Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > curry2val | Structured version Visualization version GIF version |
Description: The value of a curried function with a constant second argument. (Contributed by NM, 16-Dec-2008.) |
Ref | Expression |
---|---|
curry2.1 | ⊢ 𝐺 = (𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) |
Ref | Expression |
---|---|
curry2val | ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → (𝐺‘𝐷) = (𝐷𝐹𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | curry2.1 | . . . 4 ⊢ 𝐺 = (𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) | |
2 | 1 | curry2 7931 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))) |
3 | 2 | fveq1d 6770 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → (𝐺‘𝐷) = ((𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))‘𝐷)) |
4 | eqid 2739 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶)) = (𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶)) | |
5 | 4 | fvmptndm 6899 | . . . . . . 7 ⊢ (¬ 𝐷 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = ∅) |
6 | 5 | adantl 481 | . . . . . 6 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ ¬ 𝐷 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = ∅) |
7 | fndm 6532 | . . . . . . 7 ⊢ (𝐹 Fn (𝐴 × 𝐵) → dom 𝐹 = (𝐴 × 𝐵)) | |
8 | simpl 482 | . . . . . . . 8 ⊢ ((𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → 𝐷 ∈ 𝐴) | |
9 | 8 | con3i 154 | . . . . . . 7 ⊢ (¬ 𝐷 ∈ 𝐴 → ¬ (𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵)) |
10 | ndmovg 7446 | . . . . . . 7 ⊢ ((dom 𝐹 = (𝐴 × 𝐵) ∧ ¬ (𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵)) → (𝐷𝐹𝐶) = ∅) | |
11 | 7, 9, 10 | syl2an 595 | . . . . . 6 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ ¬ 𝐷 ∈ 𝐴) → (𝐷𝐹𝐶) = ∅) |
12 | 6, 11 | eqtr4d 2782 | . . . . 5 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ ¬ 𝐷 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = (𝐷𝐹𝐶)) |
13 | 12 | ex 412 | . . . 4 ⊢ (𝐹 Fn (𝐴 × 𝐵) → (¬ 𝐷 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = (𝐷𝐹𝐶))) |
14 | 13 | adantr 480 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → (¬ 𝐷 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = (𝐷𝐹𝐶))) |
15 | oveq1 7275 | . . . 4 ⊢ (𝑥 = 𝐷 → (𝑥𝐹𝐶) = (𝐷𝐹𝐶)) | |
16 | ovex 7301 | . . . 4 ⊢ (𝐷𝐹𝐶) ∈ V | |
17 | 15, 4, 16 | fvmpt 6869 | . . 3 ⊢ (𝐷 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = (𝐷𝐹𝐶)) |
18 | 14, 17 | pm2.61d2 181 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = (𝐷𝐹𝐶)) |
19 | 3, 18 | eqtrd 2779 | 1 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → (𝐺‘𝐷) = (𝐷𝐹𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 Vcvv 3430 ∅c0 4261 {csn 4566 ↦ cmpt 5161 × cxp 5586 ◡ccnv 5587 dom cdm 5588 ↾ cres 5590 ∘ ccom 5592 Fn wfn 6425 ‘cfv 6430 (class class class)co 7268 1st c1st 7815 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-1st 7817 df-2nd 7818 |
This theorem is referenced by: curry2ima 31020 |
Copyright terms: Public domain | W3C validator |