Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mxidlmax Structured version   Visualization version   GIF version

Theorem mxidlmax 31637
Description: A maximal ideal is a maximal proper ideal. (Contributed by Jeff Madsen, 16-Jun-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.)
Hypothesis
Ref Expression
mxidlval.1 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
mxidlmax (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐼)) → (𝐼 = 𝑀𝐼 = 𝐵))

Proof of Theorem mxidlmax
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 sseq2 3947 . . . 4 (𝑗 = 𝐼 → (𝑀𝑗𝑀𝐼))
2 eqeq1 2742 . . . . 5 (𝑗 = 𝐼 → (𝑗 = 𝑀𝐼 = 𝑀))
3 eqeq1 2742 . . . . 5 (𝑗 = 𝐼 → (𝑗 = 𝐵𝐼 = 𝐵))
42, 3orbi12d 916 . . . 4 (𝑗 = 𝐼 → ((𝑗 = 𝑀𝑗 = 𝐵) ↔ (𝐼 = 𝑀𝐼 = 𝐵)))
51, 4imbi12d 345 . . 3 (𝑗 = 𝐼 → ((𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝐵)) ↔ (𝑀𝐼 → (𝐼 = 𝑀𝐼 = 𝐵))))
6 mxidlval.1 . . . . . . 7 𝐵 = (Base‘𝑅)
76ismxidl 31634 . . . . . 6 (𝑅 ∈ Ring → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝐵)))))
87biimpa 477 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝐵))))
98simp3d 1143 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝐵)))
109adantr 481 . . 3 (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝐵)))
11 simpr 485 . . 3 (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (LIdeal‘𝑅))
125, 10, 11rspcdva 3562 . 2 (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼 ∈ (LIdeal‘𝑅)) → (𝑀𝐼 → (𝐼 = 𝑀𝐼 = 𝐵)))
1312impr 455 1 (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐼)) → (𝐼 = 𝑀𝐼 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wss 3887  cfv 6433  Basecbs 16912  Ringcrg 19783  LIdealclidl 20432  MaxIdealcmxidl 31631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-mxidl 31632
This theorem is referenced by:  mxidlprm  31640  zarclssn  31823
  Copyright terms: Public domain W3C validator