MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscau2 Structured version   Visualization version   GIF version

Theorem iscau2 24441
Description: Express the property "𝐹 is a Cauchy sequence of metric 𝐷 " using an arbitrary upper set of integers. (Contributed by NM, 19-Dec-2006.) (Revised by Mario Carneiro, 14-Nov-2013.)
Assertion
Ref Expression
iscau2 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
Distinct variable groups:   𝑗,𝑘,𝑥,𝐷   𝑗,𝐹,𝑘,𝑥   𝑗,𝑋,𝑘,𝑥

Proof of Theorem iscau2
StepHypRef Expression
1 iscau 24440 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝐹𝑗)(ball‘𝐷)𝑥))))
2 elfvdm 6806 . . . . . . . . . 10 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
3 cnex 10952 . . . . . . . . . 10 ℂ ∈ V
4 elpmg 8631 . . . . . . . . . 10 ((𝑋 ∈ dom ∞Met ∧ ℂ ∈ V) → (𝐹 ∈ (𝑋pm ℂ) ↔ (Fun 𝐹𝐹 ⊆ (ℂ × 𝑋))))
52, 3, 4sylancl 586 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (𝑋pm ℂ) ↔ (Fun 𝐹𝐹 ⊆ (ℂ × 𝑋))))
65simprbda 499 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋pm ℂ)) → Fun 𝐹)
7 ffvresb 6998 . . . . . . . 8 (Fun 𝐹 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝐹𝑗)(ball‘𝐷)𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥))))
86, 7syl 17 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋pm ℂ)) → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝐹𝑗)(ball‘𝐷)𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥))))
98rexbidv 3226 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋pm ℂ)) → (∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝐹𝑗)(ball‘𝐷)𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥))))
109adantr 481 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋pm ℂ)) ∧ 𝑥 ∈ ℝ+) → (∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝐹𝑗)(ball‘𝐷)𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥))))
11 uzid 12597 . . . . . . . . . . 11 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
1211adantl 482 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) → 𝑗 ∈ (ℤ𝑗))
13 eleq1w 2821 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝑘 ∈ dom 𝐹𝑗 ∈ dom 𝐹))
14 fveq2 6774 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
1514eleq1d 2823 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥) ↔ (𝐹𝑗) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)))
1613, 15anbi12d 631 . . . . . . . . . . 11 (𝑘 = 𝑗 → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) ↔ (𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥))))
1716rspcv 3557 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) → (𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥))))
1812, 17syl 17 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) → (𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥))))
19 n0i 4267 . . . . . . . . . . . 12 ((𝐹𝑗) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥) → ¬ ((𝐹𝑗)(ball‘𝐷)𝑥) = ∅)
20 blf 23560 . . . . . . . . . . . . . . 15 (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋)
2120fdmd 6611 . . . . . . . . . . . . . 14 (𝐷 ∈ (∞Met‘𝑋) → dom (ball‘𝐷) = (𝑋 × ℝ*))
22 ndmovg 7455 . . . . . . . . . . . . . . 15 ((dom (ball‘𝐷) = (𝑋 × ℝ*) ∧ ¬ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ*)) → ((𝐹𝑗)(ball‘𝐷)𝑥) = ∅)
2322ex 413 . . . . . . . . . . . . . 14 (dom (ball‘𝐷) = (𝑋 × ℝ*) → (¬ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ*) → ((𝐹𝑗)(ball‘𝐷)𝑥) = ∅))
2421, 23syl 17 . . . . . . . . . . . . 13 (𝐷 ∈ (∞Met‘𝑋) → (¬ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ*) → ((𝐹𝑗)(ball‘𝐷)𝑥) = ∅))
2524con1d 145 . . . . . . . . . . . 12 (𝐷 ∈ (∞Met‘𝑋) → (¬ ((𝐹𝑗)(ball‘𝐷)𝑥) = ∅ → ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ*)))
26 simpl 483 . . . . . . . . . . . 12 (((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ*) → (𝐹𝑗) ∈ 𝑋)
2719, 25, 26syl56 36 . . . . . . . . . . 11 (𝐷 ∈ (∞Met‘𝑋) → ((𝐹𝑗) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥) → (𝐹𝑗) ∈ 𝑋))
2827adantld 491 . . . . . . . . . 10 (𝐷 ∈ (∞Met‘𝑋) → ((𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) → (𝐹𝑗) ∈ 𝑋))
2928ad2antrr 723 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) → ((𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) → (𝐹𝑗) ∈ 𝑋))
3018, 29syld 47 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) → (𝐹𝑗) ∈ 𝑋))
3114eleq1d 2823 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ 𝑋 ↔ (𝐹𝑗) ∈ 𝑋))
3214oveq1d 7290 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → ((𝐹𝑘)𝐷(𝐹𝑗)) = ((𝐹𝑗)𝐷(𝐹𝑗)))
3332breq1d 5084 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥 ↔ ((𝐹𝑗)𝐷(𝐹𝑗)) < 𝑥))
3413, 31, 333anbi123d 1435 . . . . . . . . . . 11 (𝑘 = 𝑗 → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ (𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ 𝑋 ∧ ((𝐹𝑗)𝐷(𝐹𝑗)) < 𝑥)))
3534rspcv 3557 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) → (𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ 𝑋 ∧ ((𝐹𝑗)𝐷(𝐹𝑗)) < 𝑥)))
3612, 35syl 17 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) → (𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ 𝑋 ∧ ((𝐹𝑗)𝐷(𝐹𝑗)) < 𝑥)))
37 simp2 1136 . . . . . . . . 9 ((𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ 𝑋 ∧ ((𝐹𝑗)𝐷(𝐹𝑗)) < 𝑥) → (𝐹𝑗) ∈ 𝑋)
3836, 37syl6 35 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) → (𝐹𝑗) ∈ 𝑋))
39 rpxr 12739 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ+𝑥 ∈ ℝ*)
40 elbl 23541 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ*) → ((𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥) ↔ ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑗)𝐷(𝐹𝑘)) < 𝑥)))
4139, 40syl3an3 1164 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ+) → ((𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥) ↔ ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑗)𝐷(𝐹𝑘)) < 𝑥)))
42 xmetsym 23500 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋 ∧ (𝐹𝑘) ∈ 𝑋) → ((𝐹𝑗)𝐷(𝐹𝑘)) = ((𝐹𝑘)𝐷(𝐹𝑗)))
43423expa 1117 . . . . . . . . . . . . . . . . . 18 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋) ∧ (𝐹𝑘) ∈ 𝑋) → ((𝐹𝑗)𝐷(𝐹𝑘)) = ((𝐹𝑘)𝐷(𝐹𝑗)))
44433adantl3 1167 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ+) ∧ (𝐹𝑘) ∈ 𝑋) → ((𝐹𝑗)𝐷(𝐹𝑘)) = ((𝐹𝑘)𝐷(𝐹𝑗)))
4544breq1d 5084 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ+) ∧ (𝐹𝑘) ∈ 𝑋) → (((𝐹𝑗)𝐷(𝐹𝑘)) < 𝑥 ↔ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
4645pm5.32da 579 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ+) → (((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑗)𝐷(𝐹𝑘)) < 𝑥) ↔ ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
4741, 46bitrd 278 . . . . . . . . . . . . . 14 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ+) → ((𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥) ↔ ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
48473com23 1125 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+ ∧ (𝐹𝑗) ∈ 𝑋) → ((𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥) ↔ ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
4948anbi2d 629 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+ ∧ (𝐹𝑗) ∈ 𝑋) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) ↔ (𝑘 ∈ dom 𝐹 ∧ ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
50 3anass 1094 . . . . . . . . . . . 12 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ (𝑘 ∈ dom 𝐹 ∧ ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
5149, 50bitr4di 289 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+ ∧ (𝐹𝑗) ∈ 𝑋) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
5251ralbidv 3112 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+ ∧ (𝐹𝑗) ∈ 𝑋) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
53523expia 1120 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) → ((𝐹𝑗) ∈ 𝑋 → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
5453adantr 481 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) → ((𝐹𝑗) ∈ 𝑋 → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
5530, 38, 54pm5.21ndd 381 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
5655rexbidva 3225 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ℝ+) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
5756adantlr 712 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋pm ℂ)) ∧ 𝑥 ∈ ℝ+) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐹𝑗)(ball‘𝐷)𝑥)) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
5810, 57bitrd 278 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋pm ℂ)) ∧ 𝑥 ∈ ℝ+) → (∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝐹𝑗)(ball‘𝐷)𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
5958ralbidva 3111 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋pm ℂ)) → (∀𝑥 ∈ ℝ+𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝐹𝑗)(ball‘𝐷)𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)))
6059pm5.32da 579 . 2 (𝐷 ∈ (∞Met‘𝑋) → ((𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝐹𝑗)(ball‘𝐷)𝑥)) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
611, 60bitrd 278 1 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  wss 3887  c0 4256  𝒫 cpw 4533   class class class wbr 5074   × cxp 5587  dom cdm 5589  cres 5591  Fun wfun 6427  wf 6429  cfv 6433  (class class class)co 7275  pm cpm 8616  cc 10869  *cxr 11008   < clt 11009  cz 12319  cuz 12582  +crp 12730  ∞Metcxmet 20582  ballcbl 20584  Cauccau 24417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-neg 11208  df-z 12320  df-uz 12583  df-rp 12731  df-xadd 12849  df-psmet 20589  df-xmet 20590  df-bl 20592  df-cau 24420
This theorem is referenced by:  iscau3  24442  iscau4  24443  caun0  24445  caussi  24461
  Copyright terms: Public domain W3C validator