| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > crngmxidl | Structured version Visualization version GIF version | ||
| Description: In a commutative ring, maximal ideals of the opposite ring coincide with maximal ideals. (Contributed by Thierry Arnoux, 13-Mar-2025.) |
| Ref | Expression |
|---|---|
| crngmxidl.i | ⊢ 𝑀 = (MaxIdeal‘𝑅) |
| crngmxidl.o | ⊢ 𝑂 = (oppr‘𝑅) |
| Ref | Expression |
|---|---|
| crngmxidl | ⊢ (𝑅 ∈ CRing → 𝑀 = (MaxIdeal‘𝑂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngmxidl.i | . . . 4 ⊢ 𝑀 = (MaxIdeal‘𝑅) | |
| 2 | 1 | eleq2i 2825 | . . 3 ⊢ (𝑚 ∈ 𝑀 ↔ 𝑚 ∈ (MaxIdeal‘𝑅)) |
| 3 | eqid 2733 | . . . . . . 7 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
| 4 | crngmxidl.o | . . . . . . 7 ⊢ 𝑂 = (oppr‘𝑅) | |
| 5 | 3, 4 | crngridl 21219 | . . . . . 6 ⊢ (𝑅 ∈ CRing → (LIdeal‘𝑅) = (LIdeal‘𝑂)) |
| 6 | 5 | eleq2d 2819 | . . . . 5 ⊢ (𝑅 ∈ CRing → (𝑚 ∈ (LIdeal‘𝑅) ↔ 𝑚 ∈ (LIdeal‘𝑂))) |
| 7 | 5 | raleqdv 3293 | . . . . 5 ⊢ (𝑅 ∈ CRing → (∀𝑗 ∈ (LIdeal‘𝑅)(𝑚 ⊆ 𝑗 → (𝑗 = 𝑚 ∨ 𝑗 = (Base‘𝑅))) ↔ ∀𝑗 ∈ (LIdeal‘𝑂)(𝑚 ⊆ 𝑗 → (𝑗 = 𝑚 ∨ 𝑗 = (Base‘𝑅))))) |
| 8 | 6, 7 | 3anbi13d 1440 | . . . 4 ⊢ (𝑅 ∈ CRing → ((𝑚 ∈ (LIdeal‘𝑅) ∧ 𝑚 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑚 ⊆ 𝑗 → (𝑗 = 𝑚 ∨ 𝑗 = (Base‘𝑅)))) ↔ (𝑚 ∈ (LIdeal‘𝑂) ∧ 𝑚 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑂)(𝑚 ⊆ 𝑗 → (𝑗 = 𝑚 ∨ 𝑗 = (Base‘𝑅)))))) |
| 9 | crngring 20165 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 10 | eqid 2733 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 11 | 10 | ismxidl 33434 | . . . . 5 ⊢ (𝑅 ∈ Ring → (𝑚 ∈ (MaxIdeal‘𝑅) ↔ (𝑚 ∈ (LIdeal‘𝑅) ∧ 𝑚 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑚 ⊆ 𝑗 → (𝑗 = 𝑚 ∨ 𝑗 = (Base‘𝑅)))))) |
| 12 | 9, 11 | syl 17 | . . . 4 ⊢ (𝑅 ∈ CRing → (𝑚 ∈ (MaxIdeal‘𝑅) ↔ (𝑚 ∈ (LIdeal‘𝑅) ∧ 𝑚 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑚 ⊆ 𝑗 → (𝑗 = 𝑚 ∨ 𝑗 = (Base‘𝑅)))))) |
| 13 | 4 | opprring 20267 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑂 ∈ Ring) |
| 14 | 4, 10 | opprbas 20263 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑂) |
| 15 | 14 | ismxidl 33434 | . . . . 5 ⊢ (𝑂 ∈ Ring → (𝑚 ∈ (MaxIdeal‘𝑂) ↔ (𝑚 ∈ (LIdeal‘𝑂) ∧ 𝑚 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑂)(𝑚 ⊆ 𝑗 → (𝑗 = 𝑚 ∨ 𝑗 = (Base‘𝑅)))))) |
| 16 | 9, 13, 15 | 3syl 18 | . . . 4 ⊢ (𝑅 ∈ CRing → (𝑚 ∈ (MaxIdeal‘𝑂) ↔ (𝑚 ∈ (LIdeal‘𝑂) ∧ 𝑚 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑂)(𝑚 ⊆ 𝑗 → (𝑗 = 𝑚 ∨ 𝑗 = (Base‘𝑅)))))) |
| 17 | 8, 12, 16 | 3bitr4d 311 | . . 3 ⊢ (𝑅 ∈ CRing → (𝑚 ∈ (MaxIdeal‘𝑅) ↔ 𝑚 ∈ (MaxIdeal‘𝑂))) |
| 18 | 2, 17 | bitrid 283 | . 2 ⊢ (𝑅 ∈ CRing → (𝑚 ∈ 𝑀 ↔ 𝑚 ∈ (MaxIdeal‘𝑂))) |
| 19 | 18 | eqrdv 2731 | 1 ⊢ (𝑅 ∈ CRing → 𝑀 = (MaxIdeal‘𝑂)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 ⊆ wss 3898 ‘cfv 6486 Basecbs 17122 Ringcrg 20153 CRingccrg 20154 opprcoppr 20256 LIdealclidl 21145 MaxIdealcmxidl 33431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-sca 17179 df-vsca 17180 df-ip 17181 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-minusg 18852 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-cring 20156 df-oppr 20257 df-lss 20867 df-lsp 20907 df-sra 21109 df-rgmod 21110 df-lidl 21147 df-rsp 21148 df-mxidl 33432 |
| This theorem is referenced by: qsfld 33470 algextdeglem4 33754 |
| Copyright terms: Public domain | W3C validator |