![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > crngmxidl | Structured version Visualization version GIF version |
Description: In a commutative ring, maximal ideals of the opposite ring coincide with maximal ideals. (Contributed by Thierry Arnoux, 13-Mar-2025.) |
Ref | Expression |
---|---|
crngmxidl.i | β’ π = (MaxIdealβπ ) |
crngmxidl.o | β’ π = (opprβπ ) |
Ref | Expression |
---|---|
crngmxidl | β’ (π β CRing β π = (MaxIdealβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crngmxidl.i | . . . 4 β’ π = (MaxIdealβπ ) | |
2 | 1 | eleq2i 2817 | . . 3 β’ (π β π β π β (MaxIdealβπ )) |
3 | eqid 2724 | . . . . . . 7 β’ (LIdealβπ ) = (LIdealβπ ) | |
4 | crngmxidl.o | . . . . . . 7 β’ π = (opprβπ ) | |
5 | 3, 4 | crngridl 21124 | . . . . . 6 β’ (π β CRing β (LIdealβπ ) = (LIdealβπ)) |
6 | 5 | eleq2d 2811 | . . . . 5 β’ (π β CRing β (π β (LIdealβπ ) β π β (LIdealβπ))) |
7 | 5 | raleqdv 3317 | . . . . 5 β’ (π β CRing β (βπ β (LIdealβπ )(π β π β (π = π β¨ π = (Baseβπ ))) β βπ β (LIdealβπ)(π β π β (π = π β¨ π = (Baseβπ ))))) |
8 | 6, 7 | 3anbi13d 1434 | . . . 4 β’ (π β CRing β ((π β (LIdealβπ ) β§ π β (Baseβπ ) β§ βπ β (LIdealβπ )(π β π β (π = π β¨ π = (Baseβπ )))) β (π β (LIdealβπ) β§ π β (Baseβπ ) β§ βπ β (LIdealβπ)(π β π β (π = π β¨ π = (Baseβπ )))))) |
9 | crngring 20139 | . . . . 5 β’ (π β CRing β π β Ring) | |
10 | eqid 2724 | . . . . . 6 β’ (Baseβπ ) = (Baseβπ ) | |
11 | 10 | ismxidl 33013 | . . . . 5 β’ (π β Ring β (π β (MaxIdealβπ ) β (π β (LIdealβπ ) β§ π β (Baseβπ ) β§ βπ β (LIdealβπ )(π β π β (π = π β¨ π = (Baseβπ )))))) |
12 | 9, 11 | syl 17 | . . . 4 β’ (π β CRing β (π β (MaxIdealβπ ) β (π β (LIdealβπ ) β§ π β (Baseβπ ) β§ βπ β (LIdealβπ )(π β π β (π = π β¨ π = (Baseβπ )))))) |
13 | 4 | opprring 20238 | . . . . 5 β’ (π β Ring β π β Ring) |
14 | 4, 10 | opprbas 20232 | . . . . . 6 β’ (Baseβπ ) = (Baseβπ) |
15 | 14 | ismxidl 33013 | . . . . 5 β’ (π β Ring β (π β (MaxIdealβπ) β (π β (LIdealβπ) β§ π β (Baseβπ ) β§ βπ β (LIdealβπ)(π β π β (π = π β¨ π = (Baseβπ )))))) |
16 | 9, 13, 15 | 3syl 18 | . . . 4 β’ (π β CRing β (π β (MaxIdealβπ) β (π β (LIdealβπ) β§ π β (Baseβπ ) β§ βπ β (LIdealβπ)(π β π β (π = π β¨ π = (Baseβπ )))))) |
17 | 8, 12, 16 | 3bitr4d 311 | . . 3 β’ (π β CRing β (π β (MaxIdealβπ ) β π β (MaxIdealβπ))) |
18 | 2, 17 | bitrid 283 | . 2 β’ (π β CRing β (π β π β π β (MaxIdealβπ))) |
19 | 18 | eqrdv 2722 | 1 β’ (π β CRing β π = (MaxIdealβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β¨ wo 844 β§ w3a 1084 = wceq 1533 β wcel 2098 β wne 2932 βwral 3053 β wss 3940 βcfv 6533 Basecbs 17142 Ringcrg 20127 CRingccrg 20128 opprcoppr 20224 LIdealclidl 21054 MaxIdealcmxidl 33010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-2nd 7969 df-tpos 8206 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-sets 17095 df-slot 17113 df-ndx 17125 df-base 17143 df-ress 17172 df-plusg 17208 df-mulr 17209 df-sca 17211 df-vsca 17212 df-ip 17213 df-0g 17385 df-mgm 18562 df-sgrp 18641 df-mnd 18657 df-grp 18855 df-minusg 18856 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-ring 20129 df-cring 20130 df-oppr 20225 df-lss 20768 df-lsp 20808 df-sra 21010 df-rgmod 21011 df-lidl 21056 df-rsp 21057 df-mxidl 33011 |
This theorem is referenced by: qsfld 33047 algextdeglem4 33222 |
Copyright terms: Public domain | W3C validator |