MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curry2val Structured version   Visualization version   GIF version

Theorem curry2val 8049
Description: The value of a curried function with a constant second argument. (Contributed by NM, 16-Dec-2008.)
Hypothesis
Ref Expression
curry2.1 𝐺 = (𝐹(1st ↾ (V × {𝐶})))
Assertion
Ref Expression
curry2val ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → (𝐺𝐷) = (𝐷𝐹𝐶))

Proof of Theorem curry2val
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 curry2.1 . . . 4 𝐺 = (𝐹(1st ↾ (V × {𝐶})))
21curry2 8047 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → 𝐺 = (𝑥𝐴 ↦ (𝑥𝐹𝐶)))
32fveq1d 6828 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → (𝐺𝐷) = ((𝑥𝐴 ↦ (𝑥𝐹𝐶))‘𝐷))
4 eqid 2729 . . . . . . . 8 (𝑥𝐴 ↦ (𝑥𝐹𝐶)) = (𝑥𝐴 ↦ (𝑥𝐹𝐶))
54fvmptndm 6965 . . . . . . 7 𝐷𝐴 → ((𝑥𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = ∅)
65adantl 481 . . . . . 6 ((𝐹 Fn (𝐴 × 𝐵) ∧ ¬ 𝐷𝐴) → ((𝑥𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = ∅)
7 fndm 6589 . . . . . . 7 (𝐹 Fn (𝐴 × 𝐵) → dom 𝐹 = (𝐴 × 𝐵))
8 simpl 482 . . . . . . . 8 ((𝐷𝐴𝐶𝐵) → 𝐷𝐴)
98con3i 154 . . . . . . 7 𝐷𝐴 → ¬ (𝐷𝐴𝐶𝐵))
10 ndmovg 7536 . . . . . . 7 ((dom 𝐹 = (𝐴 × 𝐵) ∧ ¬ (𝐷𝐴𝐶𝐵)) → (𝐷𝐹𝐶) = ∅)
117, 9, 10syl2an 596 . . . . . 6 ((𝐹 Fn (𝐴 × 𝐵) ∧ ¬ 𝐷𝐴) → (𝐷𝐹𝐶) = ∅)
126, 11eqtr4d 2767 . . . . 5 ((𝐹 Fn (𝐴 × 𝐵) ∧ ¬ 𝐷𝐴) → ((𝑥𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = (𝐷𝐹𝐶))
1312ex 412 . . . 4 (𝐹 Fn (𝐴 × 𝐵) → (¬ 𝐷𝐴 → ((𝑥𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = (𝐷𝐹𝐶)))
1413adantr 480 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → (¬ 𝐷𝐴 → ((𝑥𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = (𝐷𝐹𝐶)))
15 oveq1 7360 . . . 4 (𝑥 = 𝐷 → (𝑥𝐹𝐶) = (𝐷𝐹𝐶))
16 ovex 7386 . . . 4 (𝐷𝐹𝐶) ∈ V
1715, 4, 16fvmpt 6934 . . 3 (𝐷𝐴 → ((𝑥𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = (𝐷𝐹𝐶))
1814, 17pm2.61d2 181 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → ((𝑥𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = (𝐷𝐹𝐶))
193, 18eqtrd 2764 1 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → (𝐺𝐷) = (𝐷𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  c0 4286  {csn 4579  cmpt 5176   × cxp 5621  ccnv 5622  dom cdm 5623  cres 5625  ccom 5627   Fn wfn 6481  cfv 6486  (class class class)co 7353  1st c1st 7929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-1st 7931  df-2nd 7932
This theorem is referenced by:  curry2ima  32665
  Copyright terms: Public domain W3C validator