| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > crngmxidl | Structured version Visualization version GIF version | ||
| Description: In a commutative ring, maximal ideals of the opposite ring coincide with maximal ideals. (Contributed by Thierry Arnoux, 13-Mar-2025.) |
| Ref | Expression |
|---|---|
| crngmxidl.i | ⊢ 𝑀 = (MaxIdeal‘𝑅) |
| crngmxidl.o | ⊢ 𝑂 = (oppr‘𝑅) |
| Ref | Expression |
|---|---|
| crngmxidl | ⊢ (𝑅 ∈ CRing → 𝑀 = (MaxIdeal‘𝑂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngmxidl.i | . . . 4 ⊢ 𝑀 = (MaxIdeal‘𝑅) | |
| 2 | 1 | eleq2i 2820 | . . 3 ⊢ (𝑚 ∈ 𝑀 ↔ 𝑚 ∈ (MaxIdeal‘𝑅)) |
| 3 | eqid 2729 | . . . . . . 7 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
| 4 | crngmxidl.o | . . . . . . 7 ⊢ 𝑂 = (oppr‘𝑅) | |
| 5 | 3, 4 | crngridl 21190 | . . . . . 6 ⊢ (𝑅 ∈ CRing → (LIdeal‘𝑅) = (LIdeal‘𝑂)) |
| 6 | 5 | eleq2d 2814 | . . . . 5 ⊢ (𝑅 ∈ CRing → (𝑚 ∈ (LIdeal‘𝑅) ↔ 𝑚 ∈ (LIdeal‘𝑂))) |
| 7 | 5 | raleqdv 3299 | . . . . 5 ⊢ (𝑅 ∈ CRing → (∀𝑗 ∈ (LIdeal‘𝑅)(𝑚 ⊆ 𝑗 → (𝑗 = 𝑚 ∨ 𝑗 = (Base‘𝑅))) ↔ ∀𝑗 ∈ (LIdeal‘𝑂)(𝑚 ⊆ 𝑗 → (𝑗 = 𝑚 ∨ 𝑗 = (Base‘𝑅))))) |
| 8 | 6, 7 | 3anbi13d 1440 | . . . 4 ⊢ (𝑅 ∈ CRing → ((𝑚 ∈ (LIdeal‘𝑅) ∧ 𝑚 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑚 ⊆ 𝑗 → (𝑗 = 𝑚 ∨ 𝑗 = (Base‘𝑅)))) ↔ (𝑚 ∈ (LIdeal‘𝑂) ∧ 𝑚 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑂)(𝑚 ⊆ 𝑗 → (𝑗 = 𝑚 ∨ 𝑗 = (Base‘𝑅)))))) |
| 9 | crngring 20154 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 10 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 11 | 10 | ismxidl 33433 | . . . . 5 ⊢ (𝑅 ∈ Ring → (𝑚 ∈ (MaxIdeal‘𝑅) ↔ (𝑚 ∈ (LIdeal‘𝑅) ∧ 𝑚 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑚 ⊆ 𝑗 → (𝑗 = 𝑚 ∨ 𝑗 = (Base‘𝑅)))))) |
| 12 | 9, 11 | syl 17 | . . . 4 ⊢ (𝑅 ∈ CRing → (𝑚 ∈ (MaxIdeal‘𝑅) ↔ (𝑚 ∈ (LIdeal‘𝑅) ∧ 𝑚 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑚 ⊆ 𝑗 → (𝑗 = 𝑚 ∨ 𝑗 = (Base‘𝑅)))))) |
| 13 | 4 | opprring 20256 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑂 ∈ Ring) |
| 14 | 4, 10 | opprbas 20252 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑂) |
| 15 | 14 | ismxidl 33433 | . . . . 5 ⊢ (𝑂 ∈ Ring → (𝑚 ∈ (MaxIdeal‘𝑂) ↔ (𝑚 ∈ (LIdeal‘𝑂) ∧ 𝑚 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑂)(𝑚 ⊆ 𝑗 → (𝑗 = 𝑚 ∨ 𝑗 = (Base‘𝑅)))))) |
| 16 | 9, 13, 15 | 3syl 18 | . . . 4 ⊢ (𝑅 ∈ CRing → (𝑚 ∈ (MaxIdeal‘𝑂) ↔ (𝑚 ∈ (LIdeal‘𝑂) ∧ 𝑚 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑂)(𝑚 ⊆ 𝑗 → (𝑗 = 𝑚 ∨ 𝑗 = (Base‘𝑅)))))) |
| 17 | 8, 12, 16 | 3bitr4d 311 | . . 3 ⊢ (𝑅 ∈ CRing → (𝑚 ∈ (MaxIdeal‘𝑅) ↔ 𝑚 ∈ (MaxIdeal‘𝑂))) |
| 18 | 2, 17 | bitrid 283 | . 2 ⊢ (𝑅 ∈ CRing → (𝑚 ∈ 𝑀 ↔ 𝑚 ∈ (MaxIdeal‘𝑂))) |
| 19 | 18 | eqrdv 2727 | 1 ⊢ (𝑅 ∈ CRing → 𝑀 = (MaxIdeal‘𝑂)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ⊆ wss 3914 ‘cfv 6511 Basecbs 17179 Ringcrg 20142 CRingccrg 20143 opprcoppr 20245 LIdealclidl 21116 MaxIdealcmxidl 33430 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-oppr 20246 df-lss 20838 df-lsp 20878 df-sra 21080 df-rgmod 21081 df-lidl 21118 df-rsp 21119 df-mxidl 33431 |
| This theorem is referenced by: qsfld 33469 algextdeglem4 33710 |
| Copyright terms: Public domain | W3C validator |