Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  repsundef Structured version   Visualization version   GIF version

Theorem repsundef 14180
 Description: A function mapping a half-open range of nonnegative integers with an upper bound not being a nonnegative integer to a constant is the empty set (in the meaning of "undefined"). (Contributed by AV, 5-Nov-2018.)
Assertion
Ref Expression
repsundef (𝑁 ∉ ℕ0 → (𝑆 repeatS 𝑁) = ∅)

Proof of Theorem repsundef
Dummy variables 𝑛 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-reps 14178 . . 3 repeatS = (𝑠 ∈ V, 𝑛 ∈ ℕ0 ↦ (𝑥 ∈ (0..^𝑛) ↦ 𝑠))
2 ovex 7183 . . . 4 (0..^𝑛) ∈ V
32mptex 6977 . . 3 (𝑥 ∈ (0..^𝑛) ↦ 𝑠) ∈ V
41, 3dmmpo 7773 . 2 dom repeatS = (V × ℕ0)
5 df-nel 3056 . . . 4 (𝑁 ∉ ℕ0 ↔ ¬ 𝑁 ∈ ℕ0)
65biimpi 219 . . 3 (𝑁 ∉ ℕ0 → ¬ 𝑁 ∈ ℕ0)
76intnand 492 . 2 (𝑁 ∉ ℕ0 → ¬ (𝑆 ∈ V ∧ 𝑁 ∈ ℕ0))
8 ndmovg 7327 . 2 ((dom repeatS = (V × ℕ0) ∧ ¬ (𝑆 ∈ V ∧ 𝑁 ∈ ℕ0)) → (𝑆 repeatS 𝑁) = ∅)
94, 7, 8sylancr 590 1 (𝑁 ∉ ℕ0 → (𝑆 repeatS 𝑁) = ∅)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ∉ wnel 3055  Vcvv 3409  ∅c0 4225   ↦ cmpt 5112   × cxp 5522  dom cdm 5524  (class class class)co 7150  0cc0 10575  ℕ0cn0 11934  ..^cfzo 13082   repeatS creps 14177 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pr 5298  ax-un 7459 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7693  df-2nd 7694  df-reps 14178 This theorem is referenced by:  repswswrd  14193
 Copyright terms: Public domain W3C validator