Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > curry1val | Structured version Visualization version GIF version |
Description: The value of a curried function with a constant first argument. (Contributed by NM, 28-Mar-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
curry1.1 | ⊢ 𝐺 = (𝐹 ∘ ◡(2nd ↾ ({𝐶} × V))) |
Ref | Expression |
---|---|
curry1val | ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) → (𝐺‘𝐷) = (𝐶𝐹𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | curry1.1 | . . . 4 ⊢ 𝐺 = (𝐹 ∘ ◡(2nd ↾ ({𝐶} × V))) | |
2 | 1 | curry1 7915 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) → 𝐺 = (𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))) |
3 | 2 | fveq1d 6758 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) → (𝐺‘𝐷) = ((𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))‘𝐷)) |
4 | eqid 2738 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥)) = (𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥)) | |
5 | 4 | fvmptndm 6887 | . . . . . 6 ⊢ (¬ 𝐷 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = ∅) |
6 | 5 | adantl 481 | . . . . 5 ⊢ (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) ∧ ¬ 𝐷 ∈ 𝐵) → ((𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = ∅) |
7 | fndm 6520 | . . . . . . 7 ⊢ (𝐹 Fn (𝐴 × 𝐵) → dom 𝐹 = (𝐴 × 𝐵)) | |
8 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) → dom 𝐹 = (𝐴 × 𝐵)) |
9 | simpr 484 | . . . . . . 7 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → 𝐷 ∈ 𝐵) | |
10 | 9 | con3i 154 | . . . . . 6 ⊢ (¬ 𝐷 ∈ 𝐵 → ¬ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) |
11 | ndmovg 7433 | . . . . . 6 ⊢ ((dom 𝐹 = (𝐴 × 𝐵) ∧ ¬ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) → (𝐶𝐹𝐷) = ∅) | |
12 | 8, 10, 11 | syl2an 595 | . . . . 5 ⊢ (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) ∧ ¬ 𝐷 ∈ 𝐵) → (𝐶𝐹𝐷) = ∅) |
13 | 6, 12 | eqtr4d 2781 | . . . 4 ⊢ (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) ∧ ¬ 𝐷 ∈ 𝐵) → ((𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = (𝐶𝐹𝐷)) |
14 | 13 | ex 412 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) → (¬ 𝐷 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = (𝐶𝐹𝐷))) |
15 | oveq2 7263 | . . . 4 ⊢ (𝑥 = 𝐷 → (𝐶𝐹𝑥) = (𝐶𝐹𝐷)) | |
16 | ovex 7288 | . . . 4 ⊢ (𝐶𝐹𝐷) ∈ V | |
17 | 15, 4, 16 | fvmpt 6857 | . . 3 ⊢ (𝐷 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = (𝐶𝐹𝐷)) |
18 | 14, 17 | pm2.61d2 181 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) → ((𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = (𝐶𝐹𝐷)) |
19 | 3, 18 | eqtrd 2778 | 1 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) → (𝐺‘𝐷) = (𝐶𝐹𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 {csn 4558 ↦ cmpt 5153 × cxp 5578 ◡ccnv 5579 dom cdm 5580 ↾ cres 5582 ∘ ccom 5584 Fn wfn 6413 ‘cfv 6418 (class class class)co 7255 2nd c2nd 7803 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-1st 7804 df-2nd 7805 |
This theorem is referenced by: nvinvfval 28903 hhssabloilem 29524 |
Copyright terms: Public domain | W3C validator |