| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > curry1val | Structured version Visualization version GIF version | ||
| Description: The value of a curried function with a constant first argument. (Contributed by NM, 28-Mar-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| curry1.1 | ⊢ 𝐺 = (𝐹 ∘ ◡(2nd ↾ ({𝐶} × V))) |
| Ref | Expression |
|---|---|
| curry1val | ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) → (𝐺‘𝐷) = (𝐶𝐹𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | curry1.1 | . . . 4 ⊢ 𝐺 = (𝐹 ∘ ◡(2nd ↾ ({𝐶} × V))) | |
| 2 | 1 | curry1 8108 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) → 𝐺 = (𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))) |
| 3 | 2 | fveq1d 6883 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) → (𝐺‘𝐷) = ((𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))‘𝐷)) |
| 4 | eqid 2736 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥)) = (𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥)) | |
| 5 | 4 | fvmptndm 7022 | . . . . . 6 ⊢ (¬ 𝐷 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = ∅) |
| 6 | 5 | adantl 481 | . . . . 5 ⊢ (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) ∧ ¬ 𝐷 ∈ 𝐵) → ((𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = ∅) |
| 7 | fndm 6646 | . . . . . . 7 ⊢ (𝐹 Fn (𝐴 × 𝐵) → dom 𝐹 = (𝐴 × 𝐵)) | |
| 8 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) → dom 𝐹 = (𝐴 × 𝐵)) |
| 9 | simpr 484 | . . . . . . 7 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → 𝐷 ∈ 𝐵) | |
| 10 | 9 | con3i 154 | . . . . . 6 ⊢ (¬ 𝐷 ∈ 𝐵 → ¬ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) |
| 11 | ndmovg 7595 | . . . . . 6 ⊢ ((dom 𝐹 = (𝐴 × 𝐵) ∧ ¬ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) → (𝐶𝐹𝐷) = ∅) | |
| 12 | 8, 10, 11 | syl2an 596 | . . . . 5 ⊢ (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) ∧ ¬ 𝐷 ∈ 𝐵) → (𝐶𝐹𝐷) = ∅) |
| 13 | 6, 12 | eqtr4d 2774 | . . . 4 ⊢ (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) ∧ ¬ 𝐷 ∈ 𝐵) → ((𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = (𝐶𝐹𝐷)) |
| 14 | 13 | ex 412 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) → (¬ 𝐷 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = (𝐶𝐹𝐷))) |
| 15 | oveq2 7418 | . . . 4 ⊢ (𝑥 = 𝐷 → (𝐶𝐹𝑥) = (𝐶𝐹𝐷)) | |
| 16 | ovex 7443 | . . . 4 ⊢ (𝐶𝐹𝐷) ∈ V | |
| 17 | 15, 4, 16 | fvmpt 6991 | . . 3 ⊢ (𝐷 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = (𝐶𝐹𝐷)) |
| 18 | 14, 17 | pm2.61d2 181 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) → ((𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = (𝐶𝐹𝐷)) |
| 19 | 3, 18 | eqtrd 2771 | 1 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) → (𝐺‘𝐷) = (𝐶𝐹𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∅c0 4313 {csn 4606 ↦ cmpt 5206 × cxp 5657 ◡ccnv 5658 dom cdm 5659 ↾ cres 5661 ∘ ccom 5663 Fn wfn 6531 ‘cfv 6536 (class class class)co 7410 2nd c2nd 7992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-1st 7993 df-2nd 7994 |
| This theorem is referenced by: nvinvfval 30626 hhssabloilem 31247 |
| Copyright terms: Public domain | W3C validator |