Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > repsundef | Structured version Visualization version GIF version |
Description: A function mapping a half-open range of nonnegative integers with an upper bound not being a nonnegative integer to a constant is the empty set (in the meaning of "undefined"). (Contributed by AV, 5-Nov-2018.) |
Ref | Expression |
---|---|
repsundef | ⊢ (𝑁 ∉ ℕ0 → (𝑆 repeatS 𝑁) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-reps 14410 | . . 3 ⊢ repeatS = (𝑠 ∈ V, 𝑛 ∈ ℕ0 ↦ (𝑥 ∈ (0..^𝑛) ↦ 𝑠)) | |
2 | ovex 7288 | . . . 4 ⊢ (0..^𝑛) ∈ V | |
3 | 2 | mptex 7081 | . . 3 ⊢ (𝑥 ∈ (0..^𝑛) ↦ 𝑠) ∈ V |
4 | 1, 3 | dmmpo 7884 | . 2 ⊢ dom repeatS = (V × ℕ0) |
5 | df-nel 3049 | . . . 4 ⊢ (𝑁 ∉ ℕ0 ↔ ¬ 𝑁 ∈ ℕ0) | |
6 | 5 | biimpi 215 | . . 3 ⊢ (𝑁 ∉ ℕ0 → ¬ 𝑁 ∈ ℕ0) |
7 | 6 | intnand 488 | . 2 ⊢ (𝑁 ∉ ℕ0 → ¬ (𝑆 ∈ V ∧ 𝑁 ∈ ℕ0)) |
8 | ndmovg 7433 | . 2 ⊢ ((dom repeatS = (V × ℕ0) ∧ ¬ (𝑆 ∈ V ∧ 𝑁 ∈ ℕ0)) → (𝑆 repeatS 𝑁) = ∅) | |
9 | 4, 7, 8 | sylancr 586 | 1 ⊢ (𝑁 ∉ ℕ0 → (𝑆 repeatS 𝑁) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∉ wnel 3048 Vcvv 3422 ∅c0 4253 ↦ cmpt 5153 × cxp 5578 dom cdm 5580 (class class class)co 7255 0cc0 10802 ℕ0cn0 12163 ..^cfzo 13311 repeatS creps 14409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-reps 14410 |
This theorem is referenced by: repswswrd 14425 |
Copyright terms: Public domain | W3C validator |