))) = ((exp‘(i · 𝑥)) / (exp‘(i ·
𝑦)))) |
75 | 71, 73, 74 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (exp‘((i · 𝑥) − (i · 𝑦))) = ((exp‘(i ·
𝑥)) / (exp‘(i
· 𝑦)))) |
76 | | efcl 15788 |
. . . . . . . . . . . . . . . 16
⊢ ((i
· 𝑦) ∈ ℂ
→ (exp‘(i · 𝑦)) ∈ ℂ) |
77 | 73, 76 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (exp‘(i · 𝑦)) ∈
ℂ) |
78 | | efne0 15802 |
. . . . . . . . . . . . . . . 16
⊢ ((i
· 𝑦) ∈ ℂ
→ (exp‘(i · 𝑦)) ≠ 0) |
79 | 73, 78 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (exp‘(i · 𝑦)) ≠ 0) |
80 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (𝐹‘𝑥) = (𝐹‘𝑦)) |
81 | | oveq2 7277 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = 𝑥 → (i · 𝑤) = (i · 𝑥)) |
82 | 81 | fveq2d 6773 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = 𝑥 → (exp‘(i · 𝑤)) = (exp‘(i ·
𝑥))) |
83 | | fvex 6782 |
. . . . . . . . . . . . . . . . . 18
⊢
(exp‘(i · 𝑥)) ∈ V |
84 | 82, 19, 83 | fvmpt 6870 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ 𝐷 → (𝐹‘𝑥) = (exp‘(i · 𝑥))) |
85 | 22, 84 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (𝐹‘𝑥) = (exp‘(i · 𝑥))) |
86 | | oveq2 7277 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = 𝑦 → (i · 𝑤) = (i · 𝑦)) |
87 | 86 | fveq2d 6773 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = 𝑦 → (exp‘(i · 𝑤)) = (exp‘(i ·
𝑦))) |
88 | | fvex 6782 |
. . . . . . . . . . . . . . . . . 18
⊢
(exp‘(i · 𝑦)) ∈ V |
89 | 87, 19, 88 | fvmpt 6870 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ 𝐷 → (𝐹‘𝑦) = (exp‘(i · 𝑦))) |
90 | 25, 89 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (𝐹‘𝑦) = (exp‘(i · 𝑦))) |
91 | 80, 85, 90 | 3eqtr3d 2788 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (exp‘(i · 𝑥)) = (exp‘(i ·
𝑦))) |
92 | 77, 79, 91 | diveq1bd 11797 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → ((exp‘(i · 𝑥)) / (exp‘(i ·
𝑦))) = 1) |
93 | 69, 75, 92 | 3eqtrd 2784 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (exp‘(i · (𝑥 − 𝑦))) = 1) |
94 | | mulcl 10954 |
. . . . . . . . . . . . . . 15
⊢ ((i
∈ ℂ ∧ (𝑥
− 𝑦) ∈ ℂ)
→ (i · (𝑥
− 𝑦)) ∈
ℂ) |
95 | 3, 28, 94 | sylancr 587 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (i · (𝑥 − 𝑦)) ∈ ℂ) |
96 | | efeq1 25680 |
. . . . . . . . . . . . . 14
⊢ ((i
· (𝑥 − 𝑦)) ∈ ℂ →
((exp‘(i · (𝑥
− 𝑦))) = 1 ↔ ((i
· (𝑥 − 𝑦)) / (i · (2 ·
π))) ∈ ℤ)) |
97 | 95, 96 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → ((exp‘(i · (𝑥 − 𝑦))) = 1 ↔ ((i · (𝑥 − 𝑦)) / (i · (2 · π))) ∈
ℤ)) |
98 | 93, 97 | mpbid 231 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → ((i · (𝑥 − 𝑦)) / (i · (2 · π))) ∈
ℤ) |
99 | 66, 98 | eqeltrrd 2842 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → ((𝑥 − 𝑦) / (2 · π)) ∈
ℤ) |
100 | | nn0abscl 15020 |
. . . . . . . . . . 11
⊢ (((𝑥 − 𝑦) / (2 · π)) ∈ ℤ →
(abs‘((𝑥 −
𝑦) / (2 · π)))
∈ ℕ0) |
101 | 99, 100 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (abs‘((𝑥 − 𝑦) / (2 · π))) ∈
ℕ0) |
102 | | nn0lt10b 12380 |
. . . . . . . . . 10
⊢
((abs‘((𝑥
− 𝑦) / (2 ·
π))) ∈ ℕ0 → ((abs‘((𝑥 − 𝑦) / (2 · π))) < 1 ↔
(abs‘((𝑥 −
𝑦) / (2 · π))) =
0)) |
103 | 101, 102 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → ((abs‘((𝑥 − 𝑦) / (2 · π))) < 1 ↔
(abs‘((𝑥 −
𝑦) / (2 · π))) =
0)) |
104 | 60, 103 | mpbid 231 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (abs‘((𝑥 − 𝑦) / (2 · π))) = 0) |
105 | 39, 104 | abs00d 15154 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → ((𝑥 − 𝑦) / (2 · π)) = 0) |
106 | | diveq0 11641 |
. . . . . . . . 9
⊢ (((𝑥 − 𝑦) ∈ ℂ ∧ (2 · π)
∈ ℂ ∧ (2 · π) ≠ 0) → (((𝑥 − 𝑦) / (2 · π)) = 0 ↔ (𝑥 − 𝑦) = 0)) |
107 | 32, 36, 106 | mp3an23 1452 |
. . . . . . . 8
⊢ ((𝑥 − 𝑦) ∈ ℂ → (((𝑥 − 𝑦) / (2 · π)) = 0 ↔ (𝑥 − 𝑦) = 0)) |
108 | 28, 107 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (((𝑥 − 𝑦) / (2 · π)) = 0 ↔ (𝑥 − 𝑦) = 0)) |
109 | 105, 108 | mpbid 231 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (𝑥 − 𝑦) = 0) |
110 | 24, 27, 109 | subeq0d 11338 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → 𝑥 = 𝑦) |
111 | 110 | ex 413 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
112 | 111 | ralrimivva 3117 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
113 | | dff13 7123 |
. . 3
⊢ (𝐹:𝐷–1-1→𝐶 ↔ (𝐹:𝐷⟶𝐶 ∧ ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
114 | 20, 112, 113 | sylanbrc 583 |
. 2
⊢ (𝜑 → 𝐹:𝐷–1-1→𝐶) |
115 | | oveq1 7276 |
. . . . . . . . 9
⊢ (𝑧 = (2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) → (𝑧 − 𝑦) = ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) |
116 | 115 | oveq1d 7284 |
. . . . . . . 8
⊢ (𝑧 = (2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) → ((𝑧 − 𝑦) / (2 · π)) = (((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π))) |
117 | 116 | eleq1d 2825 |
. . . . . . 7
⊢ (𝑧 = (2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) → (((𝑧 − 𝑦) / (2 · π)) ∈ ℤ ↔
(((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)) ∈
ℤ)) |
118 | 117 | rexbidv 3228 |
. . . . . 6
⊢ (𝑧 = (2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) → (∃𝑦 ∈ 𝐷 ((𝑧 − 𝑦) / (2 · π)) ∈ ℤ ↔
∃𝑦 ∈ 𝐷 (((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)) ∈
ℤ)) |
119 | | efif1olem4.5 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → ∃𝑦 ∈ 𝐷 ((𝑧 − 𝑦) / (2 · π)) ∈
ℤ) |
120 | 119 | ralrimiva 3110 |
. . . . . . 7
⊢ (𝜑 → ∀𝑧 ∈ ℝ ∃𝑦 ∈ 𝐷 ((𝑧 − 𝑦) / (2 · π)) ∈
ℤ) |
121 | 120 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ∀𝑧 ∈ ℝ ∃𝑦 ∈ 𝐷 ((𝑧 − 𝑦) / (2 · π)) ∈
ℤ) |
122 | | neghalfpire 25618 |
. . . . . . . . 9
⊢ -(π /
2) ∈ ℝ |
123 | | halfpire 25617 |
. . . . . . . . 9
⊢ (π /
2) ∈ ℝ |
124 | | iccssre 13158 |
. . . . . . . . 9
⊢ ((-(π
/ 2) ∈ ℝ ∧ (π / 2) ∈ ℝ) → (-(π /
2)[,](π / 2)) ⊆ ℝ) |
125 | 122, 123,
124 | mp2an 689 |
. . . . . . . 8
⊢ (-(π /
2)[,](π / 2)) ⊆ ℝ |
126 | 19, 16 | efif1olem3 25696 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (ℑ‘(√‘𝑥)) ∈
(-1[,]1)) |
127 | | resinf1o 25688 |
. . . . . . . . . . . 12
⊢ (sin
↾ (-(π / 2)[,](π / 2))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1) |
128 | | efif1olem4.6 |
. . . . . . . . . . . . 13
⊢ 𝑆 = (sin ↾ (-(π /
2)[,](π / 2))) |
129 | | f1oeq1 6701 |
. . . . . . . . . . . . 13
⊢ (𝑆 = (sin ↾ (-(π /
2)[,](π / 2))) → (𝑆:(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1) ↔ (sin ↾ (-(π /
2)[,](π / 2))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1))) |
130 | 128, 129 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (𝑆:(-(π / 2)[,](π /
2))–1-1-onto→(-1[,]1) ↔ (sin ↾ (-(π /
2)[,](π / 2))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1)) |
131 | 127, 130 | mpbir 230 |
. . . . . . . . . . 11
⊢ 𝑆:(-(π / 2)[,](π /
2))–1-1-onto→(-1[,]1) |
132 | | f1ocnv 6725 |
. . . . . . . . . . 11
⊢ (𝑆:(-(π / 2)[,](π /
2))–1-1-onto→(-1[,]1) → ◡𝑆:(-1[,]1)–1-1-onto→(-(π / 2)[,](π / 2))) |
133 | | f1of 6713 |
. . . . . . . . . . 11
⊢ (◡𝑆:(-1[,]1)–1-1-onto→(-(π / 2)[,](π / 2)) → ◡𝑆:(-1[,]1)⟶(-(π / 2)[,](π /
2))) |
134 | 131, 132,
133 | mp2b 10 |
. . . . . . . . . 10
⊢ ◡𝑆:(-1[,]1)⟶(-(π / 2)[,](π /
2)) |
135 | 134 | ffvelrni 6955 |
. . . . . . . . 9
⊢
((ℑ‘(√‘𝑥)) ∈ (-1[,]1) → (◡𝑆‘(ℑ‘(√‘𝑥))) ∈ (-(π / 2)[,](π
/ 2))) |
136 | 126, 135 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (◡𝑆‘(ℑ‘(√‘𝑥))) ∈ (-(π / 2)[,](π
/ 2))) |
137 | 125, 136 | sselid 3924 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (◡𝑆‘(ℑ‘(√‘𝑥))) ∈
ℝ) |
138 | | remulcl 10955 |
. . . . . . 7
⊢ ((2
∈ ℝ ∧ (◡𝑆‘(ℑ‘(√‘𝑥))) ∈ ℝ) → (2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) ∈
ℝ) |
139 | 29, 137, 138 | sylancr 587 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) ∈
ℝ) |
140 | 118, 121,
139 | rspcdva 3563 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ∃𝑦 ∈ 𝐷 (((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)) ∈
ℤ) |
141 | | oveq1 7276 |
. . . . . . . 8
⊢
((exp‘(i · ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) = 1 → ((exp‘(i · ((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) · (exp‘(i · 𝑦))) = (1 · (exp‘(i
· 𝑦)))) |
142 | 3 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → i ∈ ℂ) |
143 | 139 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) ∈
ℝ) |
144 | 143 | recnd 11002 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) ∈
ℂ) |
145 | 1 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → 𝐷 ⊆ ℝ) |
146 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → 𝑦 ∈ 𝐷) |
147 | 145, 146 | sseldd 3927 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → 𝑦 ∈ ℝ) |
148 | 147 | recnd 11002 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → 𝑦 ∈ ℂ) |
149 | 142, 144,
148 | subdid 11429 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (i · ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) = ((i · (2 · (◡𝑆‘(ℑ‘(√‘𝑥))))) − (i · 𝑦))) |
150 | 149 | oveq1d 7284 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → ((i · ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) + (i · 𝑦)) = (((i · (2 · (◡𝑆‘(ℑ‘(√‘𝑥))))) − (i · 𝑦)) + (i · 𝑦))) |
151 | | mulcl 10954 |
. . . . . . . . . . . . . 14
⊢ ((i
∈ ℂ ∧ (2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) ∈ ℂ) → (i
· (2 · (◡𝑆‘(ℑ‘(√‘𝑥))))) ∈
ℂ) |
152 | 3, 144, 151 | sylancr 587 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (i · (2 · (◡𝑆‘(ℑ‘(√‘𝑥))))) ∈
ℂ) |
153 | 3, 148, 72 | sylancr 587 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (i · 𝑦) ∈ ℂ) |
154 | 152, 153 | npcand 11334 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (((i · (2 · (◡𝑆‘(ℑ‘(√‘𝑥))))) − (i · 𝑦)) + (i · 𝑦)) = (i · (2 ·
(◡𝑆‘(ℑ‘(√‘𝑥)))))) |
155 | 150, 154 | eqtrd 2780 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → ((i · ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) + (i · 𝑦)) = (i · (2 · (◡𝑆‘(ℑ‘(√‘𝑥)))))) |
156 | 155 | fveq2d 6773 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (exp‘((i · ((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) + (i · 𝑦))) = (exp‘(i · (2 ·
(◡𝑆‘(ℑ‘(√‘𝑥))))))) |
157 | 144, 148 | subcld 11330 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) ∈ ℂ) |
158 | | mulcl 10954 |
. . . . . . . . . . . 12
⊢ ((i
∈ ℂ ∧ ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) ∈ ℂ) → (i · ((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) ∈ ℂ) |
159 | 3, 157, 158 | sylancr 587 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (i · ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) ∈ ℂ) |
160 | | efadd 15799 |
. . . . . . . . . . 11
⊢ (((i
· ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) ∈ ℂ ∧ (i · 𝑦) ∈ ℂ) →
(exp‘((i · ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) + (i · 𝑦))) = ((exp‘(i · ((2 ·
(◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) · (exp‘(i · 𝑦)))) |
161 | 159, 153,
160 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (exp‘((i · ((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) + (i · 𝑦))) = ((exp‘(i · ((2 ·
(◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) · (exp‘(i · 𝑦)))) |
162 | | 2cn 12046 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℂ |
163 | 137 | recnd 11002 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (◡𝑆‘(ℑ‘(√‘𝑥))) ∈
ℂ) |
164 | | mul12 11138 |
. . . . . . . . . . . . . . 15
⊢ ((i
∈ ℂ ∧ 2 ∈ ℂ ∧ (◡𝑆‘(ℑ‘(√‘𝑥))) ∈ ℂ) → (i
· (2 · (◡𝑆‘(ℑ‘(√‘𝑥))))) = (2 · (i ·
(◡𝑆‘(ℑ‘(√‘𝑥)))))) |
165 | 3, 162, 163, 164 | mp3an12i 1464 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (i · (2 · (◡𝑆‘(ℑ‘(√‘𝑥))))) = (2 · (i ·
(◡𝑆‘(ℑ‘(√‘𝑥)))))) |
166 | 165 | fveq2d 6773 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (exp‘(i · (2 ·
(◡𝑆‘(ℑ‘(√‘𝑥)))))) = (exp‘(2 ·
(i · (◡𝑆‘(ℑ‘(√‘𝑥))))))) |
167 | | mulcl 10954 |
. . . . . . . . . . . . . . 15
⊢ ((i
∈ ℂ ∧ (◡𝑆‘(ℑ‘(√‘𝑥))) ∈ ℂ) → (i
· (◡𝑆‘(ℑ‘(√‘𝑥)))) ∈
ℂ) |
168 | 3, 163, 167 | sylancr 587 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (i · (◡𝑆‘(ℑ‘(√‘𝑥)))) ∈
ℂ) |
169 | | 2z 12350 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℤ |
170 | | efexp 15806 |
. . . . . . . . . . . . . 14
⊢ (((i
· (◡𝑆‘(ℑ‘(√‘𝑥)))) ∈ ℂ ∧ 2
∈ ℤ) → (exp‘(2 · (i · (◡𝑆‘(ℑ‘(√‘𝑥)))))) = ((exp‘(i ·
(◡𝑆‘(ℑ‘(√‘𝑥)))))↑2)) |
171 | 168, 169,
170 | sylancl 586 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (exp‘(2 · (i ·
(◡𝑆‘(ℑ‘(√‘𝑥)))))) = ((exp‘(i ·
(◡𝑆‘(ℑ‘(√‘𝑥)))))↑2)) |
172 | 166, 171 | eqtrd 2780 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (exp‘(i · (2 ·
(◡𝑆‘(ℑ‘(√‘𝑥)))))) = ((exp‘(i ·
(◡𝑆‘(ℑ‘(√‘𝑥)))))↑2)) |
173 | 137 | recoscld 15849 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (cos‘(◡𝑆‘(ℑ‘(√‘𝑥)))) ∈
ℝ) |
174 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ 𝐶) |
175 | 174, 16 | eleqtrdi 2851 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ (◡abs “ {1})) |
176 | | fniniseg 6932 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (abs Fn
ℂ → (𝑥 ∈
(◡abs “ {1}) ↔ (𝑥 ∈ ℂ ∧
(abs‘𝑥) =
1))) |
177 | 12, 176 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ (◡abs “ {1}) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) = 1)) |
178 | 175, 177 | sylib 217 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑥 ∈ ℂ ∧ (abs‘𝑥) = 1)) |
179 | 178 | simpld 495 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ ℂ) |
180 | 179 | sqrtcld 15145 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (√‘𝑥) ∈ ℂ) |
181 | 180 | recld 14901 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (ℜ‘(√‘𝑥)) ∈
ℝ) |
182 | | cosq14ge0 25664 |
. . . . . . . . . . . . . . . . 17
⊢ ((◡𝑆‘(ℑ‘(√‘𝑥))) ∈ (-(π / 2)[,](π
/ 2)) → 0 ≤ (cos‘(◡𝑆‘(ℑ‘(√‘𝑥))))) |
183 | 136, 182 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 0 ≤ (cos‘(◡𝑆‘(ℑ‘(√‘𝑥))))) |
184 | 179 | sqrtrege0d 15146 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 0 ≤
(ℜ‘(√‘𝑥))) |
185 | | sincossq 15881 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((◡𝑆‘(ℑ‘(√‘𝑥))) ∈ ℂ →
(((sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2) +
((cos‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2)) =
1) |
186 | 163, 185 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (((sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2) +
((cos‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2)) =
1) |
187 | 179 | sqsqrtd 15147 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((√‘𝑥)↑2) = 𝑥) |
188 | 187 | fveq2d 6773 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘((√‘𝑥)↑2)) = (abs‘𝑥)) |
189 | | 2nn0 12248 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 2 ∈
ℕ0 |
190 | | absexp 15012 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((√‘𝑥)
∈ ℂ ∧ 2 ∈ ℕ0) →
(abs‘((√‘𝑥)↑2)) = ((abs‘(√‘𝑥))↑2)) |
191 | 180, 189,
190 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘((√‘𝑥)↑2)) =
((abs‘(√‘𝑥))↑2)) |
192 | 178 | simprd 496 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘𝑥) = 1) |
193 | 188, 191,
192 | 3eqtr3d 2788 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((abs‘(√‘𝑥))↑2) = 1) |
194 | 180 | absvalsq2d 15151 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((abs‘(√‘𝑥))↑2) =
(((ℜ‘(√‘𝑥))↑2) +
((ℑ‘(√‘𝑥))↑2))) |
195 | 186, 193,
194 | 3eqtr2d 2786 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (((sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2) +
((cos‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2)) =
(((ℜ‘(√‘𝑥))↑2) +
((ℑ‘(√‘𝑥))↑2))) |
196 | 128 | fveq1i 6770 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑆‘(◡𝑆‘(ℑ‘(√‘𝑥)))) = ((sin ↾ (-(π /
2)[,](π / 2)))‘(◡𝑆‘(ℑ‘(√‘𝑥)))) |
197 | 136 | fvresd 6789 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((sin ↾ (-(π / 2)[,](π
/ 2)))‘(◡𝑆‘(ℑ‘(√‘𝑥)))) = (sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))) |
198 | 196, 197 | eqtrid 2792 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑆‘(◡𝑆‘(ℑ‘(√‘𝑥)))) = (sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))) |
199 | | f1ocnvfv2 7144 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑆:(-(π / 2)[,](π /
2))–1-1-onto→(-1[,]1) ∧
(ℑ‘(√‘𝑥)) ∈ (-1[,]1)) → (𝑆‘(◡𝑆‘(ℑ‘(√‘𝑥)))) =
(ℑ‘(√‘𝑥))) |
200 | 131, 126,
199 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑆‘(◡𝑆‘(ℑ‘(√‘𝑥)))) =
(ℑ‘(√‘𝑥))) |
201 | 198, 200 | eqtr3d 2782 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (sin‘(◡𝑆‘(ℑ‘(√‘𝑥)))) =
(ℑ‘(√‘𝑥))) |
202 | 201 | oveq1d 7284 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2) =
((ℑ‘(√‘𝑥))↑2)) |
203 | 195, 202 | oveq12d 7287 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((((sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2) +
((cos‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2)) −
((sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2)) =
((((ℜ‘(√‘𝑥))↑2) +
((ℑ‘(√‘𝑥))↑2)) −
((ℑ‘(√‘𝑥))↑2))) |
204 | 163 | sincld 15835 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (sin‘(◡𝑆‘(ℑ‘(√‘𝑥)))) ∈
ℂ) |
205 | 204 | sqcld 13858 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2) ∈
ℂ) |
206 | 163 | coscld 15836 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (cos‘(◡𝑆‘(ℑ‘(√‘𝑥)))) ∈
ℂ) |
207 | 206 | sqcld 13858 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((cos‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2) ∈
ℂ) |
208 | 205, 207 | pncan2d 11332 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((((sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2) +
((cos‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2)) −
((sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2)) =
((cos‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2)) |
209 | 181 | recnd 11002 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (ℜ‘(√‘𝑥)) ∈
ℂ) |
210 | 209 | sqcld 13858 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((ℜ‘(√‘𝑥))↑2) ∈
ℂ) |
211 | 202, 205 | eqeltrrd 2842 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) →
((ℑ‘(√‘𝑥))↑2) ∈ ℂ) |
212 | 210, 211 | pncand 11331 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) →
((((ℜ‘(√‘𝑥))↑2) +
((ℑ‘(√‘𝑥))↑2)) −
((ℑ‘(√‘𝑥))↑2)) =
((ℜ‘(√‘𝑥))↑2)) |
213 | 203, 208,
212 | 3eqtr3d 2788 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((cos‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2) =
((ℜ‘(√‘𝑥))↑2)) |
214 | 173, 181,
183, 184, 213 | sq11d 13971 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (cos‘(◡𝑆‘(ℑ‘(√‘𝑥)))) =
(ℜ‘(√‘𝑥))) |
215 | 201 | oveq2d 7285 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (i · (sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))) = (i ·
(ℑ‘(√‘𝑥)))) |
216 | 214, 215 | oveq12d 7287 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((cos‘(◡𝑆‘(ℑ‘(√‘𝑥)))) + (i ·
(sin‘(◡𝑆‘(ℑ‘(√‘𝑥)))))) =
((ℜ‘(√‘𝑥)) + (i ·
(ℑ‘(√‘𝑥))))) |
217 | | efival 15857 |
. . . . . . . . . . . . . . 15
⊢ ((◡𝑆‘(ℑ‘(√‘𝑥))) ∈ ℂ →
(exp‘(i · (◡𝑆‘(ℑ‘(√‘𝑥))))) = ((cos‘(◡𝑆‘(ℑ‘(√‘𝑥)))) + (i ·
(sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))))) |
218 | 163, 217 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (exp‘(i · (◡𝑆‘(ℑ‘(√‘𝑥))))) = ((cos‘(◡𝑆‘(ℑ‘(√‘𝑥)))) + (i ·
(sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))))) |
219 | 180 | replimd 14904 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (√‘𝑥) = ((ℜ‘(√‘𝑥)) + (i ·
(ℑ‘(√‘𝑥))))) |
220 | 216, 218,
219 | 3eqtr4d 2790 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (exp‘(i · (◡𝑆‘(ℑ‘(√‘𝑥))))) = (√‘𝑥)) |
221 | 220 | oveq1d 7284 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((exp‘(i · (◡𝑆‘(ℑ‘(√‘𝑥)))))↑2) =
((√‘𝑥)↑2)) |
222 | 172, 221,
187 | 3eqtrd 2784 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (exp‘(i · (2 ·
(◡𝑆‘(ℑ‘(√‘𝑥)))))) = 𝑥) |
223 | 222 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (exp‘(i · (2 ·
(◡𝑆‘(ℑ‘(√‘𝑥)))))) = 𝑥) |
224 | 156, 161,
223 | 3eqtr3d 2788 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → ((exp‘(i · ((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) · (exp‘(i · 𝑦))) = 𝑥) |
225 | 153, 76 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (exp‘(i · 𝑦)) ∈
ℂ) |
226 | 225 | mulid2d 10992 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (1 · (exp‘(i ·
𝑦))) = (exp‘(i
· 𝑦))) |
227 | 224, 226 | eqeq12d 2756 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (((exp‘(i · ((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) · (exp‘(i · 𝑦))) = (1 · (exp‘(i
· 𝑦))) ↔ 𝑥 = (exp‘(i · 𝑦)))) |
228 | 141, 227 | syl5ib 243 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → ((exp‘(i · ((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) = 1 → 𝑥 = (exp‘(i · 𝑦)))) |
229 | | efeq1 25680 |
. . . . . . . . 9
⊢ ((i
· ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) ∈ ℂ → ((exp‘(i
· ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) = 1 ↔ ((i · ((2 ·
(◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) / (i · (2 · π))) ∈
ℤ)) |
230 | 159, 229 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → ((exp‘(i · ((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) = 1 ↔ ((i · ((2 ·
(◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) / (i · (2 · π))) ∈
ℤ)) |
231 | | divcan5 11675 |
. . . . . . . . . . 11
⊢ ((((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) ∈ ℂ ∧ ((2 · π)
∈ ℂ ∧ (2 · π) ≠ 0) ∧ (i ∈ ℂ ∧ i
≠ 0)) → ((i · ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) / (i · (2 · π))) = (((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π))) |
232 | 61, 63, 231 | mp3an23 1452 |
. . . . . . . . . 10
⊢ (((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) ∈ ℂ → ((i · ((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) / (i · (2 · π))) = (((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π))) |
233 | 157, 232 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → ((i · ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) / (i · (2 · π))) = (((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π))) |
234 | 233 | eleq1d 2825 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (((i · ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) / (i · (2 · π))) ∈
ℤ ↔ (((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)) ∈
ℤ)) |
235 | 230, 234 | bitr2d 279 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → ((((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)) ∈ ℤ ↔
(exp‘(i · ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) = 1)) |
236 | 89 | adantl 482 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (𝐹‘𝑦) = (exp‘(i · 𝑦))) |
237 | 236 | eqeq2d 2751 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (𝑥 = (𝐹‘𝑦) ↔ 𝑥 = (exp‘(i · 𝑦)))) |
238 | 228, 235,
237 | 3imtr4d 294 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → ((((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)) ∈ ℤ →
𝑥 = (𝐹‘𝑦))) |
239 | 238 | reximdva 3205 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (∃𝑦 ∈ 𝐷 (((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)) ∈ ℤ →
∃𝑦 ∈ 𝐷 𝑥 = (𝐹‘𝑦))) |
240 | 140, 239 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ∃𝑦 ∈ 𝐷 𝑥 = (𝐹‘𝑦)) |
241 | 240 | ralrimiva 3110 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 𝑥 = (𝐹‘𝑦)) |
242 | | dffo3 6973 |
. . 3
⊢ (𝐹:𝐷–onto→𝐶 ↔ (𝐹:𝐷⟶𝐶 ∧ ∀𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 𝑥 = (𝐹‘𝑦))) |
243 | 20, 241, 242 | sylanbrc 583 |
. 2
⊢ (𝜑 → 𝐹:𝐷–onto→𝐶) |
244 | | df-f1o 6438 |
. 2
⊢ (𝐹:𝐷–1-1-onto→𝐶 ↔ (𝐹:𝐷–1-1→𝐶 ∧ 𝐹:𝐷–onto→𝐶)) |
245 | 114, 243,
244 | sylanbrc 583 |
1
⊢ (𝜑 → 𝐹:𝐷–1-1-onto→𝐶) |