Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mxidlmax Structured version   Visualization version   GIF version

Theorem mxidlmax 33434
Description: A maximal ideal is a maximal proper ideal. (Contributed by Jeff Madsen, 16-Jun-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.)
Hypothesis
Ref Expression
mxidlval.1 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
mxidlmax (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐼)) → (𝐼 = 𝑀𝐼 = 𝐵))

Proof of Theorem mxidlmax
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 sseq2 3992 . . . 4 (𝑗 = 𝐼 → (𝑀𝑗𝑀𝐼))
2 eqeq1 2738 . . . . 5 (𝑗 = 𝐼 → (𝑗 = 𝑀𝐼 = 𝑀))
3 eqeq1 2738 . . . . 5 (𝑗 = 𝐼 → (𝑗 = 𝐵𝐼 = 𝐵))
42, 3orbi12d 918 . . . 4 (𝑗 = 𝐼 → ((𝑗 = 𝑀𝑗 = 𝐵) ↔ (𝐼 = 𝑀𝐼 = 𝐵)))
51, 4imbi12d 344 . . 3 (𝑗 = 𝐼 → ((𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝐵)) ↔ (𝑀𝐼 → (𝐼 = 𝑀𝐼 = 𝐵))))
6 mxidlval.1 . . . . . . 7 𝐵 = (Base‘𝑅)
76ismxidl 33431 . . . . . 6 (𝑅 ∈ Ring → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝐵)))))
87biimpa 476 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝐵))))
98simp3d 1144 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝐵)))
109adantr 480 . . 3 (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝐵)))
11 simpr 484 . . 3 (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (LIdeal‘𝑅))
125, 10, 11rspcdva 3607 . 2 (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼 ∈ (LIdeal‘𝑅)) → (𝑀𝐼 → (𝐼 = 𝑀𝐼 = 𝐵)))
1312impr 454 1 (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐼)) → (𝐼 = 𝑀𝐼 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1539  wcel 2107  wne 2931  wral 3050  wss 3933  cfv 6542  Basecbs 17230  Ringcrg 20203  LIdealclidl 21183  MaxIdealcmxidl 33428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-iota 6495  df-fun 6544  df-fv 6550  df-mxidl 33429
This theorem is referenced by:  mxidlmaxv  33437  mxidlprm  33439  opprmxidlabs  33456  zarclssn  33813
  Copyright terms: Public domain W3C validator