Step | Hyp | Ref
| Expression |
1 | | rrxspheres.e |
. . . . . 6
⊢ 𝐸 = (ℝ^‘𝐼) |
2 | 1 | fvexi 6672 |
. . . . 5
⊢ 𝐸 ∈ V |
3 | | rrxspheres.p |
. . . . . . . . . 10
⊢ 𝑃 = (ℝ ↑m
𝐼) |
4 | | id 22 |
. . . . . . . . . . 11
⊢ (𝐼 ∈ Fin → 𝐼 ∈ Fin) |
5 | | eqid 2758 |
. . . . . . . . . . 11
⊢
(Base‘𝐸) =
(Base‘𝐸) |
6 | 4, 1, 5 | rrxbasefi 24110 |
. . . . . . . . . 10
⊢ (𝐼 ∈ Fin →
(Base‘𝐸) = (ℝ
↑m 𝐼)) |
7 | 3, 6 | eqtr4id 2812 |
. . . . . . . . 9
⊢ (𝐼 ∈ Fin → 𝑃 = (Base‘𝐸)) |
8 | 7 | eleq2d 2837 |
. . . . . . . 8
⊢ (𝐼 ∈ Fin → (𝑀 ∈ 𝑃 ↔ 𝑀 ∈ (Base‘𝐸))) |
9 | 8 | biimpa 480 |
. . . . . . 7
⊢ ((𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃) → 𝑀 ∈ (Base‘𝐸)) |
10 | 9 | 3adant3 1129 |
. . . . . 6
⊢ ((𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ) → 𝑀 ∈ (Base‘𝐸)) |
11 | 10 | adantl 485 |
. . . . 5
⊢ ((0 ≤
𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ)) → 𝑀 ∈ (Base‘𝐸)) |
12 | | rexr 10725 |
. . . . . . . . 9
⊢ (𝑅 ∈ ℝ → 𝑅 ∈
ℝ*) |
13 | 12 | 3ad2ant3 1132 |
. . . . . . . 8
⊢ ((𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ) → 𝑅 ∈
ℝ*) |
14 | 13 | anim2i 619 |
. . . . . . 7
⊢ ((0 ≤
𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ)) → (0 ≤ 𝑅 ∧ 𝑅 ∈
ℝ*)) |
15 | 14 | ancomd 465 |
. . . . . 6
⊢ ((0 ≤
𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ)) → (𝑅 ∈ ℝ* ∧ 0 ≤
𝑅)) |
16 | | elxrge0 12889 |
. . . . . 6
⊢ (𝑅 ∈ (0[,]+∞) ↔
(𝑅 ∈
ℝ* ∧ 0 ≤ 𝑅)) |
17 | 15, 16 | sylibr 237 |
. . . . 5
⊢ ((0 ≤
𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ)) → 𝑅 ∈ (0[,]+∞)) |
18 | | rrxspheres.s |
. . . . . 6
⊢ 𝑆 = (Sphere‘𝐸) |
19 | | rrxspheres.d |
. . . . . 6
⊢ 𝐷 = (dist‘𝐸) |
20 | 5, 18, 19 | sphere 45526 |
. . . . 5
⊢ ((𝐸 ∈ V ∧ 𝑀 ∈ (Base‘𝐸) ∧ 𝑅 ∈ (0[,]+∞)) → (𝑀𝑆𝑅) = {𝑝 ∈ (Base‘𝐸) ∣ (𝑝𝐷𝑀) = 𝑅}) |
21 | 2, 11, 17, 20 | mp3an2i 1463 |
. . . 4
⊢ ((0 ≤
𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ)) → (𝑀𝑆𝑅) = {𝑝 ∈ (Base‘𝐸) ∣ (𝑝𝐷𝑀) = 𝑅}) |
22 | | simp1 1133 |
. . . . . . . 8
⊢ ((𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ) → 𝐼 ∈ Fin) |
23 | 22, 1, 5 | rrxbasefi 24110 |
. . . . . . 7
⊢ ((𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ) → (Base‘𝐸) = (ℝ ↑m
𝐼)) |
24 | 23, 3 | eqtr4di 2811 |
. . . . . 6
⊢ ((𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ) → (Base‘𝐸) = 𝑃) |
25 | 24 | adantl 485 |
. . . . 5
⊢ ((0 ≤
𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ)) → (Base‘𝐸) = 𝑃) |
26 | 25 | rabeqdv 3397 |
. . . 4
⊢ ((0 ≤
𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ)) → {𝑝 ∈ (Base‘𝐸) ∣ (𝑝𝐷𝑀) = 𝑅} = {𝑝 ∈ 𝑃 ∣ (𝑝𝐷𝑀) = 𝑅}) |
27 | 21, 26 | eqtrd 2793 |
. . 3
⊢ ((0 ≤
𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ)) → (𝑀𝑆𝑅) = {𝑝 ∈ 𝑃 ∣ (𝑝𝐷𝑀) = 𝑅}) |
28 | 27 | ex 416 |
. 2
⊢ (0 ≤
𝑅 → ((𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ) → (𝑀𝑆𝑅) = {𝑝 ∈ 𝑃 ∣ (𝑝𝐷𝑀) = 𝑅})) |
29 | 5, 18, 19 | spheres 45525 |
. . . . . . 7
⊢ (𝐸 ∈ V → 𝑆 = (𝑥 ∈ (Base‘𝐸), 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ (Base‘𝐸) ∣ (𝑝𝐷𝑥) = 𝑟})) |
30 | 2, 29 | ax-mp 5 |
. . . . . 6
⊢ 𝑆 = (𝑥 ∈ (Base‘𝐸), 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ (Base‘𝐸) ∣ (𝑝𝐷𝑥) = 𝑟}) |
31 | | fvex 6671 |
. . . . . . 7
⊢
(Base‘𝐸)
∈ V |
32 | 31 | rabex 5202 |
. . . . . 6
⊢ {𝑝 ∈ (Base‘𝐸) ∣ (𝑝𝐷𝑥) = 𝑟} ∈ V |
33 | 30, 32 | dmmpo 7773 |
. . . . 5
⊢ dom 𝑆 = ((Base‘𝐸) ×
(0[,]+∞)) |
34 | | 0xr 10726 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ* |
35 | | pnfxr 10733 |
. . . . . . . . . . 11
⊢ +∞
∈ ℝ* |
36 | 34, 35 | pm3.2i 474 |
. . . . . . . . . 10
⊢ (0 ∈
ℝ* ∧ +∞ ∈ ℝ*) |
37 | | elicc1 12823 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ* ∧ +∞ ∈ ℝ*) →
(𝑅 ∈ (0[,]+∞)
↔ (𝑅 ∈
ℝ* ∧ 0 ≤ 𝑅 ∧ 𝑅 ≤ +∞))) |
38 | 36, 37 | mp1i 13 |
. . . . . . . . 9
⊢ ((𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ) → (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ*
∧ 0 ≤ 𝑅 ∧ 𝑅 ≤
+∞))) |
39 | | simp2 1134 |
. . . . . . . . 9
⊢ ((𝑅 ∈ ℝ*
∧ 0 ≤ 𝑅 ∧ 𝑅 ≤ +∞) → 0 ≤
𝑅) |
40 | 38, 39 | syl6bi 256 |
. . . . . . . 8
⊢ ((𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ) → (𝑅 ∈ (0[,]+∞) → 0 ≤ 𝑅)) |
41 | 40 | con3d 155 |
. . . . . . 7
⊢ ((𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ) → (¬ 0 ≤ 𝑅 → ¬ 𝑅 ∈ (0[,]+∞))) |
42 | 41 | imp 410 |
. . . . . 6
⊢ (((𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) → ¬ 𝑅 ∈ (0[,]+∞)) |
43 | 42 | intnand 492 |
. . . . 5
⊢ (((𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) → ¬ (𝑀 ∈ (Base‘𝐸) ∧ 𝑅 ∈ (0[,]+∞))) |
44 | | ndmovg 7327 |
. . . . 5
⊢ ((dom
𝑆 = ((Base‘𝐸) × (0[,]+∞)) ∧
¬ (𝑀 ∈
(Base‘𝐸) ∧ 𝑅 ∈ (0[,]+∞))) →
(𝑀𝑆𝑅) = ∅) |
45 | 33, 43, 44 | sylancr 590 |
. . . 4
⊢ (((𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) → (𝑀𝑆𝑅) = ∅) |
46 | 1 | fveq2i 6661 |
. . . . . . . . . . . . . . . 16
⊢
(dist‘𝐸) =
(dist‘(ℝ^‘𝐼)) |
47 | 19, 46 | eqtri 2781 |
. . . . . . . . . . . . . . 15
⊢ 𝐷 =
(dist‘(ℝ^‘𝐼)) |
48 | 47 | rrxmetfi 24112 |
. . . . . . . . . . . . . 14
⊢ (𝐼 ∈ Fin → 𝐷 ∈ (Met‘(ℝ
↑m 𝐼))) |
49 | 48 | 3ad2ant1 1130 |
. . . . . . . . . . . . 13
⊢ ((𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ) → 𝐷 ∈ (Met‘(ℝ
↑m 𝐼))) |
50 | 49 | adantr 484 |
. . . . . . . . . . . 12
⊢ (((𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ) ∧ 𝑝 ∈ 𝑃) → 𝐷 ∈ (Met‘(ℝ
↑m 𝐼))) |
51 | 3 | fveq2i 6661 |
. . . . . . . . . . . 12
⊢
(Met‘𝑃) =
(Met‘(ℝ ↑m 𝐼)) |
52 | 50, 51 | eleqtrrdi 2863 |
. . . . . . . . . . 11
⊢ (((𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ) ∧ 𝑝 ∈ 𝑃) → 𝐷 ∈ (Met‘𝑃)) |
53 | | simpr 488 |
. . . . . . . . . . 11
⊢ (((𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ) ∧ 𝑝 ∈ 𝑃) → 𝑝 ∈ 𝑃) |
54 | | simp2 1134 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ) → 𝑀 ∈ 𝑃) |
55 | 54 | adantr 484 |
. . . . . . . . . . 11
⊢ (((𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ) ∧ 𝑝 ∈ 𝑃) → 𝑀 ∈ 𝑃) |
56 | | metge0 23047 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (Met‘𝑃) ∧ 𝑝 ∈ 𝑃 ∧ 𝑀 ∈ 𝑃) → 0 ≤ (𝑝𝐷𝑀)) |
57 | 52, 53, 55, 56 | syl3anc 1368 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ) ∧ 𝑝 ∈ 𝑃) → 0 ≤ (𝑝𝐷𝑀)) |
58 | | breq2 5036 |
. . . . . . . . . 10
⊢ ((𝑝𝐷𝑀) = 𝑅 → (0 ≤ (𝑝𝐷𝑀) ↔ 0 ≤ 𝑅)) |
59 | 57, 58 | syl5ibcom 248 |
. . . . . . . . 9
⊢ (((𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ) ∧ 𝑝 ∈ 𝑃) → ((𝑝𝐷𝑀) = 𝑅 → 0 ≤ 𝑅)) |
60 | 59 | con3d 155 |
. . . . . . . 8
⊢ (((𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ) ∧ 𝑝 ∈ 𝑃) → (¬ 0 ≤ 𝑅 → ¬ (𝑝𝐷𝑀) = 𝑅)) |
61 | 60 | impancom 455 |
. . . . . . 7
⊢ (((𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) → (𝑝 ∈ 𝑃 → ¬ (𝑝𝐷𝑀) = 𝑅)) |
62 | 61 | imp 410 |
. . . . . 6
⊢ ((((𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) ∧ 𝑝 ∈ 𝑃) → ¬ (𝑝𝐷𝑀) = 𝑅) |
63 | 62 | ralrimiva 3113 |
. . . . 5
⊢ (((𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) → ∀𝑝 ∈ 𝑃 ¬ (𝑝𝐷𝑀) = 𝑅) |
64 | | eqcom 2765 |
. . . . . 6
⊢ (∅
= {𝑝 ∈ 𝑃 ∣ (𝑝𝐷𝑀) = 𝑅} ↔ {𝑝 ∈ 𝑃 ∣ (𝑝𝐷𝑀) = 𝑅} = ∅) |
65 | | rabeq0 4280 |
. . . . . 6
⊢ ({𝑝 ∈ 𝑃 ∣ (𝑝𝐷𝑀) = 𝑅} = ∅ ↔ ∀𝑝 ∈ 𝑃 ¬ (𝑝𝐷𝑀) = 𝑅) |
66 | 64, 65 | bitri 278 |
. . . . 5
⊢ (∅
= {𝑝 ∈ 𝑃 ∣ (𝑝𝐷𝑀) = 𝑅} ↔ ∀𝑝 ∈ 𝑃 ¬ (𝑝𝐷𝑀) = 𝑅) |
67 | 63, 66 | sylibr 237 |
. . . 4
⊢ (((𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) → ∅ = {𝑝 ∈ 𝑃 ∣ (𝑝𝐷𝑀) = 𝑅}) |
68 | 45, 67 | eqtrd 2793 |
. . 3
⊢ (((𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) → (𝑀𝑆𝑅) = {𝑝 ∈ 𝑃 ∣ (𝑝𝐷𝑀) = 𝑅}) |
69 | 68 | expcom 417 |
. 2
⊢ (¬ 0
≤ 𝑅 → ((𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ) → (𝑀𝑆𝑅) = {𝑝 ∈ 𝑃 ∣ (𝑝𝐷𝑀) = 𝑅})) |
70 | 28, 69 | pm2.61i 185 |
1
⊢ ((𝐼 ∈ Fin ∧ 𝑀 ∈ 𝑃 ∧ 𝑅 ∈ ℝ) → (𝑀𝑆𝑅) = {𝑝 ∈ 𝑃 ∣ (𝑝𝐷𝑀) = 𝑅}) |