Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrxsphere Structured version   Visualization version   GIF version

Theorem rrxsphere 48728
Description: The sphere with center 𝑀 and radius 𝑅 in a generalized real Euclidean space of finite dimension. Remark: this theorem holds also for the degenerate case 𝑅 < 0 (negative radius): in this case, (𝑀𝑆𝑅) is empty. (Contributed by AV, 5-Feb-2023.)
Hypotheses
Ref Expression
rrxspheres.e 𝐸 = (ℝ^‘𝐼)
rrxspheres.p 𝑃 = (ℝ ↑m 𝐼)
rrxspheres.d 𝐷 = (dist‘𝐸)
rrxspheres.s 𝑆 = (Sphere‘𝐸)
Assertion
Ref Expression
rrxsphere ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (𝑀𝑆𝑅) = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅})
Distinct variable groups:   𝐸,𝑝   𝐼,𝑝   𝑀,𝑝   𝑃,𝑝   𝑅,𝑝
Allowed substitution hints:   𝐷(𝑝)   𝑆(𝑝)

Proof of Theorem rrxsphere
Dummy variables 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrxspheres.e . . . . . 6 𝐸 = (ℝ^‘𝐼)
21fvexi 6890 . . . . 5 𝐸 ∈ V
3 rrxspheres.p . . . . . . . . . 10 𝑃 = (ℝ ↑m 𝐼)
4 id 22 . . . . . . . . . . 11 (𝐼 ∈ Fin → 𝐼 ∈ Fin)
5 eqid 2735 . . . . . . . . . . 11 (Base‘𝐸) = (Base‘𝐸)
64, 1, 5rrxbasefi 25362 . . . . . . . . . 10 (𝐼 ∈ Fin → (Base‘𝐸) = (ℝ ↑m 𝐼))
73, 6eqtr4id 2789 . . . . . . . . 9 (𝐼 ∈ Fin → 𝑃 = (Base‘𝐸))
87eleq2d 2820 . . . . . . . 8 (𝐼 ∈ Fin → (𝑀𝑃𝑀 ∈ (Base‘𝐸)))
98biimpa 476 . . . . . . 7 ((𝐼 ∈ Fin ∧ 𝑀𝑃) → 𝑀 ∈ (Base‘𝐸))
1093adant3 1132 . . . . . 6 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → 𝑀 ∈ (Base‘𝐸))
1110adantl 481 . . . . 5 ((0 ≤ 𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ)) → 𝑀 ∈ (Base‘𝐸))
12 rexr 11281 . . . . . . . . 9 (𝑅 ∈ ℝ → 𝑅 ∈ ℝ*)
13123ad2ant3 1135 . . . . . . . 8 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → 𝑅 ∈ ℝ*)
1413anim2i 617 . . . . . . 7 ((0 ≤ 𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ)) → (0 ≤ 𝑅𝑅 ∈ ℝ*))
1514ancomd 461 . . . . . 6 ((0 ≤ 𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ)) → (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅))
16 elxrge0 13474 . . . . . 6 (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅))
1715, 16sylibr 234 . . . . 5 ((0 ≤ 𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ)) → 𝑅 ∈ (0[,]+∞))
18 rrxspheres.s . . . . . 6 𝑆 = (Sphere‘𝐸)
19 rrxspheres.d . . . . . 6 𝐷 = (dist‘𝐸)
205, 18, 19sphere 48727 . . . . 5 ((𝐸 ∈ V ∧ 𝑀 ∈ (Base‘𝐸) ∧ 𝑅 ∈ (0[,]+∞)) → (𝑀𝑆𝑅) = {𝑝 ∈ (Base‘𝐸) ∣ (𝑝𝐷𝑀) = 𝑅})
212, 11, 17, 20mp3an2i 1468 . . . 4 ((0 ≤ 𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ)) → (𝑀𝑆𝑅) = {𝑝 ∈ (Base‘𝐸) ∣ (𝑝𝐷𝑀) = 𝑅})
22 simp1 1136 . . . . . . . 8 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → 𝐼 ∈ Fin)
2322, 1, 5rrxbasefi 25362 . . . . . . 7 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (Base‘𝐸) = (ℝ ↑m 𝐼))
2423, 3eqtr4di 2788 . . . . . 6 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (Base‘𝐸) = 𝑃)
2524adantl 481 . . . . 5 ((0 ≤ 𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ)) → (Base‘𝐸) = 𝑃)
2625rabeqdv 3431 . . . 4 ((0 ≤ 𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ)) → {𝑝 ∈ (Base‘𝐸) ∣ (𝑝𝐷𝑀) = 𝑅} = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅})
2721, 26eqtrd 2770 . . 3 ((0 ≤ 𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ)) → (𝑀𝑆𝑅) = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅})
2827ex 412 . 2 (0 ≤ 𝑅 → ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (𝑀𝑆𝑅) = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅}))
295, 18, 19spheres 48726 . . . . . . 7 (𝐸 ∈ V → 𝑆 = (𝑥 ∈ (Base‘𝐸), 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ (Base‘𝐸) ∣ (𝑝𝐷𝑥) = 𝑟}))
302, 29ax-mp 5 . . . . . 6 𝑆 = (𝑥 ∈ (Base‘𝐸), 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ (Base‘𝐸) ∣ (𝑝𝐷𝑥) = 𝑟})
31 fvex 6889 . . . . . . 7 (Base‘𝐸) ∈ V
3231rabex 5309 . . . . . 6 {𝑝 ∈ (Base‘𝐸) ∣ (𝑝𝐷𝑥) = 𝑟} ∈ V
3330, 32dmmpo 8070 . . . . 5 dom 𝑆 = ((Base‘𝐸) × (0[,]+∞))
34 0xr 11282 . . . . . . . . . . 11 0 ∈ ℝ*
35 pnfxr 11289 . . . . . . . . . . 11 +∞ ∈ ℝ*
3634, 35pm3.2i 470 . . . . . . . . . 10 (0 ∈ ℝ* ∧ +∞ ∈ ℝ*)
37 elicc1 13406 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞)))
3836, 37mp1i 13 . . . . . . . . 9 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞)))
39 simp2 1137 . . . . . . . . 9 ((𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞) → 0 ≤ 𝑅)
4038, 39biimtrdi 253 . . . . . . . 8 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (𝑅 ∈ (0[,]+∞) → 0 ≤ 𝑅))
4140con3d 152 . . . . . . 7 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (¬ 0 ≤ 𝑅 → ¬ 𝑅 ∈ (0[,]+∞)))
4241imp 406 . . . . . 6 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) → ¬ 𝑅 ∈ (0[,]+∞))
4342intnand 488 . . . . 5 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) → ¬ (𝑀 ∈ (Base‘𝐸) ∧ 𝑅 ∈ (0[,]+∞)))
44 ndmovg 7590 . . . . 5 ((dom 𝑆 = ((Base‘𝐸) × (0[,]+∞)) ∧ ¬ (𝑀 ∈ (Base‘𝐸) ∧ 𝑅 ∈ (0[,]+∞))) → (𝑀𝑆𝑅) = ∅)
4533, 43, 44sylancr 587 . . . 4 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) → (𝑀𝑆𝑅) = ∅)
461fveq2i 6879 . . . . . . . . . . . . . . . 16 (dist‘𝐸) = (dist‘(ℝ^‘𝐼))
4719, 46eqtri 2758 . . . . . . . . . . . . . . 15 𝐷 = (dist‘(ℝ^‘𝐼))
4847rrxmetfi 25364 . . . . . . . . . . . . . 14 (𝐼 ∈ Fin → 𝐷 ∈ (Met‘(ℝ ↑m 𝐼)))
49483ad2ant1 1133 . . . . . . . . . . . . 13 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → 𝐷 ∈ (Met‘(ℝ ↑m 𝐼)))
5049adantr 480 . . . . . . . . . . . 12 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ 𝑝𝑃) → 𝐷 ∈ (Met‘(ℝ ↑m 𝐼)))
513fveq2i 6879 . . . . . . . . . . . 12 (Met‘𝑃) = (Met‘(ℝ ↑m 𝐼))
5250, 51eleqtrrdi 2845 . . . . . . . . . . 11 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ 𝑝𝑃) → 𝐷 ∈ (Met‘𝑃))
53 simpr 484 . . . . . . . . . . 11 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ 𝑝𝑃) → 𝑝𝑃)
54 simp2 1137 . . . . . . . . . . . 12 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → 𝑀𝑃)
5554adantr 480 . . . . . . . . . . 11 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ 𝑝𝑃) → 𝑀𝑃)
56 metge0 24284 . . . . . . . . . . 11 ((𝐷 ∈ (Met‘𝑃) ∧ 𝑝𝑃𝑀𝑃) → 0 ≤ (𝑝𝐷𝑀))
5752, 53, 55, 56syl3anc 1373 . . . . . . . . . 10 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ 𝑝𝑃) → 0 ≤ (𝑝𝐷𝑀))
58 breq2 5123 . . . . . . . . . 10 ((𝑝𝐷𝑀) = 𝑅 → (0 ≤ (𝑝𝐷𝑀) ↔ 0 ≤ 𝑅))
5957, 58syl5ibcom 245 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ 𝑝𝑃) → ((𝑝𝐷𝑀) = 𝑅 → 0 ≤ 𝑅))
6059con3d 152 . . . . . . . 8 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ 𝑝𝑃) → (¬ 0 ≤ 𝑅 → ¬ (𝑝𝐷𝑀) = 𝑅))
6160impancom 451 . . . . . . 7 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) → (𝑝𝑃 → ¬ (𝑝𝐷𝑀) = 𝑅))
6261imp 406 . . . . . 6 ((((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) ∧ 𝑝𝑃) → ¬ (𝑝𝐷𝑀) = 𝑅)
6362ralrimiva 3132 . . . . 5 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) → ∀𝑝𝑃 ¬ (𝑝𝐷𝑀) = 𝑅)
64 eqcom 2742 . . . . . 6 (∅ = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅} ↔ {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅} = ∅)
65 rabeq0 4363 . . . . . 6 ({𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅} = ∅ ↔ ∀𝑝𝑃 ¬ (𝑝𝐷𝑀) = 𝑅)
6664, 65bitri 275 . . . . 5 (∅ = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅} ↔ ∀𝑝𝑃 ¬ (𝑝𝐷𝑀) = 𝑅)
6763, 66sylibr 234 . . . 4 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) → ∅ = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅})
6845, 67eqtrd 2770 . . 3 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) → (𝑀𝑆𝑅) = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅})
6968expcom 413 . 2 (¬ 0 ≤ 𝑅 → ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (𝑀𝑆𝑅) = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅}))
7028, 69pm2.61i 182 1 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (𝑀𝑆𝑅) = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  {crab 3415  Vcvv 3459  c0 4308   class class class wbr 5119   × cxp 5652  dom cdm 5654  cfv 6531  (class class class)co 7405  cmpo 7407  m cmap 8840  Fincfn 8959  cr 11128  0cc0 11129  +∞cpnf 11266  *cxr 11268  cle 11270  [,]cicc 13365  Basecbs 17228  distcds 17280  Metcmet 21301  ℝ^crrx 25335  Spherecsph 48708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208  ax-mulf 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-grp 18919  df-minusg 18920  df-sbg 18921  df-subg 19106  df-ghm 19196  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-dvr 20361  df-rhm 20432  df-subrng 20506  df-subrg 20530  df-drng 20691  df-field 20692  df-staf 20799  df-srng 20800  df-lmod 20819  df-lss 20889  df-sra 21131  df-rgmod 21132  df-xmet 21308  df-met 21309  df-cnfld 21316  df-refld 21565  df-dsmm 21692  df-frlm 21707  df-nm 24521  df-tng 24523  df-tcph 25121  df-rrx 25337  df-sph 48710
This theorem is referenced by:  2sphere  48729
  Copyright terms: Public domain W3C validator