MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curry1val Structured version   Visualization version   GIF version

Theorem curry1val 8146
Description: The value of a curried function with a constant first argument. (Contributed by NM, 28-Mar-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
curry1.1 𝐺 = (𝐹(2nd ↾ ({𝐶} × V)))
Assertion
Ref Expression
curry1val ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) → (𝐺𝐷) = (𝐶𝐹𝐷))

Proof of Theorem curry1val
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 curry1.1 . . . 4 𝐺 = (𝐹(2nd ↾ ({𝐶} × V)))
21curry1 8145 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) → 𝐺 = (𝑥𝐵 ↦ (𝐶𝐹𝑥)))
32fveq1d 6922 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) → (𝐺𝐷) = ((𝑥𝐵 ↦ (𝐶𝐹𝑥))‘𝐷))
4 eqid 2740 . . . . . . 7 (𝑥𝐵 ↦ (𝐶𝐹𝑥)) = (𝑥𝐵 ↦ (𝐶𝐹𝑥))
54fvmptndm 7060 . . . . . 6 𝐷𝐵 → ((𝑥𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = ∅)
65adantl 481 . . . . 5 (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) ∧ ¬ 𝐷𝐵) → ((𝑥𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = ∅)
7 fndm 6682 . . . . . . 7 (𝐹 Fn (𝐴 × 𝐵) → dom 𝐹 = (𝐴 × 𝐵))
87adantr 480 . . . . . 6 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) → dom 𝐹 = (𝐴 × 𝐵))
9 simpr 484 . . . . . . 7 ((𝐶𝐴𝐷𝐵) → 𝐷𝐵)
109con3i 154 . . . . . 6 𝐷𝐵 → ¬ (𝐶𝐴𝐷𝐵))
11 ndmovg 7633 . . . . . 6 ((dom 𝐹 = (𝐴 × 𝐵) ∧ ¬ (𝐶𝐴𝐷𝐵)) → (𝐶𝐹𝐷) = ∅)
128, 10, 11syl2an 595 . . . . 5 (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) ∧ ¬ 𝐷𝐵) → (𝐶𝐹𝐷) = ∅)
136, 12eqtr4d 2783 . . . 4 (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) ∧ ¬ 𝐷𝐵) → ((𝑥𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = (𝐶𝐹𝐷))
1413ex 412 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) → (¬ 𝐷𝐵 → ((𝑥𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = (𝐶𝐹𝐷)))
15 oveq2 7456 . . . 4 (𝑥 = 𝐷 → (𝐶𝐹𝑥) = (𝐶𝐹𝐷))
16 ovex 7481 . . . 4 (𝐶𝐹𝐷) ∈ V
1715, 4, 16fvmpt 7029 . . 3 (𝐷𝐵 → ((𝑥𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = (𝐶𝐹𝐷))
1814, 17pm2.61d2 181 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) → ((𝑥𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = (𝐶𝐹𝐷))
193, 18eqtrd 2780 1 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) → (𝐺𝐷) = (𝐶𝐹𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  c0 4352  {csn 4648  cmpt 5249   × cxp 5698  ccnv 5699  dom cdm 5700  cres 5702  ccom 5704   Fn wfn 6568  cfv 6573  (class class class)co 7448  2nd c2nd 8029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-1st 8030  df-2nd 8031
This theorem is referenced by:  nvinvfval  30672  hhssabloilem  31293
  Copyright terms: Public domain W3C validator