MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curry1val Structured version   Visualization version   GIF version

Theorem curry1val 8087
Description: The value of a curried function with a constant first argument. (Contributed by NM, 28-Mar-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
curry1.1 𝐺 = (𝐹(2nd ↾ ({𝐶} × V)))
Assertion
Ref Expression
curry1val ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) → (𝐺𝐷) = (𝐶𝐹𝐷))

Proof of Theorem curry1val
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 curry1.1 . . . 4 𝐺 = (𝐹(2nd ↾ ({𝐶} × V)))
21curry1 8086 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) → 𝐺 = (𝑥𝐵 ↦ (𝐶𝐹𝑥)))
32fveq1d 6863 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) → (𝐺𝐷) = ((𝑥𝐵 ↦ (𝐶𝐹𝑥))‘𝐷))
4 eqid 2730 . . . . . . 7 (𝑥𝐵 ↦ (𝐶𝐹𝑥)) = (𝑥𝐵 ↦ (𝐶𝐹𝑥))
54fvmptndm 7002 . . . . . 6 𝐷𝐵 → ((𝑥𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = ∅)
65adantl 481 . . . . 5 (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) ∧ ¬ 𝐷𝐵) → ((𝑥𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = ∅)
7 fndm 6624 . . . . . . 7 (𝐹 Fn (𝐴 × 𝐵) → dom 𝐹 = (𝐴 × 𝐵))
87adantr 480 . . . . . 6 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) → dom 𝐹 = (𝐴 × 𝐵))
9 simpr 484 . . . . . . 7 ((𝐶𝐴𝐷𝐵) → 𝐷𝐵)
109con3i 154 . . . . . 6 𝐷𝐵 → ¬ (𝐶𝐴𝐷𝐵))
11 ndmovg 7575 . . . . . 6 ((dom 𝐹 = (𝐴 × 𝐵) ∧ ¬ (𝐶𝐴𝐷𝐵)) → (𝐶𝐹𝐷) = ∅)
128, 10, 11syl2an 596 . . . . 5 (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) ∧ ¬ 𝐷𝐵) → (𝐶𝐹𝐷) = ∅)
136, 12eqtr4d 2768 . . . 4 (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) ∧ ¬ 𝐷𝐵) → ((𝑥𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = (𝐶𝐹𝐷))
1413ex 412 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) → (¬ 𝐷𝐵 → ((𝑥𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = (𝐶𝐹𝐷)))
15 oveq2 7398 . . . 4 (𝑥 = 𝐷 → (𝐶𝐹𝑥) = (𝐶𝐹𝐷))
16 ovex 7423 . . . 4 (𝐶𝐹𝐷) ∈ V
1715, 4, 16fvmpt 6971 . . 3 (𝐷𝐵 → ((𝑥𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = (𝐶𝐹𝐷))
1814, 17pm2.61d2 181 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) → ((𝑥𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = (𝐶𝐹𝐷))
193, 18eqtrd 2765 1 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) → (𝐺𝐷) = (𝐶𝐹𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  c0 4299  {csn 4592  cmpt 5191   × cxp 5639  ccnv 5640  dom cdm 5641  cres 5643  ccom 5645   Fn wfn 6509  cfv 6514  (class class class)co 7390  2nd c2nd 7970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-1st 7971  df-2nd 7972
This theorem is referenced by:  nvinvfval  30576  hhssabloilem  31197
  Copyright terms: Public domain W3C validator