![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > curry2val | Structured version Visualization version GIF version |
Description: The value of a curried function with a constant second argument. (Contributed by NM, 16-Dec-2008.) |
Ref | Expression |
---|---|
curry2.1 | ⊢ 𝐺 = (𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) |
Ref | Expression |
---|---|
curry2val | ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → (𝐺‘𝐷) = (𝐷𝐹𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | curry2.1 | . . . 4 ⊢ 𝐺 = (𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) | |
2 | 1 | curry2 8087 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))) |
3 | 2 | fveq1d 6883 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → (𝐺‘𝐷) = ((𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))‘𝐷)) |
4 | eqid 2724 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶)) = (𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶)) | |
5 | 4 | fvmptndm 7018 | . . . . . . 7 ⊢ (¬ 𝐷 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = ∅) |
6 | 5 | adantl 481 | . . . . . 6 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ ¬ 𝐷 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = ∅) |
7 | fndm 6642 | . . . . . . 7 ⊢ (𝐹 Fn (𝐴 × 𝐵) → dom 𝐹 = (𝐴 × 𝐵)) | |
8 | simpl 482 | . . . . . . . 8 ⊢ ((𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → 𝐷 ∈ 𝐴) | |
9 | 8 | con3i 154 | . . . . . . 7 ⊢ (¬ 𝐷 ∈ 𝐴 → ¬ (𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵)) |
10 | ndmovg 7583 | . . . . . . 7 ⊢ ((dom 𝐹 = (𝐴 × 𝐵) ∧ ¬ (𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵)) → (𝐷𝐹𝐶) = ∅) | |
11 | 7, 9, 10 | syl2an 595 | . . . . . 6 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ ¬ 𝐷 ∈ 𝐴) → (𝐷𝐹𝐶) = ∅) |
12 | 6, 11 | eqtr4d 2767 | . . . . 5 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ ¬ 𝐷 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = (𝐷𝐹𝐶)) |
13 | 12 | ex 412 | . . . 4 ⊢ (𝐹 Fn (𝐴 × 𝐵) → (¬ 𝐷 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = (𝐷𝐹𝐶))) |
14 | 13 | adantr 480 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → (¬ 𝐷 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = (𝐷𝐹𝐶))) |
15 | oveq1 7408 | . . . 4 ⊢ (𝑥 = 𝐷 → (𝑥𝐹𝐶) = (𝐷𝐹𝐶)) | |
16 | ovex 7434 | . . . 4 ⊢ (𝐷𝐹𝐶) ∈ V | |
17 | 15, 4, 16 | fvmpt 6988 | . . 3 ⊢ (𝐷 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = (𝐷𝐹𝐶)) |
18 | 14, 17 | pm2.61d2 181 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = (𝐷𝐹𝐶)) |
19 | 3, 18 | eqtrd 2764 | 1 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → (𝐺‘𝐷) = (𝐷𝐹𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3466 ∅c0 4314 {csn 4620 ↦ cmpt 5221 × cxp 5664 ◡ccnv 5665 dom cdm 5666 ↾ cres 5668 ∘ ccom 5670 Fn wfn 6528 ‘cfv 6533 (class class class)co 7401 1st c1st 7966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-1st 7968 df-2nd 7969 |
This theorem is referenced by: curry2ima 32365 |
Copyright terms: Public domain | W3C validator |