Proof of Theorem iscau2
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | iscau 25310 | . 2
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶((𝐹‘𝑗)(ball‘𝐷)𝑥)))) | 
| 2 |  | elfvdm 6943 | . . . . . . . . . 10
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met) | 
| 3 |  | cnex 11236 | . . . . . . . . . 10
⊢ ℂ
∈ V | 
| 4 |  | elpmg 8883 | . . . . . . . . . 10
⊢ ((𝑋 ∈ dom ∞Met ∧
ℂ ∈ V) → (𝐹
∈ (𝑋
↑pm ℂ) ↔ (Fun 𝐹 ∧ 𝐹 ⊆ (ℂ × 𝑋)))) | 
| 5 | 2, 3, 4 | sylancl 586 | . . . . . . . . 9
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (𝑋 ↑pm ℂ) ↔ (Fun
𝐹 ∧ 𝐹 ⊆ (ℂ × 𝑋)))) | 
| 6 | 5 | simprbda 498 | . . . . . . . 8
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋 ↑pm ℂ)) → Fun
𝐹) | 
| 7 |  | ffvresb 7145 | . . . . . . . 8
⊢ (Fun
𝐹 → ((𝐹 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶((𝐹‘𝑗)(ball‘𝐷)𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥)))) | 
| 8 | 6, 7 | syl 17 | . . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋 ↑pm ℂ)) →
((𝐹 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶((𝐹‘𝑗)(ball‘𝐷)𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥)))) | 
| 9 | 8 | rexbidv 3179 | . . . . . 6
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋 ↑pm ℂ)) →
(∃𝑗 ∈ ℤ
(𝐹 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶((𝐹‘𝑗)(ball‘𝐷)𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥)))) | 
| 10 | 9 | adantr 480 | . . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋 ↑pm ℂ)) ∧ 𝑥 ∈ ℝ+)
→ (∃𝑗 ∈
ℤ (𝐹 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶((𝐹‘𝑗)(ball‘𝐷)𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥)))) | 
| 11 |  | uzid 12893 | . . . . . . . . . . 11
⊢ (𝑗 ∈ ℤ → 𝑗 ∈
(ℤ≥‘𝑗)) | 
| 12 | 11 | adantl 481 | . . . . . . . . . 10
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) → 𝑗 ∈
(ℤ≥‘𝑗)) | 
| 13 |  | eleq1w 2824 | . . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → (𝑘 ∈ dom 𝐹 ↔ 𝑗 ∈ dom 𝐹)) | 
| 14 |  | fveq2 6906 | . . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | 
| 15 | 14 | eleq1d 2826 | . . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥) ↔ (𝐹‘𝑗) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥))) | 
| 16 | 13, 15 | anbi12d 632 | . . . . . . . . . . 11
⊢ (𝑘 = 𝑗 → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥)) ↔ (𝑗 ∈ dom 𝐹 ∧ (𝐹‘𝑗) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥)))) | 
| 17 | 16 | rspcv 3618 | . . . . . . . . . 10
⊢ (𝑗 ∈
(ℤ≥‘𝑗) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥)) → (𝑗 ∈ dom 𝐹 ∧ (𝐹‘𝑗) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥)))) | 
| 18 | 12, 17 | syl 17 | . . . . . . . . 9
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) →
(∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥)) → (𝑗 ∈ dom 𝐹 ∧ (𝐹‘𝑗) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥)))) | 
| 19 |  | n0i 4340 | . . . . . . . . . . . 12
⊢ ((𝐹‘𝑗) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥) → ¬ ((𝐹‘𝑗)(ball‘𝐷)𝑥) = ∅) | 
| 20 |  | blf 24417 | . . . . . . . . . . . . . . 15
⊢ (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷):(𝑋 ×
ℝ*)⟶𝒫 𝑋) | 
| 21 | 20 | fdmd 6746 | . . . . . . . . . . . . . 14
⊢ (𝐷 ∈ (∞Met‘𝑋) → dom (ball‘𝐷) = (𝑋 ×
ℝ*)) | 
| 22 |  | ndmovg 7616 | . . . . . . . . . . . . . . 15
⊢ ((dom
(ball‘𝐷) = (𝑋 × ℝ*)
∧ ¬ ((𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ*)) → ((𝐹‘𝑗)(ball‘𝐷)𝑥) = ∅) | 
| 23 | 22 | ex 412 | . . . . . . . . . . . . . 14
⊢ (dom
(ball‘𝐷) = (𝑋 × ℝ*)
→ (¬ ((𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ*) → ((𝐹‘𝑗)(ball‘𝐷)𝑥) = ∅)) | 
| 24 | 21, 23 | syl 17 | . . . . . . . . . . . . 13
⊢ (𝐷 ∈ (∞Met‘𝑋) → (¬ ((𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ*) → ((𝐹‘𝑗)(ball‘𝐷)𝑥) = ∅)) | 
| 25 | 24 | con1d 145 | . . . . . . . . . . . 12
⊢ (𝐷 ∈ (∞Met‘𝑋) → (¬ ((𝐹‘𝑗)(ball‘𝐷)𝑥) = ∅ → ((𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈
ℝ*))) | 
| 26 |  | simpl 482 | . . . . . . . . . . . 12
⊢ (((𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ*) → (𝐹‘𝑗) ∈ 𝑋) | 
| 27 | 19, 25, 26 | syl56 36 | . . . . . . . . . . 11
⊢ (𝐷 ∈ (∞Met‘𝑋) → ((𝐹‘𝑗) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥) → (𝐹‘𝑗) ∈ 𝑋)) | 
| 28 | 27 | adantld 490 | . . . . . . . . . 10
⊢ (𝐷 ∈ (∞Met‘𝑋) → ((𝑗 ∈ dom 𝐹 ∧ (𝐹‘𝑗) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥)) → (𝐹‘𝑗) ∈ 𝑋)) | 
| 29 | 28 | ad2antrr 726 | . . . . . . . . 9
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) → ((𝑗 ∈ dom 𝐹 ∧ (𝐹‘𝑗) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥)) → (𝐹‘𝑗) ∈ 𝑋)) | 
| 30 | 18, 29 | syld 47 | . . . . . . . 8
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) →
(∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥)) → (𝐹‘𝑗) ∈ 𝑋)) | 
| 31 | 14 | eleq1d 2826 | . . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) ∈ 𝑋 ↔ (𝐹‘𝑗) ∈ 𝑋)) | 
| 32 | 14 | oveq1d 7446 | . . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) = ((𝐹‘𝑗)𝐷(𝐹‘𝑗))) | 
| 33 | 32 | breq1d 5153 | . . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → (((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥 ↔ ((𝐹‘𝑗)𝐷(𝐹‘𝑗)) < 𝑥)) | 
| 34 | 13, 31, 33 | 3anbi123d 1438 | . . . . . . . . . . 11
⊢ (𝑘 = 𝑗 → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥) ↔ (𝑗 ∈ dom 𝐹 ∧ (𝐹‘𝑗) ∈ 𝑋 ∧ ((𝐹‘𝑗)𝐷(𝐹‘𝑗)) < 𝑥))) | 
| 35 | 34 | rspcv 3618 | . . . . . . . . . 10
⊢ (𝑗 ∈
(ℤ≥‘𝑗) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥) → (𝑗 ∈ dom 𝐹 ∧ (𝐹‘𝑗) ∈ 𝑋 ∧ ((𝐹‘𝑗)𝐷(𝐹‘𝑗)) < 𝑥))) | 
| 36 | 12, 35 | syl 17 | . . . . . . . . 9
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) →
(∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥) → (𝑗 ∈ dom 𝐹 ∧ (𝐹‘𝑗) ∈ 𝑋 ∧ ((𝐹‘𝑗)𝐷(𝐹‘𝑗)) < 𝑥))) | 
| 37 |  | simp2 1138 | . . . . . . . . 9
⊢ ((𝑗 ∈ dom 𝐹 ∧ (𝐹‘𝑗) ∈ 𝑋 ∧ ((𝐹‘𝑗)𝐷(𝐹‘𝑗)) < 𝑥) → (𝐹‘𝑗) ∈ 𝑋) | 
| 38 | 36, 37 | syl6 35 | . . . . . . . 8
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) →
(∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥) → (𝐹‘𝑗) ∈ 𝑋)) | 
| 39 |  | rpxr 13044 | . . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ*) | 
| 40 |  | elbl 24398 | . . . . . . . . . . . . . . . 16
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ*) → ((𝐹‘𝑘) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥) ↔ ((𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑗)𝐷(𝐹‘𝑘)) < 𝑥))) | 
| 41 | 39, 40 | syl3an3 1166 | . . . . . . . . . . . . . . 15
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ+) → ((𝐹‘𝑘) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥) ↔ ((𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑗)𝐷(𝐹‘𝑘)) < 𝑥))) | 
| 42 |  | xmetsym 24357 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹‘𝑗) ∈ 𝑋 ∧ (𝐹‘𝑘) ∈ 𝑋) → ((𝐹‘𝑗)𝐷(𝐹‘𝑘)) = ((𝐹‘𝑘)𝐷(𝐹‘𝑗))) | 
| 43 | 42 | 3expa 1119 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹‘𝑗) ∈ 𝑋) ∧ (𝐹‘𝑘) ∈ 𝑋) → ((𝐹‘𝑗)𝐷(𝐹‘𝑘)) = ((𝐹‘𝑘)𝐷(𝐹‘𝑗))) | 
| 44 | 43 | 3adantl3 1169 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ+) ∧ (𝐹‘𝑘) ∈ 𝑋) → ((𝐹‘𝑗)𝐷(𝐹‘𝑘)) = ((𝐹‘𝑘)𝐷(𝐹‘𝑗))) | 
| 45 | 44 | breq1d 5153 | . . . . . . . . . . . . . . . 16
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ+) ∧ (𝐹‘𝑘) ∈ 𝑋) → (((𝐹‘𝑗)𝐷(𝐹‘𝑘)) < 𝑥 ↔ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) | 
| 46 | 45 | pm5.32da 579 | . . . . . . . . . . . . . . 15
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ+) → (((𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑗)𝐷(𝐹‘𝑘)) < 𝑥) ↔ ((𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥))) | 
| 47 | 41, 46 | bitrd 279 | . . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ+) → ((𝐹‘𝑘) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥) ↔ ((𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥))) | 
| 48 | 47 | 3com23 1127 | . . . . . . . . . . . . 13
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+ ∧ (𝐹‘𝑗) ∈ 𝑋) → ((𝐹‘𝑘) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥) ↔ ((𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥))) | 
| 49 | 48 | anbi2d 630 | . . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+ ∧ (𝐹‘𝑗) ∈ 𝑋) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥)) ↔ (𝑘 ∈ dom 𝐹 ∧ ((𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)))) | 
| 50 |  | 3anass 1095 | . . . . . . . . . . . 12
⊢ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥) ↔ (𝑘 ∈ dom 𝐹 ∧ ((𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥))) | 
| 51 | 49, 50 | bitr4di 289 | . . . . . . . . . . 11
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+ ∧ (𝐹‘𝑗) ∈ 𝑋) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥)) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥))) | 
| 52 | 51 | ralbidv 3178 | . . . . . . . . . 10
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+ ∧ (𝐹‘𝑗) ∈ 𝑋) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥)) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥))) | 
| 53 | 52 | 3expia 1122 | . . . . . . . . 9
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) → ((𝐹‘𝑗) ∈ 𝑋 → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥)) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)))) | 
| 54 | 53 | adantr 480 | . . . . . . . 8
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) → ((𝐹‘𝑗) ∈ 𝑋 → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥)) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)))) | 
| 55 | 30, 38, 54 | pm5.21ndd 379 | . . . . . . 7
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) →
(∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥)) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥))) | 
| 56 | 55 | rexbidva 3177 | . . . . . 6
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) →
(∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥)) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥))) | 
| 57 | 56 | adantlr 715 | . . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋 ↑pm ℂ)) ∧ 𝑥 ∈ ℝ+)
→ (∃𝑗 ∈
ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥)) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥))) | 
| 58 | 10, 57 | bitrd 279 | . . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋 ↑pm ℂ)) ∧ 𝑥 ∈ ℝ+)
→ (∃𝑗 ∈
ℤ (𝐹 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶((𝐹‘𝑗)(ball‘𝐷)𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥))) | 
| 59 | 58 | ralbidva 3176 | . . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋 ↑pm ℂ)) →
(∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶((𝐹‘𝑗)(ball‘𝐷)𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥))) | 
| 60 | 59 | pm5.32da 579 | . 2
⊢ (𝐷 ∈ (∞Met‘𝑋) → ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶((𝐹‘𝑗)(ball‘𝐷)𝑥)) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)))) | 
| 61 | 1, 60 | bitrd 279 | 1
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)))) |