|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > curry1val | Structured version Visualization version GIF version | ||
| Description: The value of a curried function with a constant first argument. (Contributed by NM, 28-Mar-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) | 
| Ref | Expression | 
|---|---|
| curry1.1 | ⊢ 𝐺 = (𝐹 ∘ ◡(2nd ↾ ({𝐶} × V))) | 
| Ref | Expression | 
|---|---|
| curry1val | ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) → (𝐺‘𝐷) = (𝐶𝐹𝐷)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | curry1.1 | . . . 4 ⊢ 𝐺 = (𝐹 ∘ ◡(2nd ↾ ({𝐶} × V))) | |
| 2 | 1 | curry1 8130 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) → 𝐺 = (𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))) | 
| 3 | 2 | fveq1d 6907 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) → (𝐺‘𝐷) = ((𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))‘𝐷)) | 
| 4 | eqid 2736 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥)) = (𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥)) | |
| 5 | 4 | fvmptndm 7046 | . . . . . 6 ⊢ (¬ 𝐷 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = ∅) | 
| 6 | 5 | adantl 481 | . . . . 5 ⊢ (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) ∧ ¬ 𝐷 ∈ 𝐵) → ((𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = ∅) | 
| 7 | fndm 6670 | . . . . . . 7 ⊢ (𝐹 Fn (𝐴 × 𝐵) → dom 𝐹 = (𝐴 × 𝐵)) | |
| 8 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) → dom 𝐹 = (𝐴 × 𝐵)) | 
| 9 | simpr 484 | . . . . . . 7 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → 𝐷 ∈ 𝐵) | |
| 10 | 9 | con3i 154 | . . . . . 6 ⊢ (¬ 𝐷 ∈ 𝐵 → ¬ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) | 
| 11 | ndmovg 7617 | . . . . . 6 ⊢ ((dom 𝐹 = (𝐴 × 𝐵) ∧ ¬ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) → (𝐶𝐹𝐷) = ∅) | |
| 12 | 8, 10, 11 | syl2an 596 | . . . . 5 ⊢ (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) ∧ ¬ 𝐷 ∈ 𝐵) → (𝐶𝐹𝐷) = ∅) | 
| 13 | 6, 12 | eqtr4d 2779 | . . . 4 ⊢ (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) ∧ ¬ 𝐷 ∈ 𝐵) → ((𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = (𝐶𝐹𝐷)) | 
| 14 | 13 | ex 412 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) → (¬ 𝐷 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = (𝐶𝐹𝐷))) | 
| 15 | oveq2 7440 | . . . 4 ⊢ (𝑥 = 𝐷 → (𝐶𝐹𝑥) = (𝐶𝐹𝐷)) | |
| 16 | ovex 7465 | . . . 4 ⊢ (𝐶𝐹𝐷) ∈ V | |
| 17 | 15, 4, 16 | fvmpt 7015 | . . 3 ⊢ (𝐷 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = (𝐶𝐹𝐷)) | 
| 18 | 14, 17 | pm2.61d2 181 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) → ((𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = (𝐶𝐹𝐷)) | 
| 19 | 3, 18 | eqtrd 2776 | 1 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴) → (𝐺‘𝐷) = (𝐶𝐹𝐷)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3479 ∅c0 4332 {csn 4625 ↦ cmpt 5224 × cxp 5682 ◡ccnv 5683 dom cdm 5684 ↾ cres 5686 ∘ ccom 5688 Fn wfn 6555 ‘cfv 6560 (class class class)co 7432 2nd c2nd 8014 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-1st 8015 df-2nd 8016 | 
| This theorem is referenced by: nvinvfval 30660 hhssabloilem 31281 | 
| Copyright terms: Public domain | W3C validator |