| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > repsundef | Structured version Visualization version GIF version | ||
| Description: A function mapping a half-open range of nonnegative integers with an upper bound not being a nonnegative integer to a constant is the empty set (in the meaning of "undefined"). (Contributed by AV, 5-Nov-2018.) |
| Ref | Expression |
|---|---|
| repsundef | ⊢ (𝑁 ∉ ℕ0 → (𝑆 repeatS 𝑁) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-reps 14710 | . . 3 ⊢ repeatS = (𝑠 ∈ V, 𝑛 ∈ ℕ0 ↦ (𝑥 ∈ (0..^𝑛) ↦ 𝑠)) | |
| 2 | ovex 7402 | . . . 4 ⊢ (0..^𝑛) ∈ V | |
| 3 | 2 | mptex 7179 | . . 3 ⊢ (𝑥 ∈ (0..^𝑛) ↦ 𝑠) ∈ V |
| 4 | 1, 3 | dmmpo 8029 | . 2 ⊢ dom repeatS = (V × ℕ0) |
| 5 | df-nel 3030 | . . . 4 ⊢ (𝑁 ∉ ℕ0 ↔ ¬ 𝑁 ∈ ℕ0) | |
| 6 | 5 | biimpi 216 | . . 3 ⊢ (𝑁 ∉ ℕ0 → ¬ 𝑁 ∈ ℕ0) |
| 7 | 6 | intnand 488 | . 2 ⊢ (𝑁 ∉ ℕ0 → ¬ (𝑆 ∈ V ∧ 𝑁 ∈ ℕ0)) |
| 8 | ndmovg 7552 | . 2 ⊢ ((dom repeatS = (V × ℕ0) ∧ ¬ (𝑆 ∈ V ∧ 𝑁 ∈ ℕ0)) → (𝑆 repeatS 𝑁) = ∅) | |
| 9 | 4, 7, 8 | sylancr 587 | 1 ⊢ (𝑁 ∉ ℕ0 → (𝑆 repeatS 𝑁) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∉ wnel 3029 Vcvv 3444 ∅c0 4292 ↦ cmpt 5183 × cxp 5629 dom cdm 5631 (class class class)co 7369 0cc0 11044 ℕ0cn0 12418 ..^cfzo 13591 repeatS creps 14709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-reps 14710 |
| This theorem is referenced by: repswswrd 14725 |
| Copyright terms: Public domain | W3C validator |