Proof of Theorem iscau2
Step | Hyp | Ref
| Expression |
1 | | iscau 24440 |
. 2
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶((𝐹‘𝑗)(ball‘𝐷)𝑥)))) |
2 | | elfvdm 6806 |
. . . . . . . . . 10
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met) |
3 | | cnex 10952 |
. . . . . . . . . 10
⊢ ℂ
∈ V |
4 | | elpmg 8631 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ dom ∞Met ∧
ℂ ∈ V) → (𝐹
∈ (𝑋
↑pm ℂ) ↔ (Fun 𝐹 ∧ 𝐹 ⊆ (ℂ × 𝑋)))) |
5 | 2, 3, 4 | sylancl 586 |
. . . . . . . . 9
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (𝑋 ↑pm ℂ) ↔ (Fun
𝐹 ∧ 𝐹 ⊆ (ℂ × 𝑋)))) |
6 | 5 | simprbda 499 |
. . . . . . . 8
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋 ↑pm ℂ)) → Fun
𝐹) |
7 | | ffvresb 6998 |
. . . . . . . 8
⊢ (Fun
𝐹 → ((𝐹 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶((𝐹‘𝑗)(ball‘𝐷)𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥)))) |
8 | 6, 7 | syl 17 |
. . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋 ↑pm ℂ)) →
((𝐹 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶((𝐹‘𝑗)(ball‘𝐷)𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥)))) |
9 | 8 | rexbidv 3226 |
. . . . . 6
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋 ↑pm ℂ)) →
(∃𝑗 ∈ ℤ
(𝐹 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶((𝐹‘𝑗)(ball‘𝐷)𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥)))) |
10 | 9 | adantr 481 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋 ↑pm ℂ)) ∧ 𝑥 ∈ ℝ+)
→ (∃𝑗 ∈
ℤ (𝐹 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶((𝐹‘𝑗)(ball‘𝐷)𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥)))) |
11 | | uzid 12597 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ ℤ → 𝑗 ∈
(ℤ≥‘𝑗)) |
12 | 11 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) → 𝑗 ∈
(ℤ≥‘𝑗)) |
13 | | eleq1w 2821 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → (𝑘 ∈ dom 𝐹 ↔ 𝑗 ∈ dom 𝐹)) |
14 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) |
15 | 14 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥) ↔ (𝐹‘𝑗) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥))) |
16 | 13, 15 | anbi12d 631 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑗 → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥)) ↔ (𝑗 ∈ dom 𝐹 ∧ (𝐹‘𝑗) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥)))) |
17 | 16 | rspcv 3557 |
. . . . . . . . . 10
⊢ (𝑗 ∈
(ℤ≥‘𝑗) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥)) → (𝑗 ∈ dom 𝐹 ∧ (𝐹‘𝑗) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥)))) |
18 | 12, 17 | syl 17 |
. . . . . . . . 9
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) →
(∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥)) → (𝑗 ∈ dom 𝐹 ∧ (𝐹‘𝑗) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥)))) |
19 | | n0i 4267 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑗) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥) → ¬ ((𝐹‘𝑗)(ball‘𝐷)𝑥) = ∅) |
20 | | blf 23560 |
. . . . . . . . . . . . . . 15
⊢ (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷):(𝑋 ×
ℝ*)⟶𝒫 𝑋) |
21 | 20 | fdmd 6611 |
. . . . . . . . . . . . . 14
⊢ (𝐷 ∈ (∞Met‘𝑋) → dom (ball‘𝐷) = (𝑋 ×
ℝ*)) |
22 | | ndmovg 7455 |
. . . . . . . . . . . . . . 15
⊢ ((dom
(ball‘𝐷) = (𝑋 × ℝ*)
∧ ¬ ((𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ*)) → ((𝐹‘𝑗)(ball‘𝐷)𝑥) = ∅) |
23 | 22 | ex 413 |
. . . . . . . . . . . . . 14
⊢ (dom
(ball‘𝐷) = (𝑋 × ℝ*)
→ (¬ ((𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ*) → ((𝐹‘𝑗)(ball‘𝐷)𝑥) = ∅)) |
24 | 21, 23 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝐷 ∈ (∞Met‘𝑋) → (¬ ((𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ*) → ((𝐹‘𝑗)(ball‘𝐷)𝑥) = ∅)) |
25 | 24 | con1d 145 |
. . . . . . . . . . . 12
⊢ (𝐷 ∈ (∞Met‘𝑋) → (¬ ((𝐹‘𝑗)(ball‘𝐷)𝑥) = ∅ → ((𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈
ℝ*))) |
26 | | simpl 483 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ*) → (𝐹‘𝑗) ∈ 𝑋) |
27 | 19, 25, 26 | syl56 36 |
. . . . . . . . . . 11
⊢ (𝐷 ∈ (∞Met‘𝑋) → ((𝐹‘𝑗) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥) → (𝐹‘𝑗) ∈ 𝑋)) |
28 | 27 | adantld 491 |
. . . . . . . . . 10
⊢ (𝐷 ∈ (∞Met‘𝑋) → ((𝑗 ∈ dom 𝐹 ∧ (𝐹‘𝑗) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥)) → (𝐹‘𝑗) ∈ 𝑋)) |
29 | 28 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) → ((𝑗 ∈ dom 𝐹 ∧ (𝐹‘𝑗) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥)) → (𝐹‘𝑗) ∈ 𝑋)) |
30 | 18, 29 | syld 47 |
. . . . . . . 8
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) →
(∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥)) → (𝐹‘𝑗) ∈ 𝑋)) |
31 | 14 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) ∈ 𝑋 ↔ (𝐹‘𝑗) ∈ 𝑋)) |
32 | 14 | oveq1d 7290 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) = ((𝐹‘𝑗)𝐷(𝐹‘𝑗))) |
33 | 32 | breq1d 5084 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → (((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥 ↔ ((𝐹‘𝑗)𝐷(𝐹‘𝑗)) < 𝑥)) |
34 | 13, 31, 33 | 3anbi123d 1435 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑗 → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥) ↔ (𝑗 ∈ dom 𝐹 ∧ (𝐹‘𝑗) ∈ 𝑋 ∧ ((𝐹‘𝑗)𝐷(𝐹‘𝑗)) < 𝑥))) |
35 | 34 | rspcv 3557 |
. . . . . . . . . 10
⊢ (𝑗 ∈
(ℤ≥‘𝑗) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥) → (𝑗 ∈ dom 𝐹 ∧ (𝐹‘𝑗) ∈ 𝑋 ∧ ((𝐹‘𝑗)𝐷(𝐹‘𝑗)) < 𝑥))) |
36 | 12, 35 | syl 17 |
. . . . . . . . 9
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) →
(∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥) → (𝑗 ∈ dom 𝐹 ∧ (𝐹‘𝑗) ∈ 𝑋 ∧ ((𝐹‘𝑗)𝐷(𝐹‘𝑗)) < 𝑥))) |
37 | | simp2 1136 |
. . . . . . . . 9
⊢ ((𝑗 ∈ dom 𝐹 ∧ (𝐹‘𝑗) ∈ 𝑋 ∧ ((𝐹‘𝑗)𝐷(𝐹‘𝑗)) < 𝑥) → (𝐹‘𝑗) ∈ 𝑋) |
38 | 36, 37 | syl6 35 |
. . . . . . . 8
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) →
(∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥) → (𝐹‘𝑗) ∈ 𝑋)) |
39 | | rpxr 12739 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ*) |
40 | | elbl 23541 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ*) → ((𝐹‘𝑘) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥) ↔ ((𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑗)𝐷(𝐹‘𝑘)) < 𝑥))) |
41 | 39, 40 | syl3an3 1164 |
. . . . . . . . . . . . . . 15
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ+) → ((𝐹‘𝑘) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥) ↔ ((𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑗)𝐷(𝐹‘𝑘)) < 𝑥))) |
42 | | xmetsym 23500 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹‘𝑗) ∈ 𝑋 ∧ (𝐹‘𝑘) ∈ 𝑋) → ((𝐹‘𝑗)𝐷(𝐹‘𝑘)) = ((𝐹‘𝑘)𝐷(𝐹‘𝑗))) |
43 | 42 | 3expa 1117 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹‘𝑗) ∈ 𝑋) ∧ (𝐹‘𝑘) ∈ 𝑋) → ((𝐹‘𝑗)𝐷(𝐹‘𝑘)) = ((𝐹‘𝑘)𝐷(𝐹‘𝑗))) |
44 | 43 | 3adantl3 1167 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ+) ∧ (𝐹‘𝑘) ∈ 𝑋) → ((𝐹‘𝑗)𝐷(𝐹‘𝑘)) = ((𝐹‘𝑘)𝐷(𝐹‘𝑗))) |
45 | 44 | breq1d 5084 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ+) ∧ (𝐹‘𝑘) ∈ 𝑋) → (((𝐹‘𝑗)𝐷(𝐹‘𝑘)) < 𝑥 ↔ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) |
46 | 45 | pm5.32da 579 |
. . . . . . . . . . . . . . 15
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ+) → (((𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑗)𝐷(𝐹‘𝑘)) < 𝑥) ↔ ((𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥))) |
47 | 41, 46 | bitrd 278 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ+) → ((𝐹‘𝑘) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥) ↔ ((𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥))) |
48 | 47 | 3com23 1125 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+ ∧ (𝐹‘𝑗) ∈ 𝑋) → ((𝐹‘𝑘) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥) ↔ ((𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥))) |
49 | 48 | anbi2d 629 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+ ∧ (𝐹‘𝑗) ∈ 𝑋) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥)) ↔ (𝑘 ∈ dom 𝐹 ∧ ((𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)))) |
50 | | 3anass 1094 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥) ↔ (𝑘 ∈ dom 𝐹 ∧ ((𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥))) |
51 | 49, 50 | bitr4di 289 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+ ∧ (𝐹‘𝑗) ∈ 𝑋) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥)) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥))) |
52 | 51 | ralbidv 3112 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+ ∧ (𝐹‘𝑗) ∈ 𝑋) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥)) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥))) |
53 | 52 | 3expia 1120 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) → ((𝐹‘𝑗) ∈ 𝑋 → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥)) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)))) |
54 | 53 | adantr 481 |
. . . . . . . 8
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) → ((𝐹‘𝑗) ∈ 𝑋 → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥)) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)))) |
55 | 30, 38, 54 | pm5.21ndd 381 |
. . . . . . 7
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) →
(∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥)) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥))) |
56 | 55 | rexbidva 3225 |
. . . . . 6
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) →
(∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥)) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥))) |
57 | 56 | adantlr 712 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋 ↑pm ℂ)) ∧ 𝑥 ∈ ℝ+)
→ (∃𝑗 ∈
ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐹‘𝑗)(ball‘𝐷)𝑥)) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥))) |
58 | 10, 57 | bitrd 278 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋 ↑pm ℂ)) ∧ 𝑥 ∈ ℝ+)
→ (∃𝑗 ∈
ℤ (𝐹 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶((𝐹‘𝑗)(ball‘𝐷)𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥))) |
59 | 58 | ralbidva 3111 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋 ↑pm ℂ)) →
(∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶((𝐹‘𝑗)(ball‘𝐷)𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥))) |
60 | 59 | pm5.32da 579 |
. 2
⊢ (𝐷 ∈ (∞Met‘𝑋) → ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶((𝐹‘𝑗)(ball‘𝐷)𝑥)) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)))) |
61 | 1, 60 | bitrd 278 |
1
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)))) |