![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > curry1val | Structured version Visualization version GIF version |
Description: The value of a curried function with a constant first argument. (Contributed by NM, 28-Mar-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
curry1.1 | ⊢ 𝐺 = (𝐹 ∘ ◡(2nd ↾ ({𝐶} × V))) |
Ref | Expression |
---|---|
curry1val | ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) → (𝐺‘𝐷) = (𝐶𝐹𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | curry1.1 | . . . 4 ⊢ 𝐺 = (𝐹 ∘ ◡(2nd ↾ ({𝐶} × V))) | |
2 | 1 | curry1 8145 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) → 𝐺 = (𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))) |
3 | 2 | fveq1d 6922 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) → (𝐺‘𝐷) = ((𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))‘𝐷)) |
4 | eqid 2740 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥)) = (𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥)) | |
5 | 4 | fvmptndm 7060 | . . . . . 6 ⊢ (¬ 𝐷 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = ∅) |
6 | 5 | adantl 481 | . . . . 5 ⊢ (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) ∧ ¬ 𝐷 ∈ 𝐵) → ((𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = ∅) |
7 | fndm 6682 | . . . . . . 7 ⊢ (𝐹 Fn (𝐴 × 𝐵) → dom 𝐹 = (𝐴 × 𝐵)) | |
8 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) → dom 𝐹 = (𝐴 × 𝐵)) |
9 | simpr 484 | . . . . . . 7 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → 𝐷 ∈ 𝐵) | |
10 | 9 | con3i 154 | . . . . . 6 ⊢ (¬ 𝐷 ∈ 𝐵 → ¬ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) |
11 | ndmovg 7633 | . . . . . 6 ⊢ ((dom 𝐹 = (𝐴 × 𝐵) ∧ ¬ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) → (𝐶𝐹𝐷) = ∅) | |
12 | 8, 10, 11 | syl2an 595 | . . . . 5 ⊢ (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) ∧ ¬ 𝐷 ∈ 𝐵) → (𝐶𝐹𝐷) = ∅) |
13 | 6, 12 | eqtr4d 2783 | . . . 4 ⊢ (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) ∧ ¬ 𝐷 ∈ 𝐵) → ((𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = (𝐶𝐹𝐷)) |
14 | 13 | ex 412 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) → (¬ 𝐷 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = (𝐶𝐹𝐷))) |
15 | oveq2 7456 | . . . 4 ⊢ (𝑥 = 𝐷 → (𝐶𝐹𝑥) = (𝐶𝐹𝐷)) | |
16 | ovex 7481 | . . . 4 ⊢ (𝐶𝐹𝐷) ∈ V | |
17 | 15, 4, 16 | fvmpt 7029 | . . 3 ⊢ (𝐷 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = (𝐶𝐹𝐷)) |
18 | 14, 17 | pm2.61d2 181 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) → ((𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = (𝐶𝐹𝐷)) |
19 | 3, 18 | eqtrd 2780 | 1 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) → (𝐺‘𝐷) = (𝐶𝐹𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 {csn 4648 ↦ cmpt 5249 × cxp 5698 ◡ccnv 5699 dom cdm 5700 ↾ cres 5702 ∘ ccom 5704 Fn wfn 6568 ‘cfv 6573 (class class class)co 7448 2nd c2nd 8029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-1st 8030 df-2nd 8031 |
This theorem is referenced by: nvinvfval 30672 hhssabloilem 31293 |
Copyright terms: Public domain | W3C validator |