![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > curry2val | Structured version Visualization version GIF version |
Description: The value of a curried function with a constant second argument. (Contributed by NM, 16-Dec-2008.) |
Ref | Expression |
---|---|
curry2.1 | ⊢ 𝐺 = (𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) |
Ref | Expression |
---|---|
curry2val | ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → (𝐺‘𝐷) = (𝐷𝐹𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | curry2.1 | . . . 4 ⊢ 𝐺 = (𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) | |
2 | 1 | curry2 7658 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))) |
3 | 2 | fveq1d 6540 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → (𝐺‘𝐷) = ((𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))‘𝐷)) |
4 | eqid 2795 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶)) = (𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶)) | |
5 | 4 | fvmptndm 6663 | . . . . . . 7 ⊢ (¬ 𝐷 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = ∅) |
6 | 5 | adantl 482 | . . . . . 6 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ ¬ 𝐷 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = ∅) |
7 | fndm 6325 | . . . . . . 7 ⊢ (𝐹 Fn (𝐴 × 𝐵) → dom 𝐹 = (𝐴 × 𝐵)) | |
8 | simpl 483 | . . . . . . . 8 ⊢ ((𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → 𝐷 ∈ 𝐴) | |
9 | 8 | con3i 157 | . . . . . . 7 ⊢ (¬ 𝐷 ∈ 𝐴 → ¬ (𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵)) |
10 | ndmovg 7187 | . . . . . . 7 ⊢ ((dom 𝐹 = (𝐴 × 𝐵) ∧ ¬ (𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵)) → (𝐷𝐹𝐶) = ∅) | |
11 | 7, 9, 10 | syl2an 595 | . . . . . 6 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ ¬ 𝐷 ∈ 𝐴) → (𝐷𝐹𝐶) = ∅) |
12 | 6, 11 | eqtr4d 2834 | . . . . 5 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ ¬ 𝐷 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = (𝐷𝐹𝐶)) |
13 | 12 | ex 413 | . . . 4 ⊢ (𝐹 Fn (𝐴 × 𝐵) → (¬ 𝐷 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = (𝐷𝐹𝐶))) |
14 | 13 | adantr 481 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → (¬ 𝐷 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = (𝐷𝐹𝐶))) |
15 | oveq1 7023 | . . . 4 ⊢ (𝑥 = 𝐷 → (𝑥𝐹𝐶) = (𝐷𝐹𝐶)) | |
16 | ovex 7048 | . . . 4 ⊢ (𝐷𝐹𝐶) ∈ V | |
17 | 15, 4, 16 | fvmpt 6635 | . . 3 ⊢ (𝐷 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = (𝐷𝐹𝐶)) |
18 | 14, 17 | pm2.61d2 182 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = (𝐷𝐹𝐶)) |
19 | 3, 18 | eqtrd 2831 | 1 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → (𝐺‘𝐷) = (𝐷𝐹𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1522 ∈ wcel 2081 Vcvv 3437 ∅c0 4211 {csn 4472 ↦ cmpt 5041 × cxp 5441 ◡ccnv 5442 dom cdm 5443 ↾ cres 5445 ∘ ccom 5447 Fn wfn 6220 ‘cfv 6225 (class class class)co 7016 1st c1st 7543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-ov 7019 df-1st 7545 df-2nd 7546 |
This theorem is referenced by: curry2ima 30132 |
Copyright terms: Public domain | W3C validator |