Proof of Theorem efif1olem4
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | efif1olem4.3 | . . . . . 6
⊢ (𝜑 → 𝐷 ⊆ ℝ) | 
| 2 | 1 | sselda 3982 | . . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐷) → 𝑤 ∈ ℝ) | 
| 3 |  | ax-icn 11215 | . . . . . . . . 9
⊢ i ∈
ℂ | 
| 4 |  | recn 11246 | . . . . . . . . 9
⊢ (𝑤 ∈ ℝ → 𝑤 ∈
ℂ) | 
| 5 |  | mulcl 11240 | . . . . . . . . 9
⊢ ((i
∈ ℂ ∧ 𝑤
∈ ℂ) → (i · 𝑤) ∈ ℂ) | 
| 6 | 3, 4, 5 | sylancr 587 | . . . . . . . 8
⊢ (𝑤 ∈ ℝ → (i
· 𝑤) ∈
ℂ) | 
| 7 |  | efcl 16119 | . . . . . . . 8
⊢ ((i
· 𝑤) ∈ ℂ
→ (exp‘(i · 𝑤)) ∈ ℂ) | 
| 8 | 6, 7 | syl 17 | . . . . . . 7
⊢ (𝑤 ∈ ℝ →
(exp‘(i · 𝑤))
∈ ℂ) | 
| 9 |  | absefi 16233 | . . . . . . 7
⊢ (𝑤 ∈ ℝ →
(abs‘(exp‘(i · 𝑤))) = 1) | 
| 10 |  | absf 15377 | . . . . . . . . 9
⊢
abs:ℂ⟶ℝ | 
| 11 |  | ffn 6735 | . . . . . . . . 9
⊢
(abs:ℂ⟶ℝ → abs Fn ℂ) | 
| 12 | 10, 11 | ax-mp 5 | . . . . . . . 8
⊢ abs Fn
ℂ | 
| 13 |  | fniniseg 7079 | . . . . . . . 8
⊢ (abs Fn
ℂ → ((exp‘(i · 𝑤)) ∈ (◡abs “ {1}) ↔ ((exp‘(i
· 𝑤)) ∈ ℂ
∧ (abs‘(exp‘(i · 𝑤))) = 1))) | 
| 14 | 12, 13 | ax-mp 5 | . . . . . . 7
⊢
((exp‘(i · 𝑤)) ∈ (◡abs “ {1}) ↔ ((exp‘(i
· 𝑤)) ∈ ℂ
∧ (abs‘(exp‘(i · 𝑤))) = 1)) | 
| 15 | 8, 9, 14 | sylanbrc 583 | . . . . . 6
⊢ (𝑤 ∈ ℝ →
(exp‘(i · 𝑤))
∈ (◡abs “
{1})) | 
| 16 |  | efif1o.2 | . . . . . 6
⊢ 𝐶 = (◡abs “ {1}) | 
| 17 | 15, 16 | eleqtrrdi 2851 | . . . . 5
⊢ (𝑤 ∈ ℝ →
(exp‘(i · 𝑤))
∈ 𝐶) | 
| 18 | 2, 17 | syl 17 | . . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐷) → (exp‘(i · 𝑤)) ∈ 𝐶) | 
| 19 |  | efif1o.1 | . . . 4
⊢ 𝐹 = (𝑤 ∈ 𝐷 ↦ (exp‘(i · 𝑤))) | 
| 20 | 18, 19 | fmptd 7133 | . . 3
⊢ (𝜑 → 𝐹:𝐷⟶𝐶) | 
| 21 | 1 | ad2antrr 726 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → 𝐷 ⊆ ℝ) | 
| 22 |  | simplrl 776 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → 𝑥 ∈ 𝐷) | 
| 23 | 21, 22 | sseldd 3983 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → 𝑥 ∈ ℝ) | 
| 24 | 23 | recnd 11290 | . . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → 𝑥 ∈ ℂ) | 
| 25 |  | simplrr 777 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → 𝑦 ∈ 𝐷) | 
| 26 | 21, 25 | sseldd 3983 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → 𝑦 ∈ ℝ) | 
| 27 | 26 | recnd 11290 | . . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → 𝑦 ∈ ℂ) | 
| 28 | 24, 27 | subcld 11621 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (𝑥 − 𝑦) ∈ ℂ) | 
| 29 |  | 2re 12341 | . . . . . . . . . . . 12
⊢ 2 ∈
ℝ | 
| 30 |  | pire 26501 | . . . . . . . . . . . 12
⊢ π
∈ ℝ | 
| 31 | 29, 30 | remulcli 11278 | . . . . . . . . . . 11
⊢ (2
· π) ∈ ℝ | 
| 32 | 31 | recni 11276 | . . . . . . . . . 10
⊢ (2
· π) ∈ ℂ | 
| 33 |  | 2pos 12370 | . . . . . . . . . . . 12
⊢ 0 <
2 | 
| 34 |  | pipos 26503 | . . . . . . . . . . . 12
⊢ 0 <
π | 
| 35 | 29, 30, 33, 34 | mulgt0ii 11395 | . . . . . . . . . . 11
⊢ 0 < (2
· π) | 
| 36 | 31, 35 | gt0ne0ii 11800 | . . . . . . . . . 10
⊢ (2
· π) ≠ 0 | 
| 37 |  | divcl 11929 | . . . . . . . . . 10
⊢ (((𝑥 − 𝑦) ∈ ℂ ∧ (2 · π)
∈ ℂ ∧ (2 · π) ≠ 0) → ((𝑥 − 𝑦) / (2 · π)) ∈
ℂ) | 
| 38 | 32, 36, 37 | mp3an23 1454 | . . . . . . . . 9
⊢ ((𝑥 − 𝑦) ∈ ℂ → ((𝑥 − 𝑦) / (2 · π)) ∈
ℂ) | 
| 39 | 28, 38 | syl 17 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → ((𝑥 − 𝑦) / (2 · π)) ∈
ℂ) | 
| 40 |  | absdiv 15335 | . . . . . . . . . . . . 13
⊢ (((𝑥 − 𝑦) ∈ ℂ ∧ (2 · π)
∈ ℂ ∧ (2 · π) ≠ 0) → (abs‘((𝑥 − 𝑦) / (2 · π))) = ((abs‘(𝑥 − 𝑦)) / (abs‘(2 ·
π)))) | 
| 41 | 32, 36, 40 | mp3an23 1454 | . . . . . . . . . . . 12
⊢ ((𝑥 − 𝑦) ∈ ℂ → (abs‘((𝑥 − 𝑦) / (2 · π))) = ((abs‘(𝑥 − 𝑦)) / (abs‘(2 ·
π)))) | 
| 42 | 28, 41 | syl 17 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (abs‘((𝑥 − 𝑦) / (2 · π))) = ((abs‘(𝑥 − 𝑦)) / (abs‘(2 ·
π)))) | 
| 43 |  | 0re 11264 | . . . . . . . . . . . . . 14
⊢ 0 ∈
ℝ | 
| 44 | 43, 31, 35 | ltleii 11385 | . . . . . . . . . . . . 13
⊢ 0 ≤ (2
· π) | 
| 45 |  | absid 15336 | . . . . . . . . . . . . 13
⊢ (((2
· π) ∈ ℝ ∧ 0 ≤ (2 · π)) →
(abs‘(2 · π)) = (2 · π)) | 
| 46 | 31, 44, 45 | mp2an 692 | . . . . . . . . . . . 12
⊢
(abs‘(2 · π)) = (2 · π) | 
| 47 | 46 | oveq2i 7443 | . . . . . . . . . . 11
⊢
((abs‘(𝑥
− 𝑦)) / (abs‘(2
· π))) = ((abs‘(𝑥 − 𝑦)) / (2 · π)) | 
| 48 | 42, 47 | eqtrdi 2792 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (abs‘((𝑥 − 𝑦) / (2 · π))) = ((abs‘(𝑥 − 𝑦)) / (2 · π))) | 
| 49 |  | efif1olem4.4 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (abs‘(𝑥 − 𝑦)) < (2 · π)) | 
| 50 | 49 | adantr 480 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (abs‘(𝑥 − 𝑦)) < (2 · π)) | 
| 51 | 32 | mulridi 11266 | . . . . . . . . . . . 12
⊢ ((2
· π) · 1) = (2 · π) | 
| 52 | 50, 51 | breqtrrdi 5184 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (abs‘(𝑥 − 𝑦)) < ((2 · π) ·
1)) | 
| 53 | 28 | abscld 15476 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (abs‘(𝑥 − 𝑦)) ∈ ℝ) | 
| 54 |  | 1re 11262 | . . . . . . . . . . . . 13
⊢ 1 ∈
ℝ | 
| 55 | 31, 35 | pm3.2i 470 | . . . . . . . . . . . . 13
⊢ ((2
· π) ∈ ℝ ∧ 0 < (2 · π)) | 
| 56 |  | ltdivmul 12144 | . . . . . . . . . . . . 13
⊢
(((abs‘(𝑥
− 𝑦)) ∈ ℝ
∧ 1 ∈ ℝ ∧ ((2 · π) ∈ ℝ ∧ 0 < (2
· π))) → (((abs‘(𝑥 − 𝑦)) / (2 · π)) < 1 ↔
(abs‘(𝑥 − 𝑦)) < ((2 · π)
· 1))) | 
| 57 | 54, 55, 56 | mp3an23 1454 | . . . . . . . . . . . 12
⊢
((abs‘(𝑥
− 𝑦)) ∈ ℝ
→ (((abs‘(𝑥
− 𝑦)) / (2 ·
π)) < 1 ↔ (abs‘(𝑥 − 𝑦)) < ((2 · π) ·
1))) | 
| 58 | 53, 57 | syl 17 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (((abs‘(𝑥 − 𝑦)) / (2 · π)) < 1 ↔
(abs‘(𝑥 − 𝑦)) < ((2 · π)
· 1))) | 
| 59 | 52, 58 | mpbird 257 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → ((abs‘(𝑥 − 𝑦)) / (2 · π)) <
1) | 
| 60 | 48, 59 | eqbrtrd 5164 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (abs‘((𝑥 − 𝑦) / (2 · π))) <
1) | 
| 61 | 32, 36 | pm3.2i 470 | . . . . . . . . . . . . . 14
⊢ ((2
· π) ∈ ℂ ∧ (2 · π) ≠ 0) | 
| 62 |  | ine0 11699 | . . . . . . . . . . . . . . 15
⊢ i ≠
0 | 
| 63 | 3, 62 | pm3.2i 470 | . . . . . . . . . . . . . 14
⊢ (i ∈
ℂ ∧ i ≠ 0) | 
| 64 |  | divcan5 11970 | . . . . . . . . . . . . . 14
⊢ (((𝑥 − 𝑦) ∈ ℂ ∧ ((2 · π)
∈ ℂ ∧ (2 · π) ≠ 0) ∧ (i ∈ ℂ ∧ i
≠ 0)) → ((i · (𝑥 − 𝑦)) / (i · (2 · π))) =
((𝑥 − 𝑦) / (2 ·
π))) | 
| 65 | 61, 63, 64 | mp3an23 1454 | . . . . . . . . . . . . 13
⊢ ((𝑥 − 𝑦) ∈ ℂ → ((i · (𝑥 − 𝑦)) / (i · (2 · π))) =
((𝑥 − 𝑦) / (2 ·
π))) | 
| 66 | 28, 65 | syl 17 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → ((i · (𝑥 − 𝑦)) / (i · (2 · π))) =
((𝑥 − 𝑦) / (2 ·
π))) | 
| 67 | 3 | a1i 11 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → i ∈ ℂ) | 
| 68 | 67, 24, 27 | subdid 11720 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (i · (𝑥 − 𝑦)) = ((i · 𝑥) − (i · 𝑦))) | 
| 69 | 68 | fveq2d 6909 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (exp‘(i · (𝑥 − 𝑦))) = (exp‘((i · 𝑥) − (i · 𝑦)))) | 
| 70 |  | mulcl 11240 | . . . . . . . . . . . . . . . 16
⊢ ((i
∈ ℂ ∧ 𝑥
∈ ℂ) → (i · 𝑥) ∈ ℂ) | 
| 71 | 3, 24, 70 | sylancr 587 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (i · 𝑥) ∈ ℂ) | 
| 72 |  | mulcl 11240 | . . . . . . . . . . . . . . . 16
⊢ ((i
∈ ℂ ∧ 𝑦
∈ ℂ) → (i · 𝑦) ∈ ℂ) | 
| 73 | 3, 27, 72 | sylancr 587 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (i · 𝑦) ∈ ℂ) | 
| 74 |  | efsub 16137 | . . . . . . . . . . . . . . 15
⊢ (((i
· 𝑥) ∈ ℂ
∧ (i · 𝑦) ∈
ℂ) → (exp‘((i · 𝑥) − (i · 𝑦))) = ((exp‘(i · 𝑥)) / (exp‘(i ·
𝑦)))) | 
| 75 | 71, 73, 74 | syl2anc 584 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (exp‘((i · 𝑥) − (i · 𝑦))) = ((exp‘(i ·
𝑥)) / (exp‘(i
· 𝑦)))) | 
| 76 |  | efcl 16119 | . . . . . . . . . . . . . . . 16
⊢ ((i
· 𝑦) ∈ ℂ
→ (exp‘(i · 𝑦)) ∈ ℂ) | 
| 77 | 73, 76 | syl 17 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (exp‘(i · 𝑦)) ∈
ℂ) | 
| 78 |  | efne0 16134 | . . . . . . . . . . . . . . . 16
⊢ ((i
· 𝑦) ∈ ℂ
→ (exp‘(i · 𝑦)) ≠ 0) | 
| 79 | 73, 78 | syl 17 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (exp‘(i · 𝑦)) ≠ 0) | 
| 80 |  | simpr 484 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (𝐹‘𝑥) = (𝐹‘𝑦)) | 
| 81 |  | oveq2 7440 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = 𝑥 → (i · 𝑤) = (i · 𝑥)) | 
| 82 | 81 | fveq2d 6909 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = 𝑥 → (exp‘(i · 𝑤)) = (exp‘(i ·
𝑥))) | 
| 83 |  | fvex 6918 | . . . . . . . . . . . . . . . . . 18
⊢
(exp‘(i · 𝑥)) ∈ V | 
| 84 | 82, 19, 83 | fvmpt 7015 | . . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ 𝐷 → (𝐹‘𝑥) = (exp‘(i · 𝑥))) | 
| 85 | 22, 84 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (𝐹‘𝑥) = (exp‘(i · 𝑥))) | 
| 86 |  | oveq2 7440 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = 𝑦 → (i · 𝑤) = (i · 𝑦)) | 
| 87 | 86 | fveq2d 6909 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = 𝑦 → (exp‘(i · 𝑤)) = (exp‘(i ·
𝑦))) | 
| 88 |  | fvex 6918 | . . . . . . . . . . . . . . . . . 18
⊢
(exp‘(i · 𝑦)) ∈ V | 
| 89 | 87, 19, 88 | fvmpt 7015 | . . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ 𝐷 → (𝐹‘𝑦) = (exp‘(i · 𝑦))) | 
| 90 | 25, 89 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (𝐹‘𝑦) = (exp‘(i · 𝑦))) | 
| 91 | 80, 85, 90 | 3eqtr3d 2784 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (exp‘(i · 𝑥)) = (exp‘(i ·
𝑦))) | 
| 92 | 77, 79, 91 | diveq1bd 12092 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → ((exp‘(i · 𝑥)) / (exp‘(i ·
𝑦))) = 1) | 
| 93 | 69, 75, 92 | 3eqtrd 2780 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (exp‘(i · (𝑥 − 𝑦))) = 1) | 
| 94 |  | mulcl 11240 | . . . . . . . . . . . . . . 15
⊢ ((i
∈ ℂ ∧ (𝑥
− 𝑦) ∈ ℂ)
→ (i · (𝑥
− 𝑦)) ∈
ℂ) | 
| 95 | 3, 28, 94 | sylancr 587 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (i · (𝑥 − 𝑦)) ∈ ℂ) | 
| 96 |  | efeq1 26571 | . . . . . . . . . . . . . 14
⊢ ((i
· (𝑥 − 𝑦)) ∈ ℂ →
((exp‘(i · (𝑥
− 𝑦))) = 1 ↔ ((i
· (𝑥 − 𝑦)) / (i · (2 ·
π))) ∈ ℤ)) | 
| 97 | 95, 96 | syl 17 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → ((exp‘(i · (𝑥 − 𝑦))) = 1 ↔ ((i · (𝑥 − 𝑦)) / (i · (2 · π))) ∈
ℤ)) | 
| 98 | 93, 97 | mpbid 232 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → ((i · (𝑥 − 𝑦)) / (i · (2 · π))) ∈
ℤ) | 
| 99 | 66, 98 | eqeltrrd 2841 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → ((𝑥 − 𝑦) / (2 · π)) ∈
ℤ) | 
| 100 |  | nn0abscl 15352 | . . . . . . . . . . 11
⊢ (((𝑥 − 𝑦) / (2 · π)) ∈ ℤ →
(abs‘((𝑥 −
𝑦) / (2 · π)))
∈ ℕ0) | 
| 101 | 99, 100 | syl 17 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (abs‘((𝑥 − 𝑦) / (2 · π))) ∈
ℕ0) | 
| 102 |  | nn0lt10b 12682 | . . . . . . . . . 10
⊢
((abs‘((𝑥
− 𝑦) / (2 ·
π))) ∈ ℕ0 → ((abs‘((𝑥 − 𝑦) / (2 · π))) < 1 ↔
(abs‘((𝑥 −
𝑦) / (2 · π))) =
0)) | 
| 103 | 101, 102 | syl 17 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → ((abs‘((𝑥 − 𝑦) / (2 · π))) < 1 ↔
(abs‘((𝑥 −
𝑦) / (2 · π))) =
0)) | 
| 104 | 60, 103 | mpbid 232 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (abs‘((𝑥 − 𝑦) / (2 · π))) = 0) | 
| 105 | 39, 104 | abs00d 15486 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → ((𝑥 − 𝑦) / (2 · π)) = 0) | 
| 106 |  | diveq0 11933 | . . . . . . . . 9
⊢ (((𝑥 − 𝑦) ∈ ℂ ∧ (2 · π)
∈ ℂ ∧ (2 · π) ≠ 0) → (((𝑥 − 𝑦) / (2 · π)) = 0 ↔ (𝑥 − 𝑦) = 0)) | 
| 107 | 32, 36, 106 | mp3an23 1454 | . . . . . . . 8
⊢ ((𝑥 − 𝑦) ∈ ℂ → (((𝑥 − 𝑦) / (2 · π)) = 0 ↔ (𝑥 − 𝑦) = 0)) | 
| 108 | 28, 107 | syl 17 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (((𝑥 − 𝑦) / (2 · π)) = 0 ↔ (𝑥 − 𝑦) = 0)) | 
| 109 | 105, 108 | mpbid 232 | . . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (𝑥 − 𝑦) = 0) | 
| 110 | 24, 27, 109 | subeq0d 11629 | . . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → 𝑥 = 𝑦) | 
| 111 | 110 | ex 412 | . . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) | 
| 112 | 111 | ralrimivva 3201 | . . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) | 
| 113 |  | dff13 7276 | . . 3
⊢ (𝐹:𝐷–1-1→𝐶 ↔ (𝐹:𝐷⟶𝐶 ∧ ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) | 
| 114 | 20, 112, 113 | sylanbrc 583 | . 2
⊢ (𝜑 → 𝐹:𝐷–1-1→𝐶) | 
| 115 |  | oveq1 7439 | . . . . . . . . 9
⊢ (𝑧 = (2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) → (𝑧 − 𝑦) = ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) | 
| 116 | 115 | oveq1d 7447 | . . . . . . . 8
⊢ (𝑧 = (2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) → ((𝑧 − 𝑦) / (2 · π)) = (((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π))) | 
| 117 | 116 | eleq1d 2825 | . . . . . . 7
⊢ (𝑧 = (2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) → (((𝑧 − 𝑦) / (2 · π)) ∈ ℤ ↔
(((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)) ∈
ℤ)) | 
| 118 | 117 | rexbidv 3178 | . . . . . 6
⊢ (𝑧 = (2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) → (∃𝑦 ∈ 𝐷 ((𝑧 − 𝑦) / (2 · π)) ∈ ℤ ↔
∃𝑦 ∈ 𝐷 (((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)) ∈
ℤ)) | 
| 119 |  | efif1olem4.5 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → ∃𝑦 ∈ 𝐷 ((𝑧 − 𝑦) / (2 · π)) ∈
ℤ) | 
| 120 | 119 | ralrimiva 3145 | . . . . . . 7
⊢ (𝜑 → ∀𝑧 ∈ ℝ ∃𝑦 ∈ 𝐷 ((𝑧 − 𝑦) / (2 · π)) ∈
ℤ) | 
| 121 | 120 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ∀𝑧 ∈ ℝ ∃𝑦 ∈ 𝐷 ((𝑧 − 𝑦) / (2 · π)) ∈
ℤ) | 
| 122 |  | neghalfpire 26508 | . . . . . . . . 9
⊢ -(π /
2) ∈ ℝ | 
| 123 |  | halfpire 26507 | . . . . . . . . 9
⊢ (π /
2) ∈ ℝ | 
| 124 |  | iccssre 13470 | . . . . . . . . 9
⊢ ((-(π
/ 2) ∈ ℝ ∧ (π / 2) ∈ ℝ) → (-(π /
2)[,](π / 2)) ⊆ ℝ) | 
| 125 | 122, 123,
124 | mp2an 692 | . . . . . . . 8
⊢ (-(π /
2)[,](π / 2)) ⊆ ℝ | 
| 126 | 19, 16 | efif1olem3 26587 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (ℑ‘(√‘𝑥)) ∈
(-1[,]1)) | 
| 127 |  | resinf1o 26579 | . . . . . . . . . . . 12
⊢ (sin
↾ (-(π / 2)[,](π / 2))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1) | 
| 128 |  | efif1olem4.6 | . . . . . . . . . . . . 13
⊢ 𝑆 = (sin ↾ (-(π /
2)[,](π / 2))) | 
| 129 |  | f1oeq1 6835 | . . . . . . . . . . . . 13
⊢ (𝑆 = (sin ↾ (-(π /
2)[,](π / 2))) → (𝑆:(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1) ↔ (sin ↾ (-(π /
2)[,](π / 2))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1))) | 
| 130 | 128, 129 | ax-mp 5 | . . . . . . . . . . . 12
⊢ (𝑆:(-(π / 2)[,](π /
2))–1-1-onto→(-1[,]1) ↔ (sin ↾ (-(π /
2)[,](π / 2))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1)) | 
| 131 | 127, 130 | mpbir 231 | . . . . . . . . . . 11
⊢ 𝑆:(-(π / 2)[,](π /
2))–1-1-onto→(-1[,]1) | 
| 132 |  | f1ocnv 6859 | . . . . . . . . . . 11
⊢ (𝑆:(-(π / 2)[,](π /
2))–1-1-onto→(-1[,]1) → ◡𝑆:(-1[,]1)–1-1-onto→(-(π / 2)[,](π / 2))) | 
| 133 |  | f1of 6847 | . . . . . . . . . . 11
⊢ (◡𝑆:(-1[,]1)–1-1-onto→(-(π / 2)[,](π / 2)) → ◡𝑆:(-1[,]1)⟶(-(π / 2)[,](π /
2))) | 
| 134 | 131, 132,
133 | mp2b 10 | . . . . . . . . . 10
⊢ ◡𝑆:(-1[,]1)⟶(-(π / 2)[,](π /
2)) | 
| 135 | 134 | ffvelcdmi 7102 | . . . . . . . . 9
⊢
((ℑ‘(√‘𝑥)) ∈ (-1[,]1) → (◡𝑆‘(ℑ‘(√‘𝑥))) ∈ (-(π / 2)[,](π
/ 2))) | 
| 136 | 126, 135 | syl 17 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (◡𝑆‘(ℑ‘(√‘𝑥))) ∈ (-(π / 2)[,](π
/ 2))) | 
| 137 | 125, 136 | sselid 3980 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (◡𝑆‘(ℑ‘(√‘𝑥))) ∈
ℝ) | 
| 138 |  | remulcl 11241 | . . . . . . 7
⊢ ((2
∈ ℝ ∧ (◡𝑆‘(ℑ‘(√‘𝑥))) ∈ ℝ) → (2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) ∈
ℝ) | 
| 139 | 29, 137, 138 | sylancr 587 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) ∈
ℝ) | 
| 140 | 118, 121,
139 | rspcdva 3622 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ∃𝑦 ∈ 𝐷 (((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)) ∈
ℤ) | 
| 141 |  | oveq1 7439 | . . . . . . . 8
⊢
((exp‘(i · ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) = 1 → ((exp‘(i · ((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) · (exp‘(i · 𝑦))) = (1 · (exp‘(i
· 𝑦)))) | 
| 142 | 3 | a1i 11 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → i ∈ ℂ) | 
| 143 | 139 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) ∈
ℝ) | 
| 144 | 143 | recnd 11290 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) ∈
ℂ) | 
| 145 | 1 | ad2antrr 726 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → 𝐷 ⊆ ℝ) | 
| 146 |  | simpr 484 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → 𝑦 ∈ 𝐷) | 
| 147 | 145, 146 | sseldd 3983 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → 𝑦 ∈ ℝ) | 
| 148 | 147 | recnd 11290 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → 𝑦 ∈ ℂ) | 
| 149 | 142, 144,
148 | subdid 11720 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (i · ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) = ((i · (2 · (◡𝑆‘(ℑ‘(√‘𝑥))))) − (i · 𝑦))) | 
| 150 | 149 | oveq1d 7447 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → ((i · ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) + (i · 𝑦)) = (((i · (2 · (◡𝑆‘(ℑ‘(√‘𝑥))))) − (i · 𝑦)) + (i · 𝑦))) | 
| 151 |  | mulcl 11240 | . . . . . . . . . . . . . 14
⊢ ((i
∈ ℂ ∧ (2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) ∈ ℂ) → (i
· (2 · (◡𝑆‘(ℑ‘(√‘𝑥))))) ∈
ℂ) | 
| 152 | 3, 144, 151 | sylancr 587 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (i · (2 · (◡𝑆‘(ℑ‘(√‘𝑥))))) ∈
ℂ) | 
| 153 | 3, 148, 72 | sylancr 587 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (i · 𝑦) ∈ ℂ) | 
| 154 | 152, 153 | npcand 11625 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (((i · (2 · (◡𝑆‘(ℑ‘(√‘𝑥))))) − (i · 𝑦)) + (i · 𝑦)) = (i · (2 ·
(◡𝑆‘(ℑ‘(√‘𝑥)))))) | 
| 155 | 150, 154 | eqtrd 2776 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → ((i · ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) + (i · 𝑦)) = (i · (2 · (◡𝑆‘(ℑ‘(√‘𝑥)))))) | 
| 156 | 155 | fveq2d 6909 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (exp‘((i · ((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) + (i · 𝑦))) = (exp‘(i · (2 ·
(◡𝑆‘(ℑ‘(√‘𝑥))))))) | 
| 157 | 144, 148 | subcld 11621 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) ∈ ℂ) | 
| 158 |  | mulcl 11240 | . . . . . . . . . . . 12
⊢ ((i
∈ ℂ ∧ ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) ∈ ℂ) → (i · ((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) ∈ ℂ) | 
| 159 | 3, 157, 158 | sylancr 587 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (i · ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) ∈ ℂ) | 
| 160 |  | efadd 16131 | . . . . . . . . . . 11
⊢ (((i
· ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) ∈ ℂ ∧ (i · 𝑦) ∈ ℂ) →
(exp‘((i · ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) + (i · 𝑦))) = ((exp‘(i · ((2 ·
(◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) · (exp‘(i · 𝑦)))) | 
| 161 | 159, 153,
160 | syl2anc 584 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (exp‘((i · ((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) + (i · 𝑦))) = ((exp‘(i · ((2 ·
(◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) · (exp‘(i · 𝑦)))) | 
| 162 |  | 2cn 12342 | . . . . . . . . . . . . . . 15
⊢ 2 ∈
ℂ | 
| 163 | 137 | recnd 11290 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (◡𝑆‘(ℑ‘(√‘𝑥))) ∈
ℂ) | 
| 164 |  | mul12 11427 | . . . . . . . . . . . . . . 15
⊢ ((i
∈ ℂ ∧ 2 ∈ ℂ ∧ (◡𝑆‘(ℑ‘(√‘𝑥))) ∈ ℂ) → (i
· (2 · (◡𝑆‘(ℑ‘(√‘𝑥))))) = (2 · (i ·
(◡𝑆‘(ℑ‘(√‘𝑥)))))) | 
| 165 | 3, 162, 163, 164 | mp3an12i 1466 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (i · (2 · (◡𝑆‘(ℑ‘(√‘𝑥))))) = (2 · (i ·
(◡𝑆‘(ℑ‘(√‘𝑥)))))) | 
| 166 | 165 | fveq2d 6909 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (exp‘(i · (2 ·
(◡𝑆‘(ℑ‘(√‘𝑥)))))) = (exp‘(2 ·
(i · (◡𝑆‘(ℑ‘(√‘𝑥))))))) | 
| 167 |  | mulcl 11240 | . . . . . . . . . . . . . . 15
⊢ ((i
∈ ℂ ∧ (◡𝑆‘(ℑ‘(√‘𝑥))) ∈ ℂ) → (i
· (◡𝑆‘(ℑ‘(√‘𝑥)))) ∈
ℂ) | 
| 168 | 3, 163, 167 | sylancr 587 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (i · (◡𝑆‘(ℑ‘(√‘𝑥)))) ∈
ℂ) | 
| 169 |  | 2z 12651 | . . . . . . . . . . . . . 14
⊢ 2 ∈
ℤ | 
| 170 |  | efexp 16138 | . . . . . . . . . . . . . 14
⊢ (((i
· (◡𝑆‘(ℑ‘(√‘𝑥)))) ∈ ℂ ∧ 2
∈ ℤ) → (exp‘(2 · (i · (◡𝑆‘(ℑ‘(√‘𝑥)))))) = ((exp‘(i ·
(◡𝑆‘(ℑ‘(√‘𝑥)))))↑2)) | 
| 171 | 168, 169,
170 | sylancl 586 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (exp‘(2 · (i ·
(◡𝑆‘(ℑ‘(√‘𝑥)))))) = ((exp‘(i ·
(◡𝑆‘(ℑ‘(√‘𝑥)))))↑2)) | 
| 172 | 166, 171 | eqtrd 2776 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (exp‘(i · (2 ·
(◡𝑆‘(ℑ‘(√‘𝑥)))))) = ((exp‘(i ·
(◡𝑆‘(ℑ‘(√‘𝑥)))))↑2)) | 
| 173 | 137 | recoscld 16181 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (cos‘(◡𝑆‘(ℑ‘(√‘𝑥)))) ∈
ℝ) | 
| 174 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ 𝐶) | 
| 175 | 174, 16 | eleqtrdi 2850 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ (◡abs “ {1})) | 
| 176 |  | fniniseg 7079 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (abs Fn
ℂ → (𝑥 ∈
(◡abs “ {1}) ↔ (𝑥 ∈ ℂ ∧
(abs‘𝑥) =
1))) | 
| 177 | 12, 176 | ax-mp 5 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ (◡abs “ {1}) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) = 1)) | 
| 178 | 175, 177 | sylib 218 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑥 ∈ ℂ ∧ (abs‘𝑥) = 1)) | 
| 179 | 178 | simpld 494 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ ℂ) | 
| 180 | 179 | sqrtcld 15477 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (√‘𝑥) ∈ ℂ) | 
| 181 | 180 | recld 15234 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (ℜ‘(√‘𝑥)) ∈
ℝ) | 
| 182 |  | cosq14ge0 26554 | . . . . . . . . . . . . . . . . 17
⊢ ((◡𝑆‘(ℑ‘(√‘𝑥))) ∈ (-(π / 2)[,](π
/ 2)) → 0 ≤ (cos‘(◡𝑆‘(ℑ‘(√‘𝑥))))) | 
| 183 | 136, 182 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 0 ≤ (cos‘(◡𝑆‘(ℑ‘(√‘𝑥))))) | 
| 184 | 179 | sqrtrege0d 15478 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 0 ≤
(ℜ‘(√‘𝑥))) | 
| 185 |  | sincossq 16213 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((◡𝑆‘(ℑ‘(√‘𝑥))) ∈ ℂ →
(((sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2) +
((cos‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2)) =
1) | 
| 186 | 163, 185 | syl 17 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (((sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2) +
((cos‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2)) =
1) | 
| 187 | 179 | sqsqrtd 15479 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((√‘𝑥)↑2) = 𝑥) | 
| 188 | 187 | fveq2d 6909 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘((√‘𝑥)↑2)) = (abs‘𝑥)) | 
| 189 |  | 2nn0 12545 | . . . . . . . . . . . . . . . . . . . . 21
⊢ 2 ∈
ℕ0 | 
| 190 |  | absexp 15344 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(((√‘𝑥)
∈ ℂ ∧ 2 ∈ ℕ0) →
(abs‘((√‘𝑥)↑2)) = ((abs‘(√‘𝑥))↑2)) | 
| 191 | 180, 189,
190 | sylancl 586 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘((√‘𝑥)↑2)) =
((abs‘(√‘𝑥))↑2)) | 
| 192 | 178 | simprd 495 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘𝑥) = 1) | 
| 193 | 188, 191,
192 | 3eqtr3d 2784 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((abs‘(√‘𝑥))↑2) = 1) | 
| 194 | 180 | absvalsq2d 15483 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((abs‘(√‘𝑥))↑2) =
(((ℜ‘(√‘𝑥))↑2) +
((ℑ‘(√‘𝑥))↑2))) | 
| 195 | 186, 193,
194 | 3eqtr2d 2782 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (((sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2) +
((cos‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2)) =
(((ℜ‘(√‘𝑥))↑2) +
((ℑ‘(√‘𝑥))↑2))) | 
| 196 | 128 | fveq1i 6906 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑆‘(◡𝑆‘(ℑ‘(√‘𝑥)))) = ((sin ↾ (-(π /
2)[,](π / 2)))‘(◡𝑆‘(ℑ‘(√‘𝑥)))) | 
| 197 | 136 | fvresd 6925 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((sin ↾ (-(π / 2)[,](π
/ 2)))‘(◡𝑆‘(ℑ‘(√‘𝑥)))) = (sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))) | 
| 198 | 196, 197 | eqtrid 2788 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑆‘(◡𝑆‘(ℑ‘(√‘𝑥)))) = (sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))) | 
| 199 |  | f1ocnvfv2 7298 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑆:(-(π / 2)[,](π /
2))–1-1-onto→(-1[,]1) ∧
(ℑ‘(√‘𝑥)) ∈ (-1[,]1)) → (𝑆‘(◡𝑆‘(ℑ‘(√‘𝑥)))) =
(ℑ‘(√‘𝑥))) | 
| 200 | 131, 126,
199 | sylancr 587 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑆‘(◡𝑆‘(ℑ‘(√‘𝑥)))) =
(ℑ‘(√‘𝑥))) | 
| 201 | 198, 200 | eqtr3d 2778 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (sin‘(◡𝑆‘(ℑ‘(√‘𝑥)))) =
(ℑ‘(√‘𝑥))) | 
| 202 | 201 | oveq1d 7447 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2) =
((ℑ‘(√‘𝑥))↑2)) | 
| 203 | 195, 202 | oveq12d 7450 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((((sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2) +
((cos‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2)) −
((sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2)) =
((((ℜ‘(√‘𝑥))↑2) +
((ℑ‘(√‘𝑥))↑2)) −
((ℑ‘(√‘𝑥))↑2))) | 
| 204 | 163 | sincld 16167 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (sin‘(◡𝑆‘(ℑ‘(√‘𝑥)))) ∈
ℂ) | 
| 205 | 204 | sqcld 14185 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2) ∈
ℂ) | 
| 206 | 163 | coscld 16168 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (cos‘(◡𝑆‘(ℑ‘(√‘𝑥)))) ∈
ℂ) | 
| 207 | 206 | sqcld 14185 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((cos‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2) ∈
ℂ) | 
| 208 | 205, 207 | pncan2d 11623 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((((sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2) +
((cos‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2)) −
((sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2)) =
((cos‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2)) | 
| 209 | 181 | recnd 11290 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (ℜ‘(√‘𝑥)) ∈
ℂ) | 
| 210 | 209 | sqcld 14185 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((ℜ‘(√‘𝑥))↑2) ∈
ℂ) | 
| 211 | 202, 205 | eqeltrrd 2841 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) →
((ℑ‘(√‘𝑥))↑2) ∈ ℂ) | 
| 212 | 210, 211 | pncand 11622 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) →
((((ℜ‘(√‘𝑥))↑2) +
((ℑ‘(√‘𝑥))↑2)) −
((ℑ‘(√‘𝑥))↑2)) =
((ℜ‘(√‘𝑥))↑2)) | 
| 213 | 203, 208,
212 | 3eqtr3d 2784 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((cos‘(◡𝑆‘(ℑ‘(√‘𝑥))))↑2) =
((ℜ‘(√‘𝑥))↑2)) | 
| 214 | 173, 181,
183, 184, 213 | sq11d 14298 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (cos‘(◡𝑆‘(ℑ‘(√‘𝑥)))) =
(ℜ‘(√‘𝑥))) | 
| 215 | 201 | oveq2d 7448 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (i · (sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))) = (i ·
(ℑ‘(√‘𝑥)))) | 
| 216 | 214, 215 | oveq12d 7450 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((cos‘(◡𝑆‘(ℑ‘(√‘𝑥)))) + (i ·
(sin‘(◡𝑆‘(ℑ‘(√‘𝑥)))))) =
((ℜ‘(√‘𝑥)) + (i ·
(ℑ‘(√‘𝑥))))) | 
| 217 |  | efival 16189 | . . . . . . . . . . . . . . 15
⊢ ((◡𝑆‘(ℑ‘(√‘𝑥))) ∈ ℂ →
(exp‘(i · (◡𝑆‘(ℑ‘(√‘𝑥))))) = ((cos‘(◡𝑆‘(ℑ‘(√‘𝑥)))) + (i ·
(sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))))) | 
| 218 | 163, 217 | syl 17 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (exp‘(i · (◡𝑆‘(ℑ‘(√‘𝑥))))) = ((cos‘(◡𝑆‘(ℑ‘(√‘𝑥)))) + (i ·
(sin‘(◡𝑆‘(ℑ‘(√‘𝑥))))))) | 
| 219 | 180 | replimd 15237 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (√‘𝑥) = ((ℜ‘(√‘𝑥)) + (i ·
(ℑ‘(√‘𝑥))))) | 
| 220 | 216, 218,
219 | 3eqtr4d 2786 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (exp‘(i · (◡𝑆‘(ℑ‘(√‘𝑥))))) = (√‘𝑥)) | 
| 221 | 220 | oveq1d 7447 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((exp‘(i · (◡𝑆‘(ℑ‘(√‘𝑥)))))↑2) =
((√‘𝑥)↑2)) | 
| 222 | 172, 221,
187 | 3eqtrd 2780 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (exp‘(i · (2 ·
(◡𝑆‘(ℑ‘(√‘𝑥)))))) = 𝑥) | 
| 223 | 222 | adantr 480 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (exp‘(i · (2 ·
(◡𝑆‘(ℑ‘(√‘𝑥)))))) = 𝑥) | 
| 224 | 156, 161,
223 | 3eqtr3d 2784 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → ((exp‘(i · ((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) · (exp‘(i · 𝑦))) = 𝑥) | 
| 225 | 153, 76 | syl 17 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (exp‘(i · 𝑦)) ∈
ℂ) | 
| 226 | 225 | mullidd 11280 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (1 · (exp‘(i ·
𝑦))) = (exp‘(i
· 𝑦))) | 
| 227 | 224, 226 | eqeq12d 2752 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (((exp‘(i · ((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) · (exp‘(i · 𝑦))) = (1 · (exp‘(i
· 𝑦))) ↔ 𝑥 = (exp‘(i · 𝑦)))) | 
| 228 | 141, 227 | imbitrid 244 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → ((exp‘(i · ((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) = 1 → 𝑥 = (exp‘(i · 𝑦)))) | 
| 229 |  | efeq1 26571 | . . . . . . . . 9
⊢ ((i
· ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) ∈ ℂ → ((exp‘(i
· ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) = 1 ↔ ((i · ((2 ·
(◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) / (i · (2 · π))) ∈
ℤ)) | 
| 230 | 159, 229 | syl 17 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → ((exp‘(i · ((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) = 1 ↔ ((i · ((2 ·
(◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) / (i · (2 · π))) ∈
ℤ)) | 
| 231 |  | divcan5 11970 | . . . . . . . . . . 11
⊢ ((((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) ∈ ℂ ∧ ((2 · π)
∈ ℂ ∧ (2 · π) ≠ 0) ∧ (i ∈ ℂ ∧ i
≠ 0)) → ((i · ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) / (i · (2 · π))) = (((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π))) | 
| 232 | 61, 63, 231 | mp3an23 1454 | . . . . . . . . . 10
⊢ (((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) ∈ ℂ → ((i · ((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) / (i · (2 · π))) = (((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π))) | 
| 233 | 157, 232 | syl 17 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → ((i · ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) / (i · (2 · π))) = (((2
· (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π))) | 
| 234 | 233 | eleq1d 2825 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (((i · ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦)) / (i · (2 · π))) ∈
ℤ ↔ (((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)) ∈
ℤ)) | 
| 235 | 230, 234 | bitr2d 280 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → ((((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)) ∈ ℤ ↔
(exp‘(i · ((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦))) = 1)) | 
| 236 | 89 | adantl 481 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (𝐹‘𝑦) = (exp‘(i · 𝑦))) | 
| 237 | 236 | eqeq2d 2747 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (𝑥 = (𝐹‘𝑦) ↔ 𝑥 = (exp‘(i · 𝑦)))) | 
| 238 | 228, 235,
237 | 3imtr4d 294 | . . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → ((((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)) ∈ ℤ →
𝑥 = (𝐹‘𝑦))) | 
| 239 | 238 | reximdva 3167 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (∃𝑦 ∈ 𝐷 (((2 · (◡𝑆‘(ℑ‘(√‘𝑥)))) − 𝑦) / (2 · π)) ∈ ℤ →
∃𝑦 ∈ 𝐷 𝑥 = (𝐹‘𝑦))) | 
| 240 | 140, 239 | mpd 15 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ∃𝑦 ∈ 𝐷 𝑥 = (𝐹‘𝑦)) | 
| 241 | 240 | ralrimiva 3145 | . . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 𝑥 = (𝐹‘𝑦)) | 
| 242 |  | dffo3 7121 | . . 3
⊢ (𝐹:𝐷–onto→𝐶 ↔ (𝐹:𝐷⟶𝐶 ∧ ∀𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 𝑥 = (𝐹‘𝑦))) | 
| 243 | 20, 241, 242 | sylanbrc 583 | . 2
⊢ (𝜑 → 𝐹:𝐷–onto→𝐶) | 
| 244 |  | df-f1o 6567 | . 2
⊢ (𝐹:𝐷–1-1-onto→𝐶 ↔ (𝐹:𝐷–1-1→𝐶 ∧ 𝐹:𝐷–onto→𝐶)) | 
| 245 | 114, 243,
244 | sylanbrc 583 | 1
⊢ (𝜑 → 𝐹:𝐷–1-1-onto→𝐶) |