| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > repsundef | Structured version Visualization version GIF version | ||
| Description: A function mapping a half-open range of nonnegative integers with an upper bound not being a nonnegative integer to a constant is the empty set (in the meaning of "undefined"). (Contributed by AV, 5-Nov-2018.) |
| Ref | Expression |
|---|---|
| repsundef | ⊢ (𝑁 ∉ ℕ0 → (𝑆 repeatS 𝑁) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-reps 14787 | . . 3 ⊢ repeatS = (𝑠 ∈ V, 𝑛 ∈ ℕ0 ↦ (𝑥 ∈ (0..^𝑛) ↦ 𝑠)) | |
| 2 | ovex 7438 | . . . 4 ⊢ (0..^𝑛) ∈ V | |
| 3 | 2 | mptex 7215 | . . 3 ⊢ (𝑥 ∈ (0..^𝑛) ↦ 𝑠) ∈ V |
| 4 | 1, 3 | dmmpo 8070 | . 2 ⊢ dom repeatS = (V × ℕ0) |
| 5 | df-nel 3037 | . . . 4 ⊢ (𝑁 ∉ ℕ0 ↔ ¬ 𝑁 ∈ ℕ0) | |
| 6 | 5 | biimpi 216 | . . 3 ⊢ (𝑁 ∉ ℕ0 → ¬ 𝑁 ∈ ℕ0) |
| 7 | 6 | intnand 488 | . 2 ⊢ (𝑁 ∉ ℕ0 → ¬ (𝑆 ∈ V ∧ 𝑁 ∈ ℕ0)) |
| 8 | ndmovg 7590 | . 2 ⊢ ((dom repeatS = (V × ℕ0) ∧ ¬ (𝑆 ∈ V ∧ 𝑁 ∈ ℕ0)) → (𝑆 repeatS 𝑁) = ∅) | |
| 9 | 4, 7, 8 | sylancr 587 | 1 ⊢ (𝑁 ∉ ℕ0 → (𝑆 repeatS 𝑁) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∉ wnel 3036 Vcvv 3459 ∅c0 4308 ↦ cmpt 5201 × cxp 5652 dom cdm 5654 (class class class)co 7405 0cc0 11129 ℕ0cn0 12501 ..^cfzo 13671 repeatS creps 14786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-reps 14787 |
| This theorem is referenced by: repswswrd 14802 |
| Copyright terms: Public domain | W3C validator |