Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mxidlmax Structured version   Visualization version   GIF version

Theorem mxidlmax 31539
Description: A maximal ideal is a maximal proper ideal. (Contributed by Jeff Madsen, 16-Jun-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.)
Hypothesis
Ref Expression
mxidlval.1 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
mxidlmax (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐼)) → (𝐼 = 𝑀𝐼 = 𝐵))

Proof of Theorem mxidlmax
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 sseq2 3943 . . . 4 (𝑗 = 𝐼 → (𝑀𝑗𝑀𝐼))
2 eqeq1 2742 . . . . 5 (𝑗 = 𝐼 → (𝑗 = 𝑀𝐼 = 𝑀))
3 eqeq1 2742 . . . . 5 (𝑗 = 𝐼 → (𝑗 = 𝐵𝐼 = 𝐵))
42, 3orbi12d 915 . . . 4 (𝑗 = 𝐼 → ((𝑗 = 𝑀𝑗 = 𝐵) ↔ (𝐼 = 𝑀𝐼 = 𝐵)))
51, 4imbi12d 344 . . 3 (𝑗 = 𝐼 → ((𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝐵)) ↔ (𝑀𝐼 → (𝐼 = 𝑀𝐼 = 𝐵))))
6 mxidlval.1 . . . . . . 7 𝐵 = (Base‘𝑅)
76ismxidl 31536 . . . . . 6 (𝑅 ∈ Ring → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝐵)))))
87biimpa 476 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝐵))))
98simp3d 1142 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝐵)))
109adantr 480 . . 3 (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝐵)))
11 simpr 484 . . 3 (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (LIdeal‘𝑅))
125, 10, 11rspcdva 3554 . 2 (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼 ∈ (LIdeal‘𝑅)) → (𝑀𝐼 → (𝐼 = 𝑀𝐼 = 𝐵)))
1312impr 454 1 (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐼)) → (𝐼 = 𝑀𝐼 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wss 3883  cfv 6418  Basecbs 16840  Ringcrg 19698  LIdealclidl 20347  MaxIdealcmxidl 31533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-mxidl 31534
This theorem is referenced by:  mxidlprm  31542  zarclssn  31725
  Copyright terms: Public domain W3C validator