![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mxidlmax | Structured version Visualization version GIF version |
Description: A maximal ideal is a maximal proper ideal. (Contributed by Jeff Madsen, 16-Jun-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.) |
Ref | Expression |
---|---|
mxidlval.1 | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
mxidlmax | ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝑀 ⊆ 𝐼)) → (𝐼 = 𝑀 ∨ 𝐼 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 4022 | . . . 4 ⊢ (𝑗 = 𝐼 → (𝑀 ⊆ 𝑗 ↔ 𝑀 ⊆ 𝐼)) | |
2 | eqeq1 2739 | . . . . 5 ⊢ (𝑗 = 𝐼 → (𝑗 = 𝑀 ↔ 𝐼 = 𝑀)) | |
3 | eqeq1 2739 | . . . . 5 ⊢ (𝑗 = 𝐼 → (𝑗 = 𝐵 ↔ 𝐼 = 𝐵)) | |
4 | 2, 3 | orbi12d 918 | . . . 4 ⊢ (𝑗 = 𝐼 → ((𝑗 = 𝑀 ∨ 𝑗 = 𝐵) ↔ (𝐼 = 𝑀 ∨ 𝐼 = 𝐵))) |
5 | 1, 4 | imbi12d 344 | . . 3 ⊢ (𝑗 = 𝐼 → ((𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝐵)) ↔ (𝑀 ⊆ 𝐼 → (𝐼 = 𝑀 ∨ 𝐼 = 𝐵)))) |
6 | mxidlval.1 | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
7 | 6 | ismxidl 33470 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀 ≠ 𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝐵))))) |
8 | 7 | biimpa 476 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀 ≠ 𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝐵)))) |
9 | 8 | simp3d 1143 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝐵))) |
10 | 9 | adantr 480 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝐵))) |
11 | simpr 484 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (LIdeal‘𝑅)) | |
12 | 5, 10, 11 | rspcdva 3623 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝐼 ∈ (LIdeal‘𝑅)) → (𝑀 ⊆ 𝐼 → (𝐼 = 𝑀 ∨ 𝐼 = 𝐵))) |
13 | 12 | impr 454 | 1 ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝑀 ⊆ 𝐼)) → (𝐼 = 𝑀 ∨ 𝐼 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 ⊆ wss 3963 ‘cfv 6563 Basecbs 17245 Ringcrg 20251 LIdealclidl 21234 MaxIdealcmxidl 33467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-mxidl 33468 |
This theorem is referenced by: mxidlmaxv 33476 mxidlprm 33478 opprmxidlabs 33495 zarclssn 33834 |
Copyright terms: Public domain | W3C validator |