MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efif1olem4 Structured version   Visualization version   GIF version

Theorem efif1olem4 25406
Description: The exponential function of an imaginary number maps any interval of length one-to-one onto the unit circle. (Contributed by Paul Chapman, 16-Mar-2008.) (Proof shortened by Mario Carneiro, 13-May-2014.)
Hypotheses
Ref Expression
efif1o.1 𝐹 = (𝑤𝐷 ↦ (exp‘(i · 𝑤)))
efif1o.2 𝐶 = (abs “ {1})
efif1olem4.3 (𝜑𝐷 ⊆ ℝ)
efif1olem4.4 ((𝜑 ∧ (𝑥𝐷𝑦𝐷)) → (abs‘(𝑥𝑦)) < (2 · π))
efif1olem4.5 ((𝜑𝑧 ∈ ℝ) → ∃𝑦𝐷 ((𝑧𝑦) / (2 · π)) ∈ ℤ)
efif1olem4.6 𝑆 = (sin ↾ (-(π / 2)[,](π / 2)))
Assertion
Ref Expression
efif1olem4 (𝜑𝐹:𝐷1-1-onto𝐶)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧   𝑤,𝐶,𝑥,𝑦   𝑥,𝐹,𝑦   𝜑,𝑤,𝑥,𝑦,𝑧   𝑦,𝑆,𝑧   𝑤,𝐷,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐶(𝑧)   𝑆(𝑥,𝑤)   𝐹(𝑧,𝑤)

Proof of Theorem efif1olem4
StepHypRef Expression
1 efif1olem4.3 . . . . . 6 (𝜑𝐷 ⊆ ℝ)
21sselda 3891 . . . . 5 ((𝜑𝑤𝐷) → 𝑤 ∈ ℝ)
3 ax-icn 10771 . . . . . . . . 9 i ∈ ℂ
4 recn 10802 . . . . . . . . 9 (𝑤 ∈ ℝ → 𝑤 ∈ ℂ)
5 mulcl 10796 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝑤 ∈ ℂ) → (i · 𝑤) ∈ ℂ)
63, 4, 5sylancr 590 . . . . . . . 8 (𝑤 ∈ ℝ → (i · 𝑤) ∈ ℂ)
7 efcl 15625 . . . . . . . 8 ((i · 𝑤) ∈ ℂ → (exp‘(i · 𝑤)) ∈ ℂ)
86, 7syl 17 . . . . . . 7 (𝑤 ∈ ℝ → (exp‘(i · 𝑤)) ∈ ℂ)
9 absefi 15738 . . . . . . 7 (𝑤 ∈ ℝ → (abs‘(exp‘(i · 𝑤))) = 1)
10 absf 14884 . . . . . . . . 9 abs:ℂ⟶ℝ
11 ffn 6534 . . . . . . . . 9 (abs:ℂ⟶ℝ → abs Fn ℂ)
1210, 11ax-mp 5 . . . . . . . 8 abs Fn ℂ
13 fniniseg 6869 . . . . . . . 8 (abs Fn ℂ → ((exp‘(i · 𝑤)) ∈ (abs “ {1}) ↔ ((exp‘(i · 𝑤)) ∈ ℂ ∧ (abs‘(exp‘(i · 𝑤))) = 1)))
1412, 13ax-mp 5 . . . . . . 7 ((exp‘(i · 𝑤)) ∈ (abs “ {1}) ↔ ((exp‘(i · 𝑤)) ∈ ℂ ∧ (abs‘(exp‘(i · 𝑤))) = 1))
158, 9, 14sylanbrc 586 . . . . . 6 (𝑤 ∈ ℝ → (exp‘(i · 𝑤)) ∈ (abs “ {1}))
16 efif1o.2 . . . . . 6 𝐶 = (abs “ {1})
1715, 16eleqtrrdi 2845 . . . . 5 (𝑤 ∈ ℝ → (exp‘(i · 𝑤)) ∈ 𝐶)
182, 17syl 17 . . . 4 ((𝜑𝑤𝐷) → (exp‘(i · 𝑤)) ∈ 𝐶)
19 efif1o.1 . . . 4 𝐹 = (𝑤𝐷 ↦ (exp‘(i · 𝑤)))
2018, 19fmptd 6920 . . 3 (𝜑𝐹:𝐷𝐶)
211ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝐷 ⊆ ℝ)
22 simplrl 777 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑥𝐷)
2321, 22sseldd 3892 . . . . . . 7 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑥 ∈ ℝ)
2423recnd 10844 . . . . . 6 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑥 ∈ ℂ)
25 simplrr 778 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑦𝐷)
2621, 25sseldd 3892 . . . . . . 7 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑦 ∈ ℝ)
2726recnd 10844 . . . . . 6 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑦 ∈ ℂ)
2824, 27subcld 11172 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (𝑥𝑦) ∈ ℂ)
29 2re 11887 . . . . . . . . . . . 12 2 ∈ ℝ
30 pire 25320 . . . . . . . . . . . 12 π ∈ ℝ
3129, 30remulcli 10832 . . . . . . . . . . 11 (2 · π) ∈ ℝ
3231recni 10830 . . . . . . . . . 10 (2 · π) ∈ ℂ
33 2pos 11916 . . . . . . . . . . . 12 0 < 2
34 pipos 25322 . . . . . . . . . . . 12 0 < π
3529, 30, 33, 34mulgt0ii 10948 . . . . . . . . . . 11 0 < (2 · π)
3631, 35gt0ne0ii 11351 . . . . . . . . . 10 (2 · π) ≠ 0
37 divcl 11479 . . . . . . . . . 10 (((𝑥𝑦) ∈ ℂ ∧ (2 · π) ∈ ℂ ∧ (2 · π) ≠ 0) → ((𝑥𝑦) / (2 · π)) ∈ ℂ)
3832, 36, 37mp3an23 1455 . . . . . . . . 9 ((𝑥𝑦) ∈ ℂ → ((𝑥𝑦) / (2 · π)) ∈ ℂ)
3928, 38syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → ((𝑥𝑦) / (2 · π)) ∈ ℂ)
40 absdiv 14842 . . . . . . . . . . . . 13 (((𝑥𝑦) ∈ ℂ ∧ (2 · π) ∈ ℂ ∧ (2 · π) ≠ 0) → (abs‘((𝑥𝑦) / (2 · π))) = ((abs‘(𝑥𝑦)) / (abs‘(2 · π))))
4132, 36, 40mp3an23 1455 . . . . . . . . . . . 12 ((𝑥𝑦) ∈ ℂ → (abs‘((𝑥𝑦) / (2 · π))) = ((abs‘(𝑥𝑦)) / (abs‘(2 · π))))
4228, 41syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (abs‘((𝑥𝑦) / (2 · π))) = ((abs‘(𝑥𝑦)) / (abs‘(2 · π))))
43 0re 10818 . . . . . . . . . . . . . 14 0 ∈ ℝ
4443, 31, 35ltleii 10938 . . . . . . . . . . . . 13 0 ≤ (2 · π)
45 absid 14843 . . . . . . . . . . . . 13 (((2 · π) ∈ ℝ ∧ 0 ≤ (2 · π)) → (abs‘(2 · π)) = (2 · π))
4631, 44, 45mp2an 692 . . . . . . . . . . . 12 (abs‘(2 · π)) = (2 · π)
4746oveq2i 7213 . . . . . . . . . . 11 ((abs‘(𝑥𝑦)) / (abs‘(2 · π))) = ((abs‘(𝑥𝑦)) / (2 · π))
4842, 47eqtrdi 2790 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (abs‘((𝑥𝑦) / (2 · π))) = ((abs‘(𝑥𝑦)) / (2 · π)))
49 efif1olem4.4 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐷𝑦𝐷)) → (abs‘(𝑥𝑦)) < (2 · π))
5049adantr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (abs‘(𝑥𝑦)) < (2 · π))
5132mulid1i 10820 . . . . . . . . . . . 12 ((2 · π) · 1) = (2 · π)
5250, 51breqtrrdi 5085 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (abs‘(𝑥𝑦)) < ((2 · π) · 1))
5328abscld 14983 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (abs‘(𝑥𝑦)) ∈ ℝ)
54 1re 10816 . . . . . . . . . . . . 13 1 ∈ ℝ
5531, 35pm3.2i 474 . . . . . . . . . . . . 13 ((2 · π) ∈ ℝ ∧ 0 < (2 · π))
56 ltdivmul 11690 . . . . . . . . . . . . 13 (((abs‘(𝑥𝑦)) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((2 · π) ∈ ℝ ∧ 0 < (2 · π))) → (((abs‘(𝑥𝑦)) / (2 · π)) < 1 ↔ (abs‘(𝑥𝑦)) < ((2 · π) · 1)))
5754, 55, 56mp3an23 1455 . . . . . . . . . . . 12 ((abs‘(𝑥𝑦)) ∈ ℝ → (((abs‘(𝑥𝑦)) / (2 · π)) < 1 ↔ (abs‘(𝑥𝑦)) < ((2 · π) · 1)))
5853, 57syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (((abs‘(𝑥𝑦)) / (2 · π)) < 1 ↔ (abs‘(𝑥𝑦)) < ((2 · π) · 1)))
5952, 58mpbird 260 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → ((abs‘(𝑥𝑦)) / (2 · π)) < 1)
6048, 59eqbrtrd 5065 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (abs‘((𝑥𝑦) / (2 · π))) < 1)
6132, 36pm3.2i 474 . . . . . . . . . . . . . 14 ((2 · π) ∈ ℂ ∧ (2 · π) ≠ 0)
62 ine0 11250 . . . . . . . . . . . . . . 15 i ≠ 0
633, 62pm3.2i 474 . . . . . . . . . . . . . 14 (i ∈ ℂ ∧ i ≠ 0)
64 divcan5 11517 . . . . . . . . . . . . . 14 (((𝑥𝑦) ∈ ℂ ∧ ((2 · π) ∈ ℂ ∧ (2 · π) ≠ 0) ∧ (i ∈ ℂ ∧ i ≠ 0)) → ((i · (𝑥𝑦)) / (i · (2 · π))) = ((𝑥𝑦) / (2 · π)))
6561, 63, 64mp3an23 1455 . . . . . . . . . . . . 13 ((𝑥𝑦) ∈ ℂ → ((i · (𝑥𝑦)) / (i · (2 · π))) = ((𝑥𝑦) / (2 · π)))
6628, 65syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → ((i · (𝑥𝑦)) / (i · (2 · π))) = ((𝑥𝑦) / (2 · π)))
673a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → i ∈ ℂ)
6867, 24, 27subdid 11271 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (i · (𝑥𝑦)) = ((i · 𝑥) − (i · 𝑦)))
6968fveq2d 6710 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (exp‘(i · (𝑥𝑦))) = (exp‘((i · 𝑥) − (i · 𝑦))))
70 mulcl 10796 . . . . . . . . . . . . . . . 16 ((i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (i · 𝑥) ∈ ℂ)
713, 24, 70sylancr 590 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (i · 𝑥) ∈ ℂ)
72 mulcl 10796 . . . . . . . . . . . . . . . 16 ((i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (i · 𝑦) ∈ ℂ)
733, 27, 72sylancr 590 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (i · 𝑦) ∈ ℂ)
74 efsub 15642 . . . . . . . . . . . . . . 15 (((i · 𝑥) ∈ ℂ ∧ (i · 𝑦) ∈ ℂ) → (exp‘((i · 𝑥) − (i · 𝑦))) = ((exp‘(i · 𝑥)) / (exp‘(i · 𝑦))))
7571, 73, 74syl2anc 587 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (exp‘((i · 𝑥) − (i · 𝑦))) = ((exp‘(i · 𝑥)) / (exp‘(i · 𝑦))))
76 efcl 15625 . . . . . . . . . . . . . . . 16 ((i · 𝑦) ∈ ℂ → (exp‘(i · 𝑦)) ∈ ℂ)
7773, 76syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (exp‘(i · 𝑦)) ∈ ℂ)
78 efne0 15639 . . . . . . . . . . . . . . . 16 ((i · 𝑦) ∈ ℂ → (exp‘(i · 𝑦)) ≠ 0)
7973, 78syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (exp‘(i · 𝑦)) ≠ 0)
80 simpr 488 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (𝐹𝑥) = (𝐹𝑦))
81 oveq2 7210 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑥 → (i · 𝑤) = (i · 𝑥))
8281fveq2d 6710 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑥 → (exp‘(i · 𝑤)) = (exp‘(i · 𝑥)))
83 fvex 6719 . . . . . . . . . . . . . . . . . 18 (exp‘(i · 𝑥)) ∈ V
8482, 19, 83fvmpt 6807 . . . . . . . . . . . . . . . . 17 (𝑥𝐷 → (𝐹𝑥) = (exp‘(i · 𝑥)))
8522, 84syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (𝐹𝑥) = (exp‘(i · 𝑥)))
86 oveq2 7210 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑦 → (i · 𝑤) = (i · 𝑦))
8786fveq2d 6710 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑦 → (exp‘(i · 𝑤)) = (exp‘(i · 𝑦)))
88 fvex 6719 . . . . . . . . . . . . . . . . . 18 (exp‘(i · 𝑦)) ∈ V
8987, 19, 88fvmpt 6807 . . . . . . . . . . . . . . . . 17 (𝑦𝐷 → (𝐹𝑦) = (exp‘(i · 𝑦)))
9025, 89syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (𝐹𝑦) = (exp‘(i · 𝑦)))
9180, 85, 903eqtr3d 2782 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (exp‘(i · 𝑥)) = (exp‘(i · 𝑦)))
9277, 79, 91diveq1bd 11639 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → ((exp‘(i · 𝑥)) / (exp‘(i · 𝑦))) = 1)
9369, 75, 923eqtrd 2778 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (exp‘(i · (𝑥𝑦))) = 1)
94 mulcl 10796 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ (𝑥𝑦) ∈ ℂ) → (i · (𝑥𝑦)) ∈ ℂ)
953, 28, 94sylancr 590 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (i · (𝑥𝑦)) ∈ ℂ)
96 efeq1 25389 . . . . . . . . . . . . . 14 ((i · (𝑥𝑦)) ∈ ℂ → ((exp‘(i · (𝑥𝑦))) = 1 ↔ ((i · (𝑥𝑦)) / (i · (2 · π))) ∈ ℤ))
9795, 96syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → ((exp‘(i · (𝑥𝑦))) = 1 ↔ ((i · (𝑥𝑦)) / (i · (2 · π))) ∈ ℤ))
9893, 97mpbid 235 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → ((i · (𝑥𝑦)) / (i · (2 · π))) ∈ ℤ)
9966, 98eqeltrrd 2835 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → ((𝑥𝑦) / (2 · π)) ∈ ℤ)
100 nn0abscl 14859 . . . . . . . . . . 11 (((𝑥𝑦) / (2 · π)) ∈ ℤ → (abs‘((𝑥𝑦) / (2 · π))) ∈ ℕ0)
10199, 100syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (abs‘((𝑥𝑦) / (2 · π))) ∈ ℕ0)
102 nn0lt10b 12222 . . . . . . . . . 10 ((abs‘((𝑥𝑦) / (2 · π))) ∈ ℕ0 → ((abs‘((𝑥𝑦) / (2 · π))) < 1 ↔ (abs‘((𝑥𝑦) / (2 · π))) = 0))
103101, 102syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → ((abs‘((𝑥𝑦) / (2 · π))) < 1 ↔ (abs‘((𝑥𝑦) / (2 · π))) = 0))
10460, 103mpbid 235 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (abs‘((𝑥𝑦) / (2 · π))) = 0)
10539, 104abs00d 14993 . . . . . . 7 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → ((𝑥𝑦) / (2 · π)) = 0)
106 diveq0 11483 . . . . . . . . 9 (((𝑥𝑦) ∈ ℂ ∧ (2 · π) ∈ ℂ ∧ (2 · π) ≠ 0) → (((𝑥𝑦) / (2 · π)) = 0 ↔ (𝑥𝑦) = 0))
10732, 36, 106mp3an23 1455 . . . . . . . 8 ((𝑥𝑦) ∈ ℂ → (((𝑥𝑦) / (2 · π)) = 0 ↔ (𝑥𝑦) = 0))
10828, 107syl 17 . . . . . . 7 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (((𝑥𝑦) / (2 · π)) = 0 ↔ (𝑥𝑦) = 0))
109105, 108mpbid 235 . . . . . 6 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (𝑥𝑦) = 0)
11024, 27, 109subeq0d 11180 . . . . 5 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑥 = 𝑦)
111110ex 416 . . . 4 ((𝜑 ∧ (𝑥𝐷𝑦𝐷)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
112111ralrimivva 3105 . . 3 (𝜑 → ∀𝑥𝐷𝑦𝐷 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
113 dff13 7056 . . 3 (𝐹:𝐷1-1𝐶 ↔ (𝐹:𝐷𝐶 ∧ ∀𝑥𝐷𝑦𝐷 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
11420, 112, 113sylanbrc 586 . 2 (𝜑𝐹:𝐷1-1𝐶)
115 oveq1 7209 . . . . . . . . 9 (𝑧 = (2 · (𝑆‘(ℑ‘(√‘𝑥)))) → (𝑧𝑦) = ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))
116115oveq1d 7217 . . . . . . . 8 (𝑧 = (2 · (𝑆‘(ℑ‘(√‘𝑥)))) → ((𝑧𝑦) / (2 · π)) = (((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)))
117116eleq1d 2818 . . . . . . 7 (𝑧 = (2 · (𝑆‘(ℑ‘(√‘𝑥)))) → (((𝑧𝑦) / (2 · π)) ∈ ℤ ↔ (((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)) ∈ ℤ))
118117rexbidv 3209 . . . . . 6 (𝑧 = (2 · (𝑆‘(ℑ‘(√‘𝑥)))) → (∃𝑦𝐷 ((𝑧𝑦) / (2 · π)) ∈ ℤ ↔ ∃𝑦𝐷 (((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)) ∈ ℤ))
119 efif1olem4.5 . . . . . . . 8 ((𝜑𝑧 ∈ ℝ) → ∃𝑦𝐷 ((𝑧𝑦) / (2 · π)) ∈ ℤ)
120119ralrimiva 3098 . . . . . . 7 (𝜑 → ∀𝑧 ∈ ℝ ∃𝑦𝐷 ((𝑧𝑦) / (2 · π)) ∈ ℤ)
121120adantr 484 . . . . . 6 ((𝜑𝑥𝐶) → ∀𝑧 ∈ ℝ ∃𝑦𝐷 ((𝑧𝑦) / (2 · π)) ∈ ℤ)
122 neghalfpire 25327 . . . . . . . . 9 -(π / 2) ∈ ℝ
123 halfpire 25326 . . . . . . . . 9 (π / 2) ∈ ℝ
124 iccssre 13000 . . . . . . . . 9 ((-(π / 2) ∈ ℝ ∧ (π / 2) ∈ ℝ) → (-(π / 2)[,](π / 2)) ⊆ ℝ)
125122, 123, 124mp2an 692 . . . . . . . 8 (-(π / 2)[,](π / 2)) ⊆ ℝ
12619, 16efif1olem3 25405 . . . . . . . . 9 ((𝜑𝑥𝐶) → (ℑ‘(√‘𝑥)) ∈ (-1[,]1))
127 resinf1o 25397 . . . . . . . . . . . 12 (sin ↾ (-(π / 2)[,](π / 2))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1)
128 efif1olem4.6 . . . . . . . . . . . . 13 𝑆 = (sin ↾ (-(π / 2)[,](π / 2)))
129 f1oeq1 6638 . . . . . . . . . . . . 13 (𝑆 = (sin ↾ (-(π / 2)[,](π / 2))) → (𝑆:(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1) ↔ (sin ↾ (-(π / 2)[,](π / 2))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1)))
130128, 129ax-mp 5 . . . . . . . . . . . 12 (𝑆:(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1) ↔ (sin ↾ (-(π / 2)[,](π / 2))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1))
131127, 130mpbir 234 . . . . . . . . . . 11 𝑆:(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1)
132 f1ocnv 6662 . . . . . . . . . . 11 (𝑆:(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1) → 𝑆:(-1[,]1)–1-1-onto→(-(π / 2)[,](π / 2)))
133 f1of 6650 . . . . . . . . . . 11 (𝑆:(-1[,]1)–1-1-onto→(-(π / 2)[,](π / 2)) → 𝑆:(-1[,]1)⟶(-(π / 2)[,](π / 2)))
134131, 132, 133mp2b 10 . . . . . . . . . 10 𝑆:(-1[,]1)⟶(-(π / 2)[,](π / 2))
135134ffvelrni 6892 . . . . . . . . 9 ((ℑ‘(√‘𝑥)) ∈ (-1[,]1) → (𝑆‘(ℑ‘(√‘𝑥))) ∈ (-(π / 2)[,](π / 2)))
136126, 135syl 17 . . . . . . . 8 ((𝜑𝑥𝐶) → (𝑆‘(ℑ‘(√‘𝑥))) ∈ (-(π / 2)[,](π / 2)))
137125, 136sseldi 3889 . . . . . . 7 ((𝜑𝑥𝐶) → (𝑆‘(ℑ‘(√‘𝑥))) ∈ ℝ)
138 remulcl 10797 . . . . . . 7 ((2 ∈ ℝ ∧ (𝑆‘(ℑ‘(√‘𝑥))) ∈ ℝ) → (2 · (𝑆‘(ℑ‘(√‘𝑥)))) ∈ ℝ)
13929, 137, 138sylancr 590 . . . . . 6 ((𝜑𝑥𝐶) → (2 · (𝑆‘(ℑ‘(√‘𝑥)))) ∈ ℝ)
140118, 121, 139rspcdva 3532 . . . . 5 ((𝜑𝑥𝐶) → ∃𝑦𝐷 (((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)) ∈ ℤ)
141 oveq1 7209 . . . . . . . 8 ((exp‘(i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) = 1 → ((exp‘(i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) · (exp‘(i · 𝑦))) = (1 · (exp‘(i · 𝑦))))
1423a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → i ∈ ℂ)
143139adantr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → (2 · (𝑆‘(ℑ‘(√‘𝑥)))) ∈ ℝ)
144143recnd 10844 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → (2 · (𝑆‘(ℑ‘(√‘𝑥)))) ∈ ℂ)
1451ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → 𝐷 ⊆ ℝ)
146 simpr 488 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → 𝑦𝐷)
147145, 146sseldd 3892 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → 𝑦 ∈ ℝ)
148147recnd 10844 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → 𝑦 ∈ ℂ)
149142, 144, 148subdid 11271 . . . . . . . . . . . . 13 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → (i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) = ((i · (2 · (𝑆‘(ℑ‘(√‘𝑥))))) − (i · 𝑦)))
150149oveq1d 7217 . . . . . . . . . . . 12 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → ((i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) + (i · 𝑦)) = (((i · (2 · (𝑆‘(ℑ‘(√‘𝑥))))) − (i · 𝑦)) + (i · 𝑦)))
151 mulcl 10796 . . . . . . . . . . . . . 14 ((i ∈ ℂ ∧ (2 · (𝑆‘(ℑ‘(√‘𝑥)))) ∈ ℂ) → (i · (2 · (𝑆‘(ℑ‘(√‘𝑥))))) ∈ ℂ)
1523, 144, 151sylancr 590 . . . . . . . . . . . . 13 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → (i · (2 · (𝑆‘(ℑ‘(√‘𝑥))))) ∈ ℂ)
1533, 148, 72sylancr 590 . . . . . . . . . . . . 13 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → (i · 𝑦) ∈ ℂ)
154152, 153npcand 11176 . . . . . . . . . . . 12 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → (((i · (2 · (𝑆‘(ℑ‘(√‘𝑥))))) − (i · 𝑦)) + (i · 𝑦)) = (i · (2 · (𝑆‘(ℑ‘(√‘𝑥))))))
155150, 154eqtrd 2774 . . . . . . . . . . 11 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → ((i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) + (i · 𝑦)) = (i · (2 · (𝑆‘(ℑ‘(√‘𝑥))))))
156155fveq2d 6710 . . . . . . . . . 10 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → (exp‘((i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) + (i · 𝑦))) = (exp‘(i · (2 · (𝑆‘(ℑ‘(√‘𝑥)))))))
157144, 148subcld 11172 . . . . . . . . . . . 12 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) ∈ ℂ)
158 mulcl 10796 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) ∈ ℂ) → (i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) ∈ ℂ)
1593, 157, 158sylancr 590 . . . . . . . . . . 11 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → (i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) ∈ ℂ)
160 efadd 15636 . . . . . . . . . . 11 (((i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) ∈ ℂ ∧ (i · 𝑦) ∈ ℂ) → (exp‘((i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) + (i · 𝑦))) = ((exp‘(i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) · (exp‘(i · 𝑦))))
161159, 153, 160syl2anc 587 . . . . . . . . . 10 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → (exp‘((i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) + (i · 𝑦))) = ((exp‘(i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) · (exp‘(i · 𝑦))))
162 2cn 11888 . . . . . . . . . . . . . . 15 2 ∈ ℂ
163137recnd 10844 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐶) → (𝑆‘(ℑ‘(√‘𝑥))) ∈ ℂ)
164 mul12 10980 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ 2 ∈ ℂ ∧ (𝑆‘(ℑ‘(√‘𝑥))) ∈ ℂ) → (i · (2 · (𝑆‘(ℑ‘(√‘𝑥))))) = (2 · (i · (𝑆‘(ℑ‘(√‘𝑥))))))
1653, 162, 163, 164mp3an12i 1467 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐶) → (i · (2 · (𝑆‘(ℑ‘(√‘𝑥))))) = (2 · (i · (𝑆‘(ℑ‘(√‘𝑥))))))
166165fveq2d 6710 . . . . . . . . . . . . 13 ((𝜑𝑥𝐶) → (exp‘(i · (2 · (𝑆‘(ℑ‘(√‘𝑥)))))) = (exp‘(2 · (i · (𝑆‘(ℑ‘(√‘𝑥)))))))
167 mulcl 10796 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ (𝑆‘(ℑ‘(√‘𝑥))) ∈ ℂ) → (i · (𝑆‘(ℑ‘(√‘𝑥)))) ∈ ℂ)
1683, 163, 167sylancr 590 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐶) → (i · (𝑆‘(ℑ‘(√‘𝑥)))) ∈ ℂ)
169 2z 12192 . . . . . . . . . . . . . 14 2 ∈ ℤ
170 efexp 15643 . . . . . . . . . . . . . 14 (((i · (𝑆‘(ℑ‘(√‘𝑥)))) ∈ ℂ ∧ 2 ∈ ℤ) → (exp‘(2 · (i · (𝑆‘(ℑ‘(√‘𝑥)))))) = ((exp‘(i · (𝑆‘(ℑ‘(√‘𝑥)))))↑2))
171168, 169, 170sylancl 589 . . . . . . . . . . . . 13 ((𝜑𝑥𝐶) → (exp‘(2 · (i · (𝑆‘(ℑ‘(√‘𝑥)))))) = ((exp‘(i · (𝑆‘(ℑ‘(√‘𝑥)))))↑2))
172166, 171eqtrd 2774 . . . . . . . . . . . 12 ((𝜑𝑥𝐶) → (exp‘(i · (2 · (𝑆‘(ℑ‘(√‘𝑥)))))) = ((exp‘(i · (𝑆‘(ℑ‘(√‘𝑥)))))↑2))
173137recoscld 15686 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐶) → (cos‘(𝑆‘(ℑ‘(√‘𝑥)))) ∈ ℝ)
174 simpr 488 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥𝐶) → 𝑥𝐶)
175174, 16eleqtrdi 2844 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐶) → 𝑥 ∈ (abs “ {1}))
176 fniniseg 6869 . . . . . . . . . . . . . . . . . . . . 21 (abs Fn ℂ → (𝑥 ∈ (abs “ {1}) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) = 1)))
17712, 176ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (abs “ {1}) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) = 1))
178175, 177sylib 221 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐶) → (𝑥 ∈ ℂ ∧ (abs‘𝑥) = 1))
179178simpld 498 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐶) → 𝑥 ∈ ℂ)
180179sqrtcld 14984 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐶) → (√‘𝑥) ∈ ℂ)
181180recld 14740 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐶) → (ℜ‘(√‘𝑥)) ∈ ℝ)
182 cosq14ge0 25373 . . . . . . . . . . . . . . . . 17 ((𝑆‘(ℑ‘(√‘𝑥))) ∈ (-(π / 2)[,](π / 2)) → 0 ≤ (cos‘(𝑆‘(ℑ‘(√‘𝑥)))))
183136, 182syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐶) → 0 ≤ (cos‘(𝑆‘(ℑ‘(√‘𝑥)))))
184179sqrtrege0d 14985 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐶) → 0 ≤ (ℜ‘(√‘𝑥)))
185 sincossq 15718 . . . . . . . . . . . . . . . . . . . 20 ((𝑆‘(ℑ‘(√‘𝑥))) ∈ ℂ → (((sin‘(𝑆‘(ℑ‘(√‘𝑥))))↑2) + ((cos‘(𝑆‘(ℑ‘(√‘𝑥))))↑2)) = 1)
186163, 185syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐶) → (((sin‘(𝑆‘(ℑ‘(√‘𝑥))))↑2) + ((cos‘(𝑆‘(ℑ‘(√‘𝑥))))↑2)) = 1)
187179sqsqrtd 14986 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥𝐶) → ((√‘𝑥)↑2) = 𝑥)
188187fveq2d 6710 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐶) → (abs‘((√‘𝑥)↑2)) = (abs‘𝑥))
189 2nn0 12090 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℕ0
190 absexp 14851 . . . . . . . . . . . . . . . . . . . . 21 (((√‘𝑥) ∈ ℂ ∧ 2 ∈ ℕ0) → (abs‘((√‘𝑥)↑2)) = ((abs‘(√‘𝑥))↑2))
191180, 189, 190sylancl 589 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐶) → (abs‘((√‘𝑥)↑2)) = ((abs‘(√‘𝑥))↑2))
192178simprd 499 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐶) → (abs‘𝑥) = 1)
193188, 191, 1923eqtr3d 2782 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐶) → ((abs‘(√‘𝑥))↑2) = 1)
194180absvalsq2d 14990 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐶) → ((abs‘(√‘𝑥))↑2) = (((ℜ‘(√‘𝑥))↑2) + ((ℑ‘(√‘𝑥))↑2)))
195186, 193, 1943eqtr2d 2780 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐶) → (((sin‘(𝑆‘(ℑ‘(√‘𝑥))))↑2) + ((cos‘(𝑆‘(ℑ‘(√‘𝑥))))↑2)) = (((ℜ‘(√‘𝑥))↑2) + ((ℑ‘(√‘𝑥))↑2)))
196128fveq1i 6707 . . . . . . . . . . . . . . . . . . . . 21 (𝑆‘(𝑆‘(ℑ‘(√‘𝑥)))) = ((sin ↾ (-(π / 2)[,](π / 2)))‘(𝑆‘(ℑ‘(√‘𝑥))))
197136fvresd 6726 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥𝐶) → ((sin ↾ (-(π / 2)[,](π / 2)))‘(𝑆‘(ℑ‘(√‘𝑥)))) = (sin‘(𝑆‘(ℑ‘(√‘𝑥)))))
198196, 197syl5eq 2786 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐶) → (𝑆‘(𝑆‘(ℑ‘(√‘𝑥)))) = (sin‘(𝑆‘(ℑ‘(√‘𝑥)))))
199 f1ocnvfv2 7077 . . . . . . . . . . . . . . . . . . . . 21 ((𝑆:(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1) ∧ (ℑ‘(√‘𝑥)) ∈ (-1[,]1)) → (𝑆‘(𝑆‘(ℑ‘(√‘𝑥)))) = (ℑ‘(√‘𝑥)))
200131, 126, 199sylancr 590 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐶) → (𝑆‘(𝑆‘(ℑ‘(√‘𝑥)))) = (ℑ‘(√‘𝑥)))
201198, 200eqtr3d 2776 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐶) → (sin‘(𝑆‘(ℑ‘(√‘𝑥)))) = (ℑ‘(√‘𝑥)))
202201oveq1d 7217 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐶) → ((sin‘(𝑆‘(ℑ‘(√‘𝑥))))↑2) = ((ℑ‘(√‘𝑥))↑2))
203195, 202oveq12d 7220 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐶) → ((((sin‘(𝑆‘(ℑ‘(√‘𝑥))))↑2) + ((cos‘(𝑆‘(ℑ‘(√‘𝑥))))↑2)) − ((sin‘(𝑆‘(ℑ‘(√‘𝑥))))↑2)) = ((((ℜ‘(√‘𝑥))↑2) + ((ℑ‘(√‘𝑥))↑2)) − ((ℑ‘(√‘𝑥))↑2)))
204163sincld 15672 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐶) → (sin‘(𝑆‘(ℑ‘(√‘𝑥)))) ∈ ℂ)
205204sqcld 13697 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐶) → ((sin‘(𝑆‘(ℑ‘(√‘𝑥))))↑2) ∈ ℂ)
206163coscld 15673 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐶) → (cos‘(𝑆‘(ℑ‘(√‘𝑥)))) ∈ ℂ)
207206sqcld 13697 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐶) → ((cos‘(𝑆‘(ℑ‘(√‘𝑥))))↑2) ∈ ℂ)
208205, 207pncan2d 11174 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐶) → ((((sin‘(𝑆‘(ℑ‘(√‘𝑥))))↑2) + ((cos‘(𝑆‘(ℑ‘(√‘𝑥))))↑2)) − ((sin‘(𝑆‘(ℑ‘(√‘𝑥))))↑2)) = ((cos‘(𝑆‘(ℑ‘(√‘𝑥))))↑2))
209181recnd 10844 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐶) → (ℜ‘(√‘𝑥)) ∈ ℂ)
210209sqcld 13697 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐶) → ((ℜ‘(√‘𝑥))↑2) ∈ ℂ)
211202, 205eqeltrrd 2835 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐶) → ((ℑ‘(√‘𝑥))↑2) ∈ ℂ)
212210, 211pncand 11173 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐶) → ((((ℜ‘(√‘𝑥))↑2) + ((ℑ‘(√‘𝑥))↑2)) − ((ℑ‘(√‘𝑥))↑2)) = ((ℜ‘(√‘𝑥))↑2))
213203, 208, 2123eqtr3d 2782 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐶) → ((cos‘(𝑆‘(ℑ‘(√‘𝑥))))↑2) = ((ℜ‘(√‘𝑥))↑2))
214173, 181, 183, 184, 213sq11d 13810 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐶) → (cos‘(𝑆‘(ℑ‘(√‘𝑥)))) = (ℜ‘(√‘𝑥)))
215201oveq2d 7218 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐶) → (i · (sin‘(𝑆‘(ℑ‘(√‘𝑥))))) = (i · (ℑ‘(√‘𝑥))))
216214, 215oveq12d 7220 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐶) → ((cos‘(𝑆‘(ℑ‘(√‘𝑥)))) + (i · (sin‘(𝑆‘(ℑ‘(√‘𝑥)))))) = ((ℜ‘(√‘𝑥)) + (i · (ℑ‘(√‘𝑥)))))
217 efival 15694 . . . . . . . . . . . . . . 15 ((𝑆‘(ℑ‘(√‘𝑥))) ∈ ℂ → (exp‘(i · (𝑆‘(ℑ‘(√‘𝑥))))) = ((cos‘(𝑆‘(ℑ‘(√‘𝑥)))) + (i · (sin‘(𝑆‘(ℑ‘(√‘𝑥)))))))
218163, 217syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐶) → (exp‘(i · (𝑆‘(ℑ‘(√‘𝑥))))) = ((cos‘(𝑆‘(ℑ‘(√‘𝑥)))) + (i · (sin‘(𝑆‘(ℑ‘(√‘𝑥)))))))
219180replimd 14743 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐶) → (√‘𝑥) = ((ℜ‘(√‘𝑥)) + (i · (ℑ‘(√‘𝑥)))))
220216, 218, 2193eqtr4d 2784 . . . . . . . . . . . . 13 ((𝜑𝑥𝐶) → (exp‘(i · (𝑆‘(ℑ‘(√‘𝑥))))) = (√‘𝑥))
221220oveq1d 7217 . . . . . . . . . . . 12 ((𝜑𝑥𝐶) → ((exp‘(i · (𝑆‘(ℑ‘(√‘𝑥)))))↑2) = ((√‘𝑥)↑2))
222172, 221, 1873eqtrd 2778 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → (exp‘(i · (2 · (𝑆‘(ℑ‘(√‘𝑥)))))) = 𝑥)
223222adantr 484 . . . . . . . . . 10 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → (exp‘(i · (2 · (𝑆‘(ℑ‘(√‘𝑥)))))) = 𝑥)
224156, 161, 2233eqtr3d 2782 . . . . . . . . 9 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → ((exp‘(i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) · (exp‘(i · 𝑦))) = 𝑥)
225153, 76syl 17 . . . . . . . . . 10 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → (exp‘(i · 𝑦)) ∈ ℂ)
226225mulid2d 10834 . . . . . . . . 9 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → (1 · (exp‘(i · 𝑦))) = (exp‘(i · 𝑦)))
227224, 226eqeq12d 2750 . . . . . . . 8 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → (((exp‘(i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) · (exp‘(i · 𝑦))) = (1 · (exp‘(i · 𝑦))) ↔ 𝑥 = (exp‘(i · 𝑦))))
228141, 227syl5ib 247 . . . . . . 7 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → ((exp‘(i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) = 1 → 𝑥 = (exp‘(i · 𝑦))))
229 efeq1 25389 . . . . . . . . 9 ((i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) ∈ ℂ → ((exp‘(i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) = 1 ↔ ((i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) / (i · (2 · π))) ∈ ℤ))
230159, 229syl 17 . . . . . . . 8 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → ((exp‘(i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) = 1 ↔ ((i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) / (i · (2 · π))) ∈ ℤ))
231 divcan5 11517 . . . . . . . . . . 11 ((((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) ∈ ℂ ∧ ((2 · π) ∈ ℂ ∧ (2 · π) ≠ 0) ∧ (i ∈ ℂ ∧ i ≠ 0)) → ((i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) / (i · (2 · π))) = (((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)))
23261, 63, 231mp3an23 1455 . . . . . . . . . 10 (((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) ∈ ℂ → ((i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) / (i · (2 · π))) = (((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)))
233157, 232syl 17 . . . . . . . . 9 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → ((i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) / (i · (2 · π))) = (((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)))
234233eleq1d 2818 . . . . . . . 8 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → (((i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) / (i · (2 · π))) ∈ ℤ ↔ (((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)) ∈ ℤ))
235230, 234bitr2d 283 . . . . . . 7 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → ((((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)) ∈ ℤ ↔ (exp‘(i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) = 1))
23689adantl 485 . . . . . . . 8 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → (𝐹𝑦) = (exp‘(i · 𝑦)))
237236eqeq2d 2745 . . . . . . 7 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → (𝑥 = (𝐹𝑦) ↔ 𝑥 = (exp‘(i · 𝑦))))
238228, 235, 2373imtr4d 297 . . . . . 6 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → ((((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)) ∈ ℤ → 𝑥 = (𝐹𝑦)))
239238reximdva 3186 . . . . 5 ((𝜑𝑥𝐶) → (∃𝑦𝐷 (((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)) ∈ ℤ → ∃𝑦𝐷 𝑥 = (𝐹𝑦)))
240140, 239mpd 15 . . . 4 ((𝜑𝑥𝐶) → ∃𝑦𝐷 𝑥 = (𝐹𝑦))
241240ralrimiva 3098 . . 3 (𝜑 → ∀𝑥𝐶𝑦𝐷 𝑥 = (𝐹𝑦))
242 dffo3 6910 . . 3 (𝐹:𝐷onto𝐶 ↔ (𝐹:𝐷𝐶 ∧ ∀𝑥𝐶𝑦𝐷 𝑥 = (𝐹𝑦)))
24320, 241, 242sylanbrc 586 . 2 (𝜑𝐹:𝐷onto𝐶)
244 df-f1o 6376 . 2 (𝐹:𝐷1-1-onto𝐶 ↔ (𝐹:𝐷1-1𝐶𝐹:𝐷onto𝐶))
245114, 243, 244sylanbrc 586 1 (𝜑𝐹:𝐷1-1-onto𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wne 2935  wral 3054  wrex 3055  wss 3857  {csn 4531   class class class wbr 5043  cmpt 5124  ccnv 5539  cres 5542  cima 5543   Fn wfn 6364  wf 6365  1-1wf1 6366  ontowfo 6367  1-1-ontowf1o 6368  cfv 6369  (class class class)co 7202  cc 10710  cr 10711  0cc0 10712  1c1 10713  ici 10714   + caddc 10715   · cmul 10717   < clt 10850  cle 10851  cmin 11045  -cneg 11046   / cdiv 11472  2c2 11868  0cn0 12073  cz 12159  [,]cicc 12921  cexp 13618  cre 14643  cim 14644  csqrt 14779  abscabs 14780  expce 15604  sincsin 15606  cosccos 15607  πcpi 15609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-inf2 9245  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790  ax-addf 10791  ax-mulf 10792
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-iin 4897  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-of 7458  df-om 7634  df-1st 7750  df-2nd 7751  df-supp 7893  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-2o 8192  df-er 8380  df-map 8499  df-pm 8500  df-ixp 8568  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-fsupp 8975  df-fi 9016  df-sup 9047  df-inf 9048  df-oi 9115  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-4 11878  df-5 11879  df-6 11880  df-7 11881  df-8 11882  df-9 11883  df-n0 12074  df-z 12160  df-dec 12277  df-uz 12422  df-q 12528  df-rp 12570  df-xneg 12687  df-xadd 12688  df-xmul 12689  df-ioo 12922  df-ioc 12923  df-ico 12924  df-icc 12925  df-fz 13079  df-fzo 13222  df-fl 13350  df-mod 13426  df-seq 13558  df-exp 13619  df-fac 13823  df-bc 13852  df-hash 13880  df-shft 14613  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782  df-limsup 15015  df-clim 15032  df-rlim 15033  df-sum 15233  df-ef 15610  df-sin 15612  df-cos 15613  df-pi 15615  df-struct 16686  df-ndx 16687  df-slot 16688  df-base 16690  df-sets 16691  df-ress 16692  df-plusg 16780  df-mulr 16781  df-starv 16782  df-sca 16783  df-vsca 16784  df-ip 16785  df-tset 16786  df-ple 16787  df-ds 16789  df-unif 16790  df-hom 16791  df-cco 16792  df-rest 16899  df-topn 16900  df-0g 16918  df-gsum 16919  df-topgen 16920  df-pt 16921  df-prds 16924  df-xrs 16979  df-qtop 16984  df-imas 16985  df-xps 16987  df-mre 17061  df-mrc 17062  df-acs 17064  df-mgm 18086  df-sgrp 18135  df-mnd 18146  df-submnd 18191  df-mulg 18461  df-cntz 18683  df-cmn 19144  df-psmet 20327  df-xmet 20328  df-met 20329  df-bl 20330  df-mopn 20331  df-fbas 20332  df-fg 20333  df-cnfld 20336  df-top 21763  df-topon 21780  df-topsp 21802  df-bases 21815  df-cld 21888  df-ntr 21889  df-cls 21890  df-nei 21967  df-lp 22005  df-perf 22006  df-cn 22096  df-cnp 22097  df-haus 22184  df-tx 22431  df-hmeo 22624  df-fil 22715  df-fm 22807  df-flim 22808  df-flf 22809  df-xms 23190  df-ms 23191  df-tms 23192  df-cncf 23747  df-limc 24735  df-dv 24736
This theorem is referenced by:  efif1o  25407  eff1olem  25409
  Copyright terms: Public domain W3C validator