| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > repsundef | Structured version Visualization version GIF version | ||
| Description: A function mapping a half-open range of nonnegative integers with an upper bound not being a nonnegative integer to a constant is the empty set (in the meaning of "undefined"). (Contributed by AV, 5-Nov-2018.) |
| Ref | Expression |
|---|---|
| repsundef | ⊢ (𝑁 ∉ ℕ0 → (𝑆 repeatS 𝑁) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-reps 14807 | . . 3 ⊢ repeatS = (𝑠 ∈ V, 𝑛 ∈ ℕ0 ↦ (𝑥 ∈ (0..^𝑛) ↦ 𝑠)) | |
| 2 | ovex 7464 | . . . 4 ⊢ (0..^𝑛) ∈ V | |
| 3 | 2 | mptex 7243 | . . 3 ⊢ (𝑥 ∈ (0..^𝑛) ↦ 𝑠) ∈ V |
| 4 | 1, 3 | dmmpo 8096 | . 2 ⊢ dom repeatS = (V × ℕ0) |
| 5 | df-nel 3047 | . . . 4 ⊢ (𝑁 ∉ ℕ0 ↔ ¬ 𝑁 ∈ ℕ0) | |
| 6 | 5 | biimpi 216 | . . 3 ⊢ (𝑁 ∉ ℕ0 → ¬ 𝑁 ∈ ℕ0) |
| 7 | 6 | intnand 488 | . 2 ⊢ (𝑁 ∉ ℕ0 → ¬ (𝑆 ∈ V ∧ 𝑁 ∈ ℕ0)) |
| 8 | ndmovg 7616 | . 2 ⊢ ((dom repeatS = (V × ℕ0) ∧ ¬ (𝑆 ∈ V ∧ 𝑁 ∈ ℕ0)) → (𝑆 repeatS 𝑁) = ∅) | |
| 9 | 4, 7, 8 | sylancr 587 | 1 ⊢ (𝑁 ∉ ℕ0 → (𝑆 repeatS 𝑁) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∉ wnel 3046 Vcvv 3480 ∅c0 4333 ↦ cmpt 5225 × cxp 5683 dom cdm 5685 (class class class)co 7431 0cc0 11155 ℕ0cn0 12526 ..^cfzo 13694 repeatS creps 14806 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-reps 14807 |
| This theorem is referenced by: repswswrd 14822 |
| Copyright terms: Public domain | W3C validator |