![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > curry2val | Structured version Visualization version GIF version |
Description: The value of a curried function with a constant second argument. (Contributed by NM, 16-Dec-2008.) |
Ref | Expression |
---|---|
curry2.1 | ⊢ 𝐺 = (𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) |
Ref | Expression |
---|---|
curry2val | ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → (𝐺‘𝐷) = (𝐷𝐹𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | curry2.1 | . . . 4 ⊢ 𝐺 = (𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) | |
2 | 1 | curry2 8090 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))) |
3 | 2 | fveq1d 6891 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → (𝐺‘𝐷) = ((𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))‘𝐷)) |
4 | eqid 2733 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶)) = (𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶)) | |
5 | 4 | fvmptndm 7026 | . . . . . . 7 ⊢ (¬ 𝐷 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = ∅) |
6 | 5 | adantl 483 | . . . . . 6 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ ¬ 𝐷 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = ∅) |
7 | fndm 6650 | . . . . . . 7 ⊢ (𝐹 Fn (𝐴 × 𝐵) → dom 𝐹 = (𝐴 × 𝐵)) | |
8 | simpl 484 | . . . . . . . 8 ⊢ ((𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → 𝐷 ∈ 𝐴) | |
9 | 8 | con3i 154 | . . . . . . 7 ⊢ (¬ 𝐷 ∈ 𝐴 → ¬ (𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵)) |
10 | ndmovg 7587 | . . . . . . 7 ⊢ ((dom 𝐹 = (𝐴 × 𝐵) ∧ ¬ (𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵)) → (𝐷𝐹𝐶) = ∅) | |
11 | 7, 9, 10 | syl2an 597 | . . . . . 6 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ ¬ 𝐷 ∈ 𝐴) → (𝐷𝐹𝐶) = ∅) |
12 | 6, 11 | eqtr4d 2776 | . . . . 5 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ ¬ 𝐷 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = (𝐷𝐹𝐶)) |
13 | 12 | ex 414 | . . . 4 ⊢ (𝐹 Fn (𝐴 × 𝐵) → (¬ 𝐷 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = (𝐷𝐹𝐶))) |
14 | 13 | adantr 482 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → (¬ 𝐷 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = (𝐷𝐹𝐶))) |
15 | oveq1 7413 | . . . 4 ⊢ (𝑥 = 𝐷 → (𝑥𝐹𝐶) = (𝐷𝐹𝐶)) | |
16 | ovex 7439 | . . . 4 ⊢ (𝐷𝐹𝐶) ∈ V | |
17 | 15, 4, 16 | fvmpt 6996 | . . 3 ⊢ (𝐷 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = (𝐷𝐹𝐶)) |
18 | 14, 17 | pm2.61d2 181 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = (𝐷𝐹𝐶)) |
19 | 3, 18 | eqtrd 2773 | 1 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → (𝐺‘𝐷) = (𝐷𝐹𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ∅c0 4322 {csn 4628 ↦ cmpt 5231 × cxp 5674 ◡ccnv 5675 dom cdm 5676 ↾ cres 5678 ∘ ccom 5680 Fn wfn 6536 ‘cfv 6541 (class class class)co 7406 1st c1st 7970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7409 df-1st 7972 df-2nd 7973 |
This theorem is referenced by: curry2ima 31918 |
Copyright terms: Public domain | W3C validator |