Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > curry1val | Structured version Visualization version GIF version |
Description: The value of a curried function with a constant first argument. (Contributed by NM, 28-Mar-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
curry1.1 | ⊢ 𝐺 = (𝐹 ∘ ◡(2nd ↾ ({𝐶} × V))) |
Ref | Expression |
---|---|
curry1val | ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) → (𝐺‘𝐷) = (𝐶𝐹𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | curry1.1 | . . . 4 ⊢ 𝐺 = (𝐹 ∘ ◡(2nd ↾ ({𝐶} × V))) | |
2 | 1 | curry1 7929 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) → 𝐺 = (𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))) |
3 | 2 | fveq1d 6771 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) → (𝐺‘𝐷) = ((𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))‘𝐷)) |
4 | eqid 2740 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥)) = (𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥)) | |
5 | 4 | fvmptndm 6900 | . . . . . 6 ⊢ (¬ 𝐷 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = ∅) |
6 | 5 | adantl 482 | . . . . 5 ⊢ (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) ∧ ¬ 𝐷 ∈ 𝐵) → ((𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = ∅) |
7 | fndm 6533 | . . . . . . 7 ⊢ (𝐹 Fn (𝐴 × 𝐵) → dom 𝐹 = (𝐴 × 𝐵)) | |
8 | 7 | adantr 481 | . . . . . 6 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) → dom 𝐹 = (𝐴 × 𝐵)) |
9 | simpr 485 | . . . . . . 7 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → 𝐷 ∈ 𝐵) | |
10 | 9 | con3i 154 | . . . . . 6 ⊢ (¬ 𝐷 ∈ 𝐵 → ¬ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) |
11 | ndmovg 7447 | . . . . . 6 ⊢ ((dom 𝐹 = (𝐴 × 𝐵) ∧ ¬ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) → (𝐶𝐹𝐷) = ∅) | |
12 | 8, 10, 11 | syl2an 596 | . . . . 5 ⊢ (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) ∧ ¬ 𝐷 ∈ 𝐵) → (𝐶𝐹𝐷) = ∅) |
13 | 6, 12 | eqtr4d 2783 | . . . 4 ⊢ (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) ∧ ¬ 𝐷 ∈ 𝐵) → ((𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = (𝐶𝐹𝐷)) |
14 | 13 | ex 413 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) → (¬ 𝐷 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = (𝐶𝐹𝐷))) |
15 | oveq2 7277 | . . . 4 ⊢ (𝑥 = 𝐷 → (𝐶𝐹𝑥) = (𝐶𝐹𝐷)) | |
16 | ovex 7302 | . . . 4 ⊢ (𝐶𝐹𝐷) ∈ V | |
17 | 15, 4, 16 | fvmpt 6870 | . . 3 ⊢ (𝐷 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = (𝐶𝐹𝐷)) |
18 | 14, 17 | pm2.61d2 181 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) → ((𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = (𝐶𝐹𝐷)) |
19 | 3, 18 | eqtrd 2780 | 1 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) → (𝐺‘𝐷) = (𝐶𝐹𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 Vcvv 3431 ∅c0 4262 {csn 4567 ↦ cmpt 5162 × cxp 5587 ◡ccnv 5588 dom cdm 5589 ↾ cres 5591 ∘ ccom 5593 Fn wfn 6426 ‘cfv 6431 (class class class)co 7269 2nd c2nd 7817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7580 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-ov 7272 df-1st 7818 df-2nd 7819 |
This theorem is referenced by: nvinvfval 28990 hhssabloilem 29611 |
Copyright terms: Public domain | W3C validator |