Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mxidlmax Structured version   Visualization version   GIF version

Theorem mxidlmax 33420
Description: A maximal ideal is a maximal proper ideal. (Contributed by Jeff Madsen, 16-Jun-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.)
Hypothesis
Ref Expression
mxidlval.1 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
mxidlmax (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐼)) → (𝐼 = 𝑀𝐼 = 𝐵))

Proof of Theorem mxidlmax
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 sseq2 3959 . . . 4 (𝑗 = 𝐼 → (𝑀𝑗𝑀𝐼))
2 eqeq1 2734 . . . . 5 (𝑗 = 𝐼 → (𝑗 = 𝑀𝐼 = 𝑀))
3 eqeq1 2734 . . . . 5 (𝑗 = 𝐼 → (𝑗 = 𝐵𝐼 = 𝐵))
42, 3orbi12d 918 . . . 4 (𝑗 = 𝐼 → ((𝑗 = 𝑀𝑗 = 𝐵) ↔ (𝐼 = 𝑀𝐼 = 𝐵)))
51, 4imbi12d 344 . . 3 (𝑗 = 𝐼 → ((𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝐵)) ↔ (𝑀𝐼 → (𝐼 = 𝑀𝐼 = 𝐵))))
6 mxidlval.1 . . . . . . 7 𝐵 = (Base‘𝑅)
76ismxidl 33417 . . . . . 6 (𝑅 ∈ Ring → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝐵)))))
87biimpa 476 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝐵))))
98simp3d 1144 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝐵)))
109adantr 480 . . 3 (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝐵)))
11 simpr 484 . . 3 (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (LIdeal‘𝑅))
125, 10, 11rspcdva 3576 . 2 (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼 ∈ (LIdeal‘𝑅)) → (𝑀𝐼 → (𝐼 = 𝑀𝐼 = 𝐵)))
1312impr 454 1 (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐼)) → (𝐼 = 𝑀𝐼 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2110  wne 2926  wral 3045  wss 3900  cfv 6477  Basecbs 17112  Ringcrg 20144  LIdealclidl 21136  MaxIdealcmxidl 33414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6433  df-fun 6479  df-fv 6485  df-mxidl 33415
This theorem is referenced by:  mxidlmaxv  33423  mxidlprm  33425  opprmxidlabs  33442  zarclssn  33876
  Copyright terms: Public domain W3C validator