MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscau2 Structured version   Visualization version   GIF version

Theorem iscau2 25184
Description: Express the property "𝐹 is a Cauchy sequence of metric 𝐷 " using an arbitrary upper set of integers. (Contributed by NM, 19-Dec-2006.) (Revised by Mario Carneiro, 14-Nov-2013.)
Assertion
Ref Expression
iscau2 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
Distinct variable groups:   𝑗,𝑘,𝑥,𝐷   𝑗,𝐹,𝑘,𝑥   𝑗,𝑋,𝑘,𝑥

Proof of Theorem iscau2
StepHypRef Expression
1 iscau 25183 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝐹𝑗)(ball‘𝐷)𝑥))))
2 elfvdm 6898 . . . . . . . . . 10 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
3 cnex 11156 . . . . . . . . . 10 ℂ ∈ V
4 elpmg 8819 . . . . . . . . . 10 ((𝑋 ∈ dom ∞Met ∧ ℂ ∈ V) → (𝐹 ∈ (𝑋pm ℂ) ↔ (Fun 𝐹𝐹 ⊆ (ℂ × 𝑋))))
52, 3, 4sylancl 586 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (𝑋pm ℂ) ↔ (Fun 𝐹𝐹 ⊆ (ℂ × 𝑋))))
65simprbda 498 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋pm ℂ)) → Fun 𝐹)
7 ffvresb 7100 . . . . . . . 8 (Fun 𝐹 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝐹𝑗)(ball‘𝐷)𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥))))
86, 7syl 17 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋pm ℂ)) → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝐹𝑗)(ball‘𝐷)𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥))))
98rexbidv 3158 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋pm ℂ)) → (∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝐹𝑗)(ball‘𝐷)𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥))))
109adantr 480 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋pm ℂ)) ∧ 𝑥 ∈ ℝ+) → (∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝐹𝑗)(ball‘𝐷)𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥))))
11 uzid 12815 . . . . . . . . . . 11 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
1211adantl 481 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) → 𝑗 ∈ (ℤ𝑗))
13 eleq1w 2812 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝑘 ∈ dom 𝐹𝑗 ∈ dom 𝐹))
14 fveq2 6861 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
1514eleq1d 2814 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥) ↔ (𝐹𝑗) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)))
1613, 15anbi12d 632 . . . . . . . . . . 11 (𝑘 = 𝑗 → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) ↔ (𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥))))
1716rspcv 3587 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) → (𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥))))
1812, 17syl 17 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) → (𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥))))
19 n0i 4306 . . . . . . . . . . . 12 ((𝐹𝑗) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥) → ¬ ((𝐹𝑗)(ball‘𝐷)𝑥) = ∅)
20 blf 24302 . . . . . . . . . . . . . . 15 (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋)
2120fdmd 6701 . . . . . . . . . . . . . 14 (𝐷 ∈ (∞Met‘𝑋) → dom (ball‘𝐷) = (𝑋 × ℝ*))
22 ndmovg 7575 . . . . . . . . . . . . . . 15 ((dom (ball‘𝐷) = (𝑋 × ℝ*) ∧ ¬ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ*)) → ((𝐹𝑗)(ball‘𝐷)𝑥) = ∅)
2322ex 412 . . . . . . . . . . . . . 14 (dom (ball‘𝐷) = (𝑋 × ℝ*) → (¬ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ*) → ((𝐹𝑗)(ball‘𝐷)𝑥) = ∅))
2421, 23syl 17 . . . . . . . . . . . . 13 (𝐷 ∈ (∞Met‘𝑋) → (¬ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ*) → ((𝐹𝑗)(ball‘𝐷)𝑥) = ∅))
2524con1d 145 . . . . . . . . . . . 12 (𝐷 ∈ (∞Met‘𝑋) → (¬ ((𝐹𝑗)(ball‘𝐷)𝑥) = ∅ → ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ*)))
26 simpl 482 . . . . . . . . . . . 12 (((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ*) → (𝐹𝑗) ∈ 𝑋)
2719, 25, 26syl56 36 . . . . . . . . . . 11 (𝐷 ∈ (∞Met‘𝑋) → ((𝐹𝑗) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥) → (𝐹𝑗) ∈ 𝑋))
2827adantld 490 . . . . . . . . . 10 (𝐷 ∈ (∞Met‘𝑋) → ((𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) → (𝐹𝑗) ∈ 𝑋))
2928ad2antrr 726 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) → ((𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) → (𝐹𝑗) ∈ 𝑋))
3018, 29syld 47 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) → (𝐹𝑗) ∈ 𝑋))
3114eleq1d 2814 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ 𝑋 ↔ (𝐹𝑗) ∈ 𝑋))
3214oveq1d 7405 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → ((𝐹𝑘)𝐷(𝐹𝑗)) = ((𝐹𝑗)𝐷(𝐹𝑗)))
3332breq1d 5120 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥 ↔ ((𝐹𝑗)𝐷(𝐹𝑗)) < 𝑥))
3413, 31, 333anbi123d 1438 . . . . . . . . . . 11 (𝑘 = 𝑗 → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ (𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ 𝑋 ∧ ((𝐹𝑗)𝐷(𝐹𝑗)) < 𝑥)))
3534rspcv 3587 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) → (𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ 𝑋 ∧ ((𝐹𝑗)𝐷(𝐹𝑗)) < 𝑥)))
3612, 35syl 17 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) → (𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ 𝑋 ∧ ((𝐹𝑗)𝐷(𝐹𝑗)) < 𝑥)))
37 simp2 1137 . . . . . . . . 9 ((𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ 𝑋 ∧ ((𝐹𝑗)𝐷(𝐹𝑗)) < 𝑥) → (𝐹𝑗) ∈ 𝑋)
3836, 37syl6 35 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) → (𝐹𝑗) ∈ 𝑋))
39 rpxr 12968 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ+𝑥 ∈ ℝ*)
40 elbl 24283 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ*) → ((𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥) ↔ ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑗)𝐷(𝐹𝑘)) < 𝑥)))
4139, 40syl3an3 1165 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ+) → ((𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥) ↔ ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑗)𝐷(𝐹𝑘)) < 𝑥)))
42 xmetsym 24242 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋 ∧ (𝐹𝑘) ∈ 𝑋) → ((𝐹𝑗)𝐷(𝐹𝑘)) = ((𝐹𝑘)𝐷(𝐹𝑗)))
43423expa 1118 . . . . . . . . . . . . . . . . . 18 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋) ∧ (𝐹𝑘) ∈ 𝑋) → ((𝐹𝑗)𝐷(𝐹𝑘)) = ((𝐹𝑘)𝐷(𝐹𝑗)))
44433adantl3 1169 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ+) ∧ (𝐹𝑘) ∈ 𝑋) → ((𝐹𝑗)𝐷(𝐹𝑘)) = ((𝐹𝑘)𝐷(𝐹𝑗)))
4544breq1d 5120 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ+) ∧ (𝐹𝑘) ∈ 𝑋) → (((𝐹𝑗)𝐷(𝐹𝑘)) < 𝑥 ↔ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
4645pm5.32da 579 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ+) → (((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑗)𝐷(𝐹𝑘)) < 𝑥) ↔ ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
4741, 46bitrd 279 . . . . . . . . . . . . . 14 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ+) → ((𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥) ↔ ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
48473com23 1126 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+ ∧ (𝐹𝑗) ∈ 𝑋) → ((𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥) ↔ ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
4948anbi2d 630 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+ ∧ (𝐹𝑗) ∈ 𝑋) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) ↔ (𝑘 ∈ dom 𝐹 ∧ ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
50 3anass 1094 . . . . . . . . . . . 12 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ (𝑘 ∈ dom 𝐹 ∧ ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
5149, 50bitr4di 289 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+ ∧ (𝐹𝑗) ∈ 𝑋) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
5251ralbidv 3157 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+ ∧ (𝐹𝑗) ∈ 𝑋) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
53523expia 1121 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) → ((𝐹𝑗) ∈ 𝑋 → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
5453adantr 480 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) → ((𝐹𝑗) ∈ 𝑋 → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
5530, 38, 54pm5.21ndd 379 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
5655rexbidva 3156 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
5756adantlr 715 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋pm ℂ)) ∧ 𝑥 ∈ ℝ+) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
5810, 57bitrd 279 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋pm ℂ)) ∧ 𝑥 ∈ ℝ+) → (∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝐹𝑗)(ball‘𝐷)𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
5958ralbidva 3155 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋pm ℂ)) → (∀𝑥 ∈ ℝ+𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝐹𝑗)(ball‘𝐷)𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
6059pm5.32da 579 . 2 (𝐷 ∈ (∞Met‘𝑋) → ((𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝐹𝑗)(ball‘𝐷)𝑥)) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
611, 60bitrd 279 1 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  Vcvv 3450  wss 3917  c0 4299  𝒫 cpw 4566   class class class wbr 5110   × cxp 5639  dom cdm 5641  cres 5643  Fun wfun 6508  wf 6510  cfv 6514  (class class class)co 7390  pm cpm 8803  cc 11073  *cxr 11214   < clt 11215  cz 12536  cuz 12800  +crp 12958  ∞Metcxmet 21256  ballcbl 21258  Cauccau 25160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-neg 11415  df-z 12537  df-uz 12801  df-rp 12959  df-xadd 13080  df-psmet 21263  df-xmet 21264  df-bl 21266  df-cau 25163
This theorem is referenced by:  iscau3  25185  iscau4  25186  caun0  25188  caussi  25204
  Copyright terms: Public domain W3C validator