MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curry1val Structured version   Visualization version   GIF version

Theorem curry1val 8131
Description: The value of a curried function with a constant first argument. (Contributed by NM, 28-Mar-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
curry1.1 𝐺 = (𝐹(2nd ↾ ({𝐶} × V)))
Assertion
Ref Expression
curry1val ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) → (𝐺𝐷) = (𝐶𝐹𝐷))

Proof of Theorem curry1val
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 curry1.1 . . . 4 𝐺 = (𝐹(2nd ↾ ({𝐶} × V)))
21curry1 8130 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) → 𝐺 = (𝑥𝐵 ↦ (𝐶𝐹𝑥)))
32fveq1d 6907 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) → (𝐺𝐷) = ((𝑥𝐵 ↦ (𝐶𝐹𝑥))‘𝐷))
4 eqid 2736 . . . . . . 7 (𝑥𝐵 ↦ (𝐶𝐹𝑥)) = (𝑥𝐵 ↦ (𝐶𝐹𝑥))
54fvmptndm 7046 . . . . . 6 𝐷𝐵 → ((𝑥𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = ∅)
65adantl 481 . . . . 5 (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) ∧ ¬ 𝐷𝐵) → ((𝑥𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = ∅)
7 fndm 6670 . . . . . . 7 (𝐹 Fn (𝐴 × 𝐵) → dom 𝐹 = (𝐴 × 𝐵))
87adantr 480 . . . . . 6 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) → dom 𝐹 = (𝐴 × 𝐵))
9 simpr 484 . . . . . . 7 ((𝐶𝐴𝐷𝐵) → 𝐷𝐵)
109con3i 154 . . . . . 6 𝐷𝐵 → ¬ (𝐶𝐴𝐷𝐵))
11 ndmovg 7617 . . . . . 6 ((dom 𝐹 = (𝐴 × 𝐵) ∧ ¬ (𝐶𝐴𝐷𝐵)) → (𝐶𝐹𝐷) = ∅)
128, 10, 11syl2an 596 . . . . 5 (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) ∧ ¬ 𝐷𝐵) → (𝐶𝐹𝐷) = ∅)
136, 12eqtr4d 2779 . . . 4 (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) ∧ ¬ 𝐷𝐵) → ((𝑥𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = (𝐶𝐹𝐷))
1413ex 412 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) → (¬ 𝐷𝐵 → ((𝑥𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = (𝐶𝐹𝐷)))
15 oveq2 7440 . . . 4 (𝑥 = 𝐷 → (𝐶𝐹𝑥) = (𝐶𝐹𝐷))
16 ovex 7465 . . . 4 (𝐶𝐹𝐷) ∈ V
1715, 4, 16fvmpt 7015 . . 3 (𝐷𝐵 → ((𝑥𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = (𝐶𝐹𝐷))
1814, 17pm2.61d2 181 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) → ((𝑥𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = (𝐶𝐹𝐷))
193, 18eqtrd 2776 1 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) → (𝐺𝐷) = (𝐶𝐹𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3479  c0 4332  {csn 4625  cmpt 5224   × cxp 5682  ccnv 5683  dom cdm 5684  cres 5686  ccom 5688   Fn wfn 6555  cfv 6560  (class class class)co 7432  2nd c2nd 8014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-1st 8015  df-2nd 8016
This theorem is referenced by:  nvinvfval  30660  hhssabloilem  31281
  Copyright terms: Public domain W3C validator