MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efif1olem4 Structured version   Visualization version   GIF version

Theorem efif1olem4 26452
Description: The exponential function of an imaginary number maps any interval of length one-to-one onto the unit circle. (Contributed by Paul Chapman, 16-Mar-2008.) (Proof shortened by Mario Carneiro, 13-May-2014.)
Hypotheses
Ref Expression
efif1o.1 𝐹 = (𝑤𝐷 ↦ (exp‘(i · 𝑤)))
efif1o.2 𝐶 = (abs “ {1})
efif1olem4.3 (𝜑𝐷 ⊆ ℝ)
efif1olem4.4 ((𝜑 ∧ (𝑥𝐷𝑦𝐷)) → (abs‘(𝑥𝑦)) < (2 · π))
efif1olem4.5 ((𝜑𝑧 ∈ ℝ) → ∃𝑦𝐷 ((𝑧𝑦) / (2 · π)) ∈ ℤ)
efif1olem4.6 𝑆 = (sin ↾ (-(π / 2)[,](π / 2)))
Assertion
Ref Expression
efif1olem4 (𝜑𝐹:𝐷1-1-onto𝐶)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧   𝑤,𝐶,𝑥,𝑦   𝑥,𝐹,𝑦   𝜑,𝑤,𝑥,𝑦,𝑧   𝑦,𝑆,𝑧   𝑤,𝐷,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐶(𝑧)   𝑆(𝑥,𝑤)   𝐹(𝑧,𝑤)

Proof of Theorem efif1olem4
StepHypRef Expression
1 efif1olem4.3 . . . . . 6 (𝜑𝐷 ⊆ ℝ)
21sselda 3935 . . . . 5 ((𝜑𝑤𝐷) → 𝑤 ∈ ℝ)
3 ax-icn 11068 . . . . . . . . 9 i ∈ ℂ
4 recn 11099 . . . . . . . . 9 (𝑤 ∈ ℝ → 𝑤 ∈ ℂ)
5 mulcl 11093 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝑤 ∈ ℂ) → (i · 𝑤) ∈ ℂ)
63, 4, 5sylancr 587 . . . . . . . 8 (𝑤 ∈ ℝ → (i · 𝑤) ∈ ℂ)
7 efcl 15989 . . . . . . . 8 ((i · 𝑤) ∈ ℂ → (exp‘(i · 𝑤)) ∈ ℂ)
86, 7syl 17 . . . . . . 7 (𝑤 ∈ ℝ → (exp‘(i · 𝑤)) ∈ ℂ)
9 absefi 16105 . . . . . . 7 (𝑤 ∈ ℝ → (abs‘(exp‘(i · 𝑤))) = 1)
10 absf 15245 . . . . . . . . 9 abs:ℂ⟶ℝ
11 ffn 6652 . . . . . . . . 9 (abs:ℂ⟶ℝ → abs Fn ℂ)
1210, 11ax-mp 5 . . . . . . . 8 abs Fn ℂ
13 fniniseg 6994 . . . . . . . 8 (abs Fn ℂ → ((exp‘(i · 𝑤)) ∈ (abs “ {1}) ↔ ((exp‘(i · 𝑤)) ∈ ℂ ∧ (abs‘(exp‘(i · 𝑤))) = 1)))
1412, 13ax-mp 5 . . . . . . 7 ((exp‘(i · 𝑤)) ∈ (abs “ {1}) ↔ ((exp‘(i · 𝑤)) ∈ ℂ ∧ (abs‘(exp‘(i · 𝑤))) = 1))
158, 9, 14sylanbrc 583 . . . . . 6 (𝑤 ∈ ℝ → (exp‘(i · 𝑤)) ∈ (abs “ {1}))
16 efif1o.2 . . . . . 6 𝐶 = (abs “ {1})
1715, 16eleqtrrdi 2839 . . . . 5 (𝑤 ∈ ℝ → (exp‘(i · 𝑤)) ∈ 𝐶)
182, 17syl 17 . . . 4 ((𝜑𝑤𝐷) → (exp‘(i · 𝑤)) ∈ 𝐶)
19 efif1o.1 . . . 4 𝐹 = (𝑤𝐷 ↦ (exp‘(i · 𝑤)))
2018, 19fmptd 7048 . . 3 (𝜑𝐹:𝐷𝐶)
211ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝐷 ⊆ ℝ)
22 simplrl 776 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑥𝐷)
2321, 22sseldd 3936 . . . . . . 7 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑥 ∈ ℝ)
2423recnd 11143 . . . . . 6 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑥 ∈ ℂ)
25 simplrr 777 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑦𝐷)
2621, 25sseldd 3936 . . . . . . 7 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑦 ∈ ℝ)
2726recnd 11143 . . . . . 6 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑦 ∈ ℂ)
2824, 27subcld 11475 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (𝑥𝑦) ∈ ℂ)
29 2re 12202 . . . . . . . . . . . 12 2 ∈ ℝ
30 pire 26364 . . . . . . . . . . . 12 π ∈ ℝ
3129, 30remulcli 11131 . . . . . . . . . . 11 (2 · π) ∈ ℝ
3231recni 11129 . . . . . . . . . 10 (2 · π) ∈ ℂ
33 2pos 12231 . . . . . . . . . . . 12 0 < 2
34 pipos 26366 . . . . . . . . . . . 12 0 < π
3529, 30, 33, 34mulgt0ii 11249 . . . . . . . . . . 11 0 < (2 · π)
3631, 35gt0ne0ii 11656 . . . . . . . . . 10 (2 · π) ≠ 0
37 divcl 11785 . . . . . . . . . 10 (((𝑥𝑦) ∈ ℂ ∧ (2 · π) ∈ ℂ ∧ (2 · π) ≠ 0) → ((𝑥𝑦) / (2 · π)) ∈ ℂ)
3832, 36, 37mp3an23 1455 . . . . . . . . 9 ((𝑥𝑦) ∈ ℂ → ((𝑥𝑦) / (2 · π)) ∈ ℂ)
3928, 38syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → ((𝑥𝑦) / (2 · π)) ∈ ℂ)
40 absdiv 15202 . . . . . . . . . . . . 13 (((𝑥𝑦) ∈ ℂ ∧ (2 · π) ∈ ℂ ∧ (2 · π) ≠ 0) → (abs‘((𝑥𝑦) / (2 · π))) = ((abs‘(𝑥𝑦)) / (abs‘(2 · π))))
4132, 36, 40mp3an23 1455 . . . . . . . . . . . 12 ((𝑥𝑦) ∈ ℂ → (abs‘((𝑥𝑦) / (2 · π))) = ((abs‘(𝑥𝑦)) / (abs‘(2 · π))))
4228, 41syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (abs‘((𝑥𝑦) / (2 · π))) = ((abs‘(𝑥𝑦)) / (abs‘(2 · π))))
43 0re 11117 . . . . . . . . . . . . . 14 0 ∈ ℝ
4443, 31, 35ltleii 11239 . . . . . . . . . . . . 13 0 ≤ (2 · π)
45 absid 15203 . . . . . . . . . . . . 13 (((2 · π) ∈ ℝ ∧ 0 ≤ (2 · π)) → (abs‘(2 · π)) = (2 · π))
4631, 44, 45mp2an 692 . . . . . . . . . . . 12 (abs‘(2 · π)) = (2 · π)
4746oveq2i 7360 . . . . . . . . . . 11 ((abs‘(𝑥𝑦)) / (abs‘(2 · π))) = ((abs‘(𝑥𝑦)) / (2 · π))
4842, 47eqtrdi 2780 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (abs‘((𝑥𝑦) / (2 · π))) = ((abs‘(𝑥𝑦)) / (2 · π)))
49 efif1olem4.4 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐷𝑦𝐷)) → (abs‘(𝑥𝑦)) < (2 · π))
5049adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (abs‘(𝑥𝑦)) < (2 · π))
5132mulridi 11119 . . . . . . . . . . . 12 ((2 · π) · 1) = (2 · π)
5250, 51breqtrrdi 5134 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (abs‘(𝑥𝑦)) < ((2 · π) · 1))
5328abscld 15346 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (abs‘(𝑥𝑦)) ∈ ℝ)
54 1re 11115 . . . . . . . . . . . . 13 1 ∈ ℝ
5531, 35pm3.2i 470 . . . . . . . . . . . . 13 ((2 · π) ∈ ℝ ∧ 0 < (2 · π))
56 ltdivmul 12000 . . . . . . . . . . . . 13 (((abs‘(𝑥𝑦)) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((2 · π) ∈ ℝ ∧ 0 < (2 · π))) → (((abs‘(𝑥𝑦)) / (2 · π)) < 1 ↔ (abs‘(𝑥𝑦)) < ((2 · π) · 1)))
5754, 55, 56mp3an23 1455 . . . . . . . . . . . 12 ((abs‘(𝑥𝑦)) ∈ ℝ → (((abs‘(𝑥𝑦)) / (2 · π)) < 1 ↔ (abs‘(𝑥𝑦)) < ((2 · π) · 1)))
5853, 57syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (((abs‘(𝑥𝑦)) / (2 · π)) < 1 ↔ (abs‘(𝑥𝑦)) < ((2 · π) · 1)))
5952, 58mpbird 257 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → ((abs‘(𝑥𝑦)) / (2 · π)) < 1)
6048, 59eqbrtrd 5114 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (abs‘((𝑥𝑦) / (2 · π))) < 1)
6132, 36pm3.2i 470 . . . . . . . . . . . . . 14 ((2 · π) ∈ ℂ ∧ (2 · π) ≠ 0)
62 ine0 11555 . . . . . . . . . . . . . . 15 i ≠ 0
633, 62pm3.2i 470 . . . . . . . . . . . . . 14 (i ∈ ℂ ∧ i ≠ 0)
64 divcan5 11826 . . . . . . . . . . . . . 14 (((𝑥𝑦) ∈ ℂ ∧ ((2 · π) ∈ ℂ ∧ (2 · π) ≠ 0) ∧ (i ∈ ℂ ∧ i ≠ 0)) → ((i · (𝑥𝑦)) / (i · (2 · π))) = ((𝑥𝑦) / (2 · π)))
6561, 63, 64mp3an23 1455 . . . . . . . . . . . . 13 ((𝑥𝑦) ∈ ℂ → ((i · (𝑥𝑦)) / (i · (2 · π))) = ((𝑥𝑦) / (2 · π)))
6628, 65syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → ((i · (𝑥𝑦)) / (i · (2 · π))) = ((𝑥𝑦) / (2 · π)))
673a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → i ∈ ℂ)
6867, 24, 27subdid 11576 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (i · (𝑥𝑦)) = ((i · 𝑥) − (i · 𝑦)))
6968fveq2d 6826 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (exp‘(i · (𝑥𝑦))) = (exp‘((i · 𝑥) − (i · 𝑦))))
70 mulcl 11093 . . . . . . . . . . . . . . . 16 ((i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (i · 𝑥) ∈ ℂ)
713, 24, 70sylancr 587 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (i · 𝑥) ∈ ℂ)
72 mulcl 11093 . . . . . . . . . . . . . . . 16 ((i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (i · 𝑦) ∈ ℂ)
733, 27, 72sylancr 587 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (i · 𝑦) ∈ ℂ)
74 efsub 16009 . . . . . . . . . . . . . . 15 (((i · 𝑥) ∈ ℂ ∧ (i · 𝑦) ∈ ℂ) → (exp‘((i · 𝑥) − (i · 𝑦))) = ((exp‘(i · 𝑥)) / (exp‘(i · 𝑦))))
7571, 73, 74syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (exp‘((i · 𝑥) − (i · 𝑦))) = ((exp‘(i · 𝑥)) / (exp‘(i · 𝑦))))
76 efcl 15989 . . . . . . . . . . . . . . . 16 ((i · 𝑦) ∈ ℂ → (exp‘(i · 𝑦)) ∈ ℂ)
7773, 76syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (exp‘(i · 𝑦)) ∈ ℂ)
78 efne0 16005 . . . . . . . . . . . . . . . 16 ((i · 𝑦) ∈ ℂ → (exp‘(i · 𝑦)) ≠ 0)
7973, 78syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (exp‘(i · 𝑦)) ≠ 0)
80 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (𝐹𝑥) = (𝐹𝑦))
81 oveq2 7357 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑥 → (i · 𝑤) = (i · 𝑥))
8281fveq2d 6826 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑥 → (exp‘(i · 𝑤)) = (exp‘(i · 𝑥)))
83 fvex 6835 . . . . . . . . . . . . . . . . . 18 (exp‘(i · 𝑥)) ∈ V
8482, 19, 83fvmpt 6930 . . . . . . . . . . . . . . . . 17 (𝑥𝐷 → (𝐹𝑥) = (exp‘(i · 𝑥)))
8522, 84syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (𝐹𝑥) = (exp‘(i · 𝑥)))
86 oveq2 7357 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑦 → (i · 𝑤) = (i · 𝑦))
8786fveq2d 6826 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑦 → (exp‘(i · 𝑤)) = (exp‘(i · 𝑦)))
88 fvex 6835 . . . . . . . . . . . . . . . . . 18 (exp‘(i · 𝑦)) ∈ V
8987, 19, 88fvmpt 6930 . . . . . . . . . . . . . . . . 17 (𝑦𝐷 → (𝐹𝑦) = (exp‘(i · 𝑦)))
9025, 89syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (𝐹𝑦) = (exp‘(i · 𝑦)))
9180, 85, 903eqtr3d 2772 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (exp‘(i · 𝑥)) = (exp‘(i · 𝑦)))
9277, 79, 91diveq1bd 11948 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → ((exp‘(i · 𝑥)) / (exp‘(i · 𝑦))) = 1)
9369, 75, 923eqtrd 2768 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (exp‘(i · (𝑥𝑦))) = 1)
94 mulcl 11093 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ (𝑥𝑦) ∈ ℂ) → (i · (𝑥𝑦)) ∈ ℂ)
953, 28, 94sylancr 587 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (i · (𝑥𝑦)) ∈ ℂ)
96 efeq1 26435 . . . . . . . . . . . . . 14 ((i · (𝑥𝑦)) ∈ ℂ → ((exp‘(i · (𝑥𝑦))) = 1 ↔ ((i · (𝑥𝑦)) / (i · (2 · π))) ∈ ℤ))
9795, 96syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → ((exp‘(i · (𝑥𝑦))) = 1 ↔ ((i · (𝑥𝑦)) / (i · (2 · π))) ∈ ℤ))
9893, 97mpbid 232 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → ((i · (𝑥𝑦)) / (i · (2 · π))) ∈ ℤ)
9966, 98eqeltrrd 2829 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → ((𝑥𝑦) / (2 · π)) ∈ ℤ)
100 nn0abscl 15219 . . . . . . . . . . 11 (((𝑥𝑦) / (2 · π)) ∈ ℤ → (abs‘((𝑥𝑦) / (2 · π))) ∈ ℕ0)
10199, 100syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (abs‘((𝑥𝑦) / (2 · π))) ∈ ℕ0)
102 nn0lt10b 12538 . . . . . . . . . 10 ((abs‘((𝑥𝑦) / (2 · π))) ∈ ℕ0 → ((abs‘((𝑥𝑦) / (2 · π))) < 1 ↔ (abs‘((𝑥𝑦) / (2 · π))) = 0))
103101, 102syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → ((abs‘((𝑥𝑦) / (2 · π))) < 1 ↔ (abs‘((𝑥𝑦) / (2 · π))) = 0))
10460, 103mpbid 232 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (abs‘((𝑥𝑦) / (2 · π))) = 0)
10539, 104abs00d 15356 . . . . . . 7 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → ((𝑥𝑦) / (2 · π)) = 0)
106 diveq0 11789 . . . . . . . . 9 (((𝑥𝑦) ∈ ℂ ∧ (2 · π) ∈ ℂ ∧ (2 · π) ≠ 0) → (((𝑥𝑦) / (2 · π)) = 0 ↔ (𝑥𝑦) = 0))
10732, 36, 106mp3an23 1455 . . . . . . . 8 ((𝑥𝑦) ∈ ℂ → (((𝑥𝑦) / (2 · π)) = 0 ↔ (𝑥𝑦) = 0))
10828, 107syl 17 . . . . . . 7 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (((𝑥𝑦) / (2 · π)) = 0 ↔ (𝑥𝑦) = 0))
109105, 108mpbid 232 . . . . . 6 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (𝑥𝑦) = 0)
11024, 27, 109subeq0d 11483 . . . . 5 (((𝜑 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑥 = 𝑦)
111110ex 412 . . . 4 ((𝜑 ∧ (𝑥𝐷𝑦𝐷)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
112111ralrimivva 3172 . . 3 (𝜑 → ∀𝑥𝐷𝑦𝐷 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
113 dff13 7191 . . 3 (𝐹:𝐷1-1𝐶 ↔ (𝐹:𝐷𝐶 ∧ ∀𝑥𝐷𝑦𝐷 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
11420, 112, 113sylanbrc 583 . 2 (𝜑𝐹:𝐷1-1𝐶)
115 oveq1 7356 . . . . . . . . 9 (𝑧 = (2 · (𝑆‘(ℑ‘(√‘𝑥)))) → (𝑧𝑦) = ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))
116115oveq1d 7364 . . . . . . . 8 (𝑧 = (2 · (𝑆‘(ℑ‘(√‘𝑥)))) → ((𝑧𝑦) / (2 · π)) = (((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)))
117116eleq1d 2813 . . . . . . 7 (𝑧 = (2 · (𝑆‘(ℑ‘(√‘𝑥)))) → (((𝑧𝑦) / (2 · π)) ∈ ℤ ↔ (((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)) ∈ ℤ))
118117rexbidv 3153 . . . . . 6 (𝑧 = (2 · (𝑆‘(ℑ‘(√‘𝑥)))) → (∃𝑦𝐷 ((𝑧𝑦) / (2 · π)) ∈ ℤ ↔ ∃𝑦𝐷 (((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)) ∈ ℤ))
119 efif1olem4.5 . . . . . . . 8 ((𝜑𝑧 ∈ ℝ) → ∃𝑦𝐷 ((𝑧𝑦) / (2 · π)) ∈ ℤ)
120119ralrimiva 3121 . . . . . . 7 (𝜑 → ∀𝑧 ∈ ℝ ∃𝑦𝐷 ((𝑧𝑦) / (2 · π)) ∈ ℤ)
121120adantr 480 . . . . . 6 ((𝜑𝑥𝐶) → ∀𝑧 ∈ ℝ ∃𝑦𝐷 ((𝑧𝑦) / (2 · π)) ∈ ℤ)
122 neghalfpire 26372 . . . . . . . . 9 -(π / 2) ∈ ℝ
123 halfpire 26371 . . . . . . . . 9 (π / 2) ∈ ℝ
124 iccssre 13332 . . . . . . . . 9 ((-(π / 2) ∈ ℝ ∧ (π / 2) ∈ ℝ) → (-(π / 2)[,](π / 2)) ⊆ ℝ)
125122, 123, 124mp2an 692 . . . . . . . 8 (-(π / 2)[,](π / 2)) ⊆ ℝ
12619, 16efif1olem3 26451 . . . . . . . . 9 ((𝜑𝑥𝐶) → (ℑ‘(√‘𝑥)) ∈ (-1[,]1))
127 resinf1o 26443 . . . . . . . . . . . 12 (sin ↾ (-(π / 2)[,](π / 2))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1)
128 efif1olem4.6 . . . . . . . . . . . . 13 𝑆 = (sin ↾ (-(π / 2)[,](π / 2)))
129 f1oeq1 6752 . . . . . . . . . . . . 13 (𝑆 = (sin ↾ (-(π / 2)[,](π / 2))) → (𝑆:(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1) ↔ (sin ↾ (-(π / 2)[,](π / 2))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1)))
130128, 129ax-mp 5 . . . . . . . . . . . 12 (𝑆:(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1) ↔ (sin ↾ (-(π / 2)[,](π / 2))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1))
131127, 130mpbir 231 . . . . . . . . . . 11 𝑆:(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1)
132 f1ocnv 6776 . . . . . . . . . . 11 (𝑆:(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1) → 𝑆:(-1[,]1)–1-1-onto→(-(π / 2)[,](π / 2)))
133 f1of 6764 . . . . . . . . . . 11 (𝑆:(-1[,]1)–1-1-onto→(-(π / 2)[,](π / 2)) → 𝑆:(-1[,]1)⟶(-(π / 2)[,](π / 2)))
134131, 132, 133mp2b 10 . . . . . . . . . 10 𝑆:(-1[,]1)⟶(-(π / 2)[,](π / 2))
135134ffvelcdmi 7017 . . . . . . . . 9 ((ℑ‘(√‘𝑥)) ∈ (-1[,]1) → (𝑆‘(ℑ‘(√‘𝑥))) ∈ (-(π / 2)[,](π / 2)))
136126, 135syl 17 . . . . . . . 8 ((𝜑𝑥𝐶) → (𝑆‘(ℑ‘(√‘𝑥))) ∈ (-(π / 2)[,](π / 2)))
137125, 136sselid 3933 . . . . . . 7 ((𝜑𝑥𝐶) → (𝑆‘(ℑ‘(√‘𝑥))) ∈ ℝ)
138 remulcl 11094 . . . . . . 7 ((2 ∈ ℝ ∧ (𝑆‘(ℑ‘(√‘𝑥))) ∈ ℝ) → (2 · (𝑆‘(ℑ‘(√‘𝑥)))) ∈ ℝ)
13929, 137, 138sylancr 587 . . . . . 6 ((𝜑𝑥𝐶) → (2 · (𝑆‘(ℑ‘(√‘𝑥)))) ∈ ℝ)
140118, 121, 139rspcdva 3578 . . . . 5 ((𝜑𝑥𝐶) → ∃𝑦𝐷 (((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)) ∈ ℤ)
141 oveq1 7356 . . . . . . . 8 ((exp‘(i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) = 1 → ((exp‘(i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) · (exp‘(i · 𝑦))) = (1 · (exp‘(i · 𝑦))))
1423a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → i ∈ ℂ)
143139adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → (2 · (𝑆‘(ℑ‘(√‘𝑥)))) ∈ ℝ)
144143recnd 11143 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → (2 · (𝑆‘(ℑ‘(√‘𝑥)))) ∈ ℂ)
1451ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → 𝐷 ⊆ ℝ)
146 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → 𝑦𝐷)
147145, 146sseldd 3936 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → 𝑦 ∈ ℝ)
148147recnd 11143 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → 𝑦 ∈ ℂ)
149142, 144, 148subdid 11576 . . . . . . . . . . . . 13 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → (i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) = ((i · (2 · (𝑆‘(ℑ‘(√‘𝑥))))) − (i · 𝑦)))
150149oveq1d 7364 . . . . . . . . . . . 12 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → ((i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) + (i · 𝑦)) = (((i · (2 · (𝑆‘(ℑ‘(√‘𝑥))))) − (i · 𝑦)) + (i · 𝑦)))
151 mulcl 11093 . . . . . . . . . . . . . 14 ((i ∈ ℂ ∧ (2 · (𝑆‘(ℑ‘(√‘𝑥)))) ∈ ℂ) → (i · (2 · (𝑆‘(ℑ‘(√‘𝑥))))) ∈ ℂ)
1523, 144, 151sylancr 587 . . . . . . . . . . . . 13 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → (i · (2 · (𝑆‘(ℑ‘(√‘𝑥))))) ∈ ℂ)
1533, 148, 72sylancr 587 . . . . . . . . . . . . 13 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → (i · 𝑦) ∈ ℂ)
154152, 153npcand 11479 . . . . . . . . . . . 12 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → (((i · (2 · (𝑆‘(ℑ‘(√‘𝑥))))) − (i · 𝑦)) + (i · 𝑦)) = (i · (2 · (𝑆‘(ℑ‘(√‘𝑥))))))
155150, 154eqtrd 2764 . . . . . . . . . . 11 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → ((i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) + (i · 𝑦)) = (i · (2 · (𝑆‘(ℑ‘(√‘𝑥))))))
156155fveq2d 6826 . . . . . . . . . 10 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → (exp‘((i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) + (i · 𝑦))) = (exp‘(i · (2 · (𝑆‘(ℑ‘(√‘𝑥)))))))
157144, 148subcld 11475 . . . . . . . . . . . 12 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) ∈ ℂ)
158 mulcl 11093 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) ∈ ℂ) → (i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) ∈ ℂ)
1593, 157, 158sylancr 587 . . . . . . . . . . 11 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → (i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) ∈ ℂ)
160 efadd 16001 . . . . . . . . . . 11 (((i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) ∈ ℂ ∧ (i · 𝑦) ∈ ℂ) → (exp‘((i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) + (i · 𝑦))) = ((exp‘(i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) · (exp‘(i · 𝑦))))
161159, 153, 160syl2anc 584 . . . . . . . . . 10 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → (exp‘((i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) + (i · 𝑦))) = ((exp‘(i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) · (exp‘(i · 𝑦))))
162 2cn 12203 . . . . . . . . . . . . . . 15 2 ∈ ℂ
163137recnd 11143 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐶) → (𝑆‘(ℑ‘(√‘𝑥))) ∈ ℂ)
164 mul12 11281 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ 2 ∈ ℂ ∧ (𝑆‘(ℑ‘(√‘𝑥))) ∈ ℂ) → (i · (2 · (𝑆‘(ℑ‘(√‘𝑥))))) = (2 · (i · (𝑆‘(ℑ‘(√‘𝑥))))))
1653, 162, 163, 164mp3an12i 1467 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐶) → (i · (2 · (𝑆‘(ℑ‘(√‘𝑥))))) = (2 · (i · (𝑆‘(ℑ‘(√‘𝑥))))))
166165fveq2d 6826 . . . . . . . . . . . . 13 ((𝜑𝑥𝐶) → (exp‘(i · (2 · (𝑆‘(ℑ‘(√‘𝑥)))))) = (exp‘(2 · (i · (𝑆‘(ℑ‘(√‘𝑥)))))))
167 mulcl 11093 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ (𝑆‘(ℑ‘(√‘𝑥))) ∈ ℂ) → (i · (𝑆‘(ℑ‘(√‘𝑥)))) ∈ ℂ)
1683, 163, 167sylancr 587 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐶) → (i · (𝑆‘(ℑ‘(√‘𝑥)))) ∈ ℂ)
169 2z 12507 . . . . . . . . . . . . . 14 2 ∈ ℤ
170 efexp 16010 . . . . . . . . . . . . . 14 (((i · (𝑆‘(ℑ‘(√‘𝑥)))) ∈ ℂ ∧ 2 ∈ ℤ) → (exp‘(2 · (i · (𝑆‘(ℑ‘(√‘𝑥)))))) = ((exp‘(i · (𝑆‘(ℑ‘(√‘𝑥)))))↑2))
171168, 169, 170sylancl 586 . . . . . . . . . . . . 13 ((𝜑𝑥𝐶) → (exp‘(2 · (i · (𝑆‘(ℑ‘(√‘𝑥)))))) = ((exp‘(i · (𝑆‘(ℑ‘(√‘𝑥)))))↑2))
172166, 171eqtrd 2764 . . . . . . . . . . . 12 ((𝜑𝑥𝐶) → (exp‘(i · (2 · (𝑆‘(ℑ‘(√‘𝑥)))))) = ((exp‘(i · (𝑆‘(ℑ‘(√‘𝑥)))))↑2))
173137recoscld 16053 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐶) → (cos‘(𝑆‘(ℑ‘(√‘𝑥)))) ∈ ℝ)
174 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥𝐶) → 𝑥𝐶)
175174, 16eleqtrdi 2838 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐶) → 𝑥 ∈ (abs “ {1}))
176 fniniseg 6994 . . . . . . . . . . . . . . . . . . . . 21 (abs Fn ℂ → (𝑥 ∈ (abs “ {1}) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) = 1)))
17712, 176ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (abs “ {1}) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) = 1))
178175, 177sylib 218 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐶) → (𝑥 ∈ ℂ ∧ (abs‘𝑥) = 1))
179178simpld 494 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐶) → 𝑥 ∈ ℂ)
180179sqrtcld 15347 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐶) → (√‘𝑥) ∈ ℂ)
181180recld 15101 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐶) → (ℜ‘(√‘𝑥)) ∈ ℝ)
182 cosq14ge0 26418 . . . . . . . . . . . . . . . . 17 ((𝑆‘(ℑ‘(√‘𝑥))) ∈ (-(π / 2)[,](π / 2)) → 0 ≤ (cos‘(𝑆‘(ℑ‘(√‘𝑥)))))
183136, 182syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐶) → 0 ≤ (cos‘(𝑆‘(ℑ‘(√‘𝑥)))))
184179sqrtrege0d 15348 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐶) → 0 ≤ (ℜ‘(√‘𝑥)))
185 sincossq 16085 . . . . . . . . . . . . . . . . . . . 20 ((𝑆‘(ℑ‘(√‘𝑥))) ∈ ℂ → (((sin‘(𝑆‘(ℑ‘(√‘𝑥))))↑2) + ((cos‘(𝑆‘(ℑ‘(√‘𝑥))))↑2)) = 1)
186163, 185syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐶) → (((sin‘(𝑆‘(ℑ‘(√‘𝑥))))↑2) + ((cos‘(𝑆‘(ℑ‘(√‘𝑥))))↑2)) = 1)
187179sqsqrtd 15349 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥𝐶) → ((√‘𝑥)↑2) = 𝑥)
188187fveq2d 6826 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐶) → (abs‘((√‘𝑥)↑2)) = (abs‘𝑥))
189 2nn0 12401 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℕ0
190 absexp 15211 . . . . . . . . . . . . . . . . . . . . 21 (((√‘𝑥) ∈ ℂ ∧ 2 ∈ ℕ0) → (abs‘((√‘𝑥)↑2)) = ((abs‘(√‘𝑥))↑2))
191180, 189, 190sylancl 586 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐶) → (abs‘((√‘𝑥)↑2)) = ((abs‘(√‘𝑥))↑2))
192178simprd 495 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐶) → (abs‘𝑥) = 1)
193188, 191, 1923eqtr3d 2772 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐶) → ((abs‘(√‘𝑥))↑2) = 1)
194180absvalsq2d 15353 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐶) → ((abs‘(√‘𝑥))↑2) = (((ℜ‘(√‘𝑥))↑2) + ((ℑ‘(√‘𝑥))↑2)))
195186, 193, 1943eqtr2d 2770 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐶) → (((sin‘(𝑆‘(ℑ‘(√‘𝑥))))↑2) + ((cos‘(𝑆‘(ℑ‘(√‘𝑥))))↑2)) = (((ℜ‘(√‘𝑥))↑2) + ((ℑ‘(√‘𝑥))↑2)))
196128fveq1i 6823 . . . . . . . . . . . . . . . . . . . . 21 (𝑆‘(𝑆‘(ℑ‘(√‘𝑥)))) = ((sin ↾ (-(π / 2)[,](π / 2)))‘(𝑆‘(ℑ‘(√‘𝑥))))
197136fvresd 6842 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥𝐶) → ((sin ↾ (-(π / 2)[,](π / 2)))‘(𝑆‘(ℑ‘(√‘𝑥)))) = (sin‘(𝑆‘(ℑ‘(√‘𝑥)))))
198196, 197eqtrid 2776 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐶) → (𝑆‘(𝑆‘(ℑ‘(√‘𝑥)))) = (sin‘(𝑆‘(ℑ‘(√‘𝑥)))))
199 f1ocnvfv2 7214 . . . . . . . . . . . . . . . . . . . . 21 ((𝑆:(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1) ∧ (ℑ‘(√‘𝑥)) ∈ (-1[,]1)) → (𝑆‘(𝑆‘(ℑ‘(√‘𝑥)))) = (ℑ‘(√‘𝑥)))
200131, 126, 199sylancr 587 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐶) → (𝑆‘(𝑆‘(ℑ‘(√‘𝑥)))) = (ℑ‘(√‘𝑥)))
201198, 200eqtr3d 2766 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐶) → (sin‘(𝑆‘(ℑ‘(√‘𝑥)))) = (ℑ‘(√‘𝑥)))
202201oveq1d 7364 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐶) → ((sin‘(𝑆‘(ℑ‘(√‘𝑥))))↑2) = ((ℑ‘(√‘𝑥))↑2))
203195, 202oveq12d 7367 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐶) → ((((sin‘(𝑆‘(ℑ‘(√‘𝑥))))↑2) + ((cos‘(𝑆‘(ℑ‘(√‘𝑥))))↑2)) − ((sin‘(𝑆‘(ℑ‘(√‘𝑥))))↑2)) = ((((ℜ‘(√‘𝑥))↑2) + ((ℑ‘(√‘𝑥))↑2)) − ((ℑ‘(√‘𝑥))↑2)))
204163sincld 16039 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐶) → (sin‘(𝑆‘(ℑ‘(√‘𝑥)))) ∈ ℂ)
205204sqcld 14051 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐶) → ((sin‘(𝑆‘(ℑ‘(√‘𝑥))))↑2) ∈ ℂ)
206163coscld 16040 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐶) → (cos‘(𝑆‘(ℑ‘(√‘𝑥)))) ∈ ℂ)
207206sqcld 14051 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐶) → ((cos‘(𝑆‘(ℑ‘(√‘𝑥))))↑2) ∈ ℂ)
208205, 207pncan2d 11477 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐶) → ((((sin‘(𝑆‘(ℑ‘(√‘𝑥))))↑2) + ((cos‘(𝑆‘(ℑ‘(√‘𝑥))))↑2)) − ((sin‘(𝑆‘(ℑ‘(√‘𝑥))))↑2)) = ((cos‘(𝑆‘(ℑ‘(√‘𝑥))))↑2))
209181recnd 11143 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐶) → (ℜ‘(√‘𝑥)) ∈ ℂ)
210209sqcld 14051 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐶) → ((ℜ‘(√‘𝑥))↑2) ∈ ℂ)
211202, 205eqeltrrd 2829 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐶) → ((ℑ‘(√‘𝑥))↑2) ∈ ℂ)
212210, 211pncand 11476 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐶) → ((((ℜ‘(√‘𝑥))↑2) + ((ℑ‘(√‘𝑥))↑2)) − ((ℑ‘(√‘𝑥))↑2)) = ((ℜ‘(√‘𝑥))↑2))
213203, 208, 2123eqtr3d 2772 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐶) → ((cos‘(𝑆‘(ℑ‘(√‘𝑥))))↑2) = ((ℜ‘(√‘𝑥))↑2))
214173, 181, 183, 184, 213sq11d 14165 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐶) → (cos‘(𝑆‘(ℑ‘(√‘𝑥)))) = (ℜ‘(√‘𝑥)))
215201oveq2d 7365 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐶) → (i · (sin‘(𝑆‘(ℑ‘(√‘𝑥))))) = (i · (ℑ‘(√‘𝑥))))
216214, 215oveq12d 7367 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐶) → ((cos‘(𝑆‘(ℑ‘(√‘𝑥)))) + (i · (sin‘(𝑆‘(ℑ‘(√‘𝑥)))))) = ((ℜ‘(√‘𝑥)) + (i · (ℑ‘(√‘𝑥)))))
217 efival 16061 . . . . . . . . . . . . . . 15 ((𝑆‘(ℑ‘(√‘𝑥))) ∈ ℂ → (exp‘(i · (𝑆‘(ℑ‘(√‘𝑥))))) = ((cos‘(𝑆‘(ℑ‘(√‘𝑥)))) + (i · (sin‘(𝑆‘(ℑ‘(√‘𝑥)))))))
218163, 217syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐶) → (exp‘(i · (𝑆‘(ℑ‘(√‘𝑥))))) = ((cos‘(𝑆‘(ℑ‘(√‘𝑥)))) + (i · (sin‘(𝑆‘(ℑ‘(√‘𝑥)))))))
219180replimd 15104 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐶) → (√‘𝑥) = ((ℜ‘(√‘𝑥)) + (i · (ℑ‘(√‘𝑥)))))
220216, 218, 2193eqtr4d 2774 . . . . . . . . . . . . 13 ((𝜑𝑥𝐶) → (exp‘(i · (𝑆‘(ℑ‘(√‘𝑥))))) = (√‘𝑥))
221220oveq1d 7364 . . . . . . . . . . . 12 ((𝜑𝑥𝐶) → ((exp‘(i · (𝑆‘(ℑ‘(√‘𝑥)))))↑2) = ((√‘𝑥)↑2))
222172, 221, 1873eqtrd 2768 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → (exp‘(i · (2 · (𝑆‘(ℑ‘(√‘𝑥)))))) = 𝑥)
223222adantr 480 . . . . . . . . . 10 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → (exp‘(i · (2 · (𝑆‘(ℑ‘(√‘𝑥)))))) = 𝑥)
224156, 161, 2233eqtr3d 2772 . . . . . . . . 9 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → ((exp‘(i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) · (exp‘(i · 𝑦))) = 𝑥)
225153, 76syl 17 . . . . . . . . . 10 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → (exp‘(i · 𝑦)) ∈ ℂ)
226225mullidd 11133 . . . . . . . . 9 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → (1 · (exp‘(i · 𝑦))) = (exp‘(i · 𝑦)))
227224, 226eqeq12d 2745 . . . . . . . 8 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → (((exp‘(i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) · (exp‘(i · 𝑦))) = (1 · (exp‘(i · 𝑦))) ↔ 𝑥 = (exp‘(i · 𝑦))))
228141, 227imbitrid 244 . . . . . . 7 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → ((exp‘(i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) = 1 → 𝑥 = (exp‘(i · 𝑦))))
229 efeq1 26435 . . . . . . . . 9 ((i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) ∈ ℂ → ((exp‘(i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) = 1 ↔ ((i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) / (i · (2 · π))) ∈ ℤ))
230159, 229syl 17 . . . . . . . 8 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → ((exp‘(i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) = 1 ↔ ((i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) / (i · (2 · π))) ∈ ℤ))
231 divcan5 11826 . . . . . . . . . . 11 ((((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) ∈ ℂ ∧ ((2 · π) ∈ ℂ ∧ (2 · π) ≠ 0) ∧ (i ∈ ℂ ∧ i ≠ 0)) → ((i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) / (i · (2 · π))) = (((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)))
23261, 63, 231mp3an23 1455 . . . . . . . . . 10 (((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) ∈ ℂ → ((i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) / (i · (2 · π))) = (((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)))
233157, 232syl 17 . . . . . . . . 9 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → ((i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) / (i · (2 · π))) = (((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)))
234233eleq1d 2813 . . . . . . . 8 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → (((i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) / (i · (2 · π))) ∈ ℤ ↔ (((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)) ∈ ℤ))
235230, 234bitr2d 280 . . . . . . 7 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → ((((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)) ∈ ℤ ↔ (exp‘(i · ((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) = 1))
23689adantl 481 . . . . . . . 8 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → (𝐹𝑦) = (exp‘(i · 𝑦)))
237236eqeq2d 2740 . . . . . . 7 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → (𝑥 = (𝐹𝑦) ↔ 𝑥 = (exp‘(i · 𝑦))))
238228, 235, 2373imtr4d 294 . . . . . 6 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → ((((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)) ∈ ℤ → 𝑥 = (𝐹𝑦)))
239238reximdva 3142 . . . . 5 ((𝜑𝑥𝐶) → (∃𝑦𝐷 (((2 · (𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)) ∈ ℤ → ∃𝑦𝐷 𝑥 = (𝐹𝑦)))
240140, 239mpd 15 . . . 4 ((𝜑𝑥𝐶) → ∃𝑦𝐷 𝑥 = (𝐹𝑦))
241240ralrimiva 3121 . . 3 (𝜑 → ∀𝑥𝐶𝑦𝐷 𝑥 = (𝐹𝑦))
242 dffo3 7036 . . 3 (𝐹:𝐷onto𝐶 ↔ (𝐹:𝐷𝐶 ∧ ∀𝑥𝐶𝑦𝐷 𝑥 = (𝐹𝑦)))
24320, 241, 242sylanbrc 583 . 2 (𝜑𝐹:𝐷onto𝐶)
244 df-f1o 6489 . 2 (𝐹:𝐷1-1-onto𝐶 ↔ (𝐹:𝐷1-1𝐶𝐹:𝐷onto𝐶))
245114, 243, 244sylanbrc 583 1 (𝜑𝐹:𝐷1-1-onto𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3903  {csn 4577   class class class wbr 5092  cmpt 5173  ccnv 5618  cres 5621  cima 5622   Fn wfn 6477  wf 6478  1-1wf1 6479  ontowfo 6480  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010  ici 11011   + caddc 11012   · cmul 11014   < clt 11149  cle 11150  cmin 11347  -cneg 11348   / cdiv 11777  2c2 12183  0cn0 12384  cz 12471  [,]cicc 13251  cexp 13968  cre 15004  cim 15005  csqrt 15140  abscabs 15141  expce 15968  sincsin 15970  cosccos 15971  πcpi 15973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766
This theorem is referenced by:  efif1o  26453  eff1olem  26455
  Copyright terms: Public domain W3C validator