MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscau2 Structured version   Visualization version   GIF version

Theorem iscau2 23881
Description: Express the property "𝐹 is a Cauchy sequence of metric 𝐷 " using an arbitrary upper set of integers. (Contributed by NM, 19-Dec-2006.) (Revised by Mario Carneiro, 14-Nov-2013.)
Assertion
Ref Expression
iscau2 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
Distinct variable groups:   𝑗,𝑘,𝑥,𝐷   𝑗,𝐹,𝑘,𝑥   𝑗,𝑋,𝑘,𝑥

Proof of Theorem iscau2
StepHypRef Expression
1 iscau 23880 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝐹𝑗)(ball‘𝐷)𝑥))))
2 elfvdm 6677 . . . . . . . . . 10 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
3 cnex 10607 . . . . . . . . . 10 ℂ ∈ V
4 elpmg 8405 . . . . . . . . . 10 ((𝑋 ∈ dom ∞Met ∧ ℂ ∈ V) → (𝐹 ∈ (𝑋pm ℂ) ↔ (Fun 𝐹𝐹 ⊆ (ℂ × 𝑋))))
52, 3, 4sylancl 589 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (𝑋pm ℂ) ↔ (Fun 𝐹𝐹 ⊆ (ℂ × 𝑋))))
65simprbda 502 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋pm ℂ)) → Fun 𝐹)
7 ffvresb 6865 . . . . . . . 8 (Fun 𝐹 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝐹𝑗)(ball‘𝐷)𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥))))
86, 7syl 17 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋pm ℂ)) → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝐹𝑗)(ball‘𝐷)𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥))))
98rexbidv 3256 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋pm ℂ)) → (∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝐹𝑗)(ball‘𝐷)𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥))))
109adantr 484 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋pm ℂ)) ∧ 𝑥 ∈ ℝ+) → (∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝐹𝑗)(ball‘𝐷)𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥))))
11 uzid 12246 . . . . . . . . . . 11 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
1211adantl 485 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) → 𝑗 ∈ (ℤ𝑗))
13 eleq1w 2872 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝑘 ∈ dom 𝐹𝑗 ∈ dom 𝐹))
14 fveq2 6645 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
1514eleq1d 2874 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥) ↔ (𝐹𝑗) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)))
1613, 15anbi12d 633 . . . . . . . . . . 11 (𝑘 = 𝑗 → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) ↔ (𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥))))
1716rspcv 3566 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) → (𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥))))
1812, 17syl 17 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) → (𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥))))
19 n0i 4249 . . . . . . . . . . . 12 ((𝐹𝑗) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥) → ¬ ((𝐹𝑗)(ball‘𝐷)𝑥) = ∅)
20 blf 23014 . . . . . . . . . . . . . . 15 (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋)
2120fdmd 6497 . . . . . . . . . . . . . 14 (𝐷 ∈ (∞Met‘𝑋) → dom (ball‘𝐷) = (𝑋 × ℝ*))
22 ndmovg 7311 . . . . . . . . . . . . . . 15 ((dom (ball‘𝐷) = (𝑋 × ℝ*) ∧ ¬ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ*)) → ((𝐹𝑗)(ball‘𝐷)𝑥) = ∅)
2322ex 416 . . . . . . . . . . . . . 14 (dom (ball‘𝐷) = (𝑋 × ℝ*) → (¬ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ*) → ((𝐹𝑗)(ball‘𝐷)𝑥) = ∅))
2421, 23syl 17 . . . . . . . . . . . . 13 (𝐷 ∈ (∞Met‘𝑋) → (¬ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ*) → ((𝐹𝑗)(ball‘𝐷)𝑥) = ∅))
2524con1d 147 . . . . . . . . . . . 12 (𝐷 ∈ (∞Met‘𝑋) → (¬ ((𝐹𝑗)(ball‘𝐷)𝑥) = ∅ → ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ*)))
26 simpl 486 . . . . . . . . . . . 12 (((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ*) → (𝐹𝑗) ∈ 𝑋)
2719, 25, 26syl56 36 . . . . . . . . . . 11 (𝐷 ∈ (∞Met‘𝑋) → ((𝐹𝑗) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥) → (𝐹𝑗) ∈ 𝑋))
2827adantld 494 . . . . . . . . . 10 (𝐷 ∈ (∞Met‘𝑋) → ((𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) → (𝐹𝑗) ∈ 𝑋))
2928ad2antrr 725 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) → ((𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) → (𝐹𝑗) ∈ 𝑋))
3018, 29syld 47 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) → (𝐹𝑗) ∈ 𝑋))
3114eleq1d 2874 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ 𝑋 ↔ (𝐹𝑗) ∈ 𝑋))
3214oveq1d 7150 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → ((𝐹𝑘)𝐷(𝐹𝑗)) = ((𝐹𝑗)𝐷(𝐹𝑗)))
3332breq1d 5040 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥 ↔ ((𝐹𝑗)𝐷(𝐹𝑗)) < 𝑥))
3413, 31, 333anbi123d 1433 . . . . . . . . . . 11 (𝑘 = 𝑗 → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ (𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ 𝑋 ∧ ((𝐹𝑗)𝐷(𝐹𝑗)) < 𝑥)))
3534rspcv 3566 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) → (𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ 𝑋 ∧ ((𝐹𝑗)𝐷(𝐹𝑗)) < 𝑥)))
3612, 35syl 17 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) → (𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ 𝑋 ∧ ((𝐹𝑗)𝐷(𝐹𝑗)) < 𝑥)))
37 simp2 1134 . . . . . . . . 9 ((𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ 𝑋 ∧ ((𝐹𝑗)𝐷(𝐹𝑗)) < 𝑥) → (𝐹𝑗) ∈ 𝑋)
3836, 37syl6 35 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) → (𝐹𝑗) ∈ 𝑋))
39 rpxr 12386 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ+𝑥 ∈ ℝ*)
40 elbl 22995 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ*) → ((𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥) ↔ ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑗)𝐷(𝐹𝑘)) < 𝑥)))
4139, 40syl3an3 1162 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ+) → ((𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥) ↔ ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑗)𝐷(𝐹𝑘)) < 𝑥)))
42 xmetsym 22954 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋 ∧ (𝐹𝑘) ∈ 𝑋) → ((𝐹𝑗)𝐷(𝐹𝑘)) = ((𝐹𝑘)𝐷(𝐹𝑗)))
43423expa 1115 . . . . . . . . . . . . . . . . . 18 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋) ∧ (𝐹𝑘) ∈ 𝑋) → ((𝐹𝑗)𝐷(𝐹𝑘)) = ((𝐹𝑘)𝐷(𝐹𝑗)))
44433adantl3 1165 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ+) ∧ (𝐹𝑘) ∈ 𝑋) → ((𝐹𝑗)𝐷(𝐹𝑘)) = ((𝐹𝑘)𝐷(𝐹𝑗)))
4544breq1d 5040 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ+) ∧ (𝐹𝑘) ∈ 𝑋) → (((𝐹𝑗)𝐷(𝐹𝑘)) < 𝑥 ↔ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
4645pm5.32da 582 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ+) → (((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑗)𝐷(𝐹𝑘)) < 𝑥) ↔ ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
4741, 46bitrd 282 . . . . . . . . . . . . . 14 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ+) → ((𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥) ↔ ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
48473com23 1123 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+ ∧ (𝐹𝑗) ∈ 𝑋) → ((𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥) ↔ ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
4948anbi2d 631 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+ ∧ (𝐹𝑗) ∈ 𝑋) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) ↔ (𝑘 ∈ dom 𝐹 ∧ ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
50 3anass 1092 . . . . . . . . . . . 12 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ (𝑘 ∈ dom 𝐹 ∧ ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
5149, 50syl6bbr 292 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+ ∧ (𝐹𝑗) ∈ 𝑋) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
5251ralbidv 3162 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+ ∧ (𝐹𝑗) ∈ 𝑋) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
53523expia 1118 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) → ((𝐹𝑗) ∈ 𝑋 → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
5453adantr 484 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) → ((𝐹𝑗) ∈ 𝑋 → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
5530, 38, 54pm5.21ndd 384 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
5655rexbidva 3255 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
5756adantlr 714 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋pm ℂ)) ∧ 𝑥 ∈ ℝ+) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
5810, 57bitrd 282 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋pm ℂ)) ∧ 𝑥 ∈ ℝ+) → (∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝐹𝑗)(ball‘𝐷)𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
5958ralbidva 3161 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋pm ℂ)) → (∀𝑥 ∈ ℝ+𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝐹𝑗)(ball‘𝐷)𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
6059pm5.32da 582 . 2 (𝐷 ∈ (∞Met‘𝑋) → ((𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝐹𝑗)(ball‘𝐷)𝑥)) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
611, 60bitrd 282 1 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  wrex 3107  Vcvv 3441  wss 3881  c0 4243  𝒫 cpw 4497   class class class wbr 5030   × cxp 5517  dom cdm 5519  cres 5521  Fun wfun 6318  wf 6320  cfv 6324  (class class class)co 7135  pm cpm 8390  cc 10524  *cxr 10663   < clt 10664  cz 11969  cuz 12231  +crp 12377  ∞Metcxmet 20076  ballcbl 20078  Cauccau 23857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-neg 10862  df-z 11970  df-uz 12232  df-rp 12378  df-xadd 12496  df-psmet 20083  df-xmet 20084  df-bl 20086  df-cau 23860
This theorem is referenced by:  iscau3  23882  iscau4  23883  caun0  23885  caussi  23901
  Copyright terms: Public domain W3C validator