Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrxsphere Structured version   Visualization version   GIF version

Theorem rrxsphere 44729
Description: The sphere with center 𝑀 and radius 𝑅 in a generalized real Euclidean space of finite dimension. Remark: this theorem holds also for the degenerate case 𝑅 < 0 (negative radius): in this case, (𝑀𝑆𝑅) is empty. (Contributed by AV, 5-Feb-2023.)
Hypotheses
Ref Expression
rrxspheres.e 𝐸 = (ℝ^‘𝐼)
rrxspheres.p 𝑃 = (ℝ ↑m 𝐼)
rrxspheres.d 𝐷 = (dist‘𝐸)
rrxspheres.s 𝑆 = (Sphere‘𝐸)
Assertion
Ref Expression
rrxsphere ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (𝑀𝑆𝑅) = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅})
Distinct variable groups:   𝐸,𝑝   𝐼,𝑝   𝑀,𝑝   𝑃,𝑝   𝑅,𝑝
Allowed substitution hints:   𝐷(𝑝)   𝑆(𝑝)

Proof of Theorem rrxsphere
Dummy variables 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrxspheres.e . . . . . 6 𝐸 = (ℝ^‘𝐼)
21fvexi 6678 . . . . 5 𝐸 ∈ V
3 id 22 . . . . . . . . . . 11 (𝐼 ∈ Fin → 𝐼 ∈ Fin)
4 eqid 2821 . . . . . . . . . . 11 (Base‘𝐸) = (Base‘𝐸)
53, 1, 4rrxbasefi 24007 . . . . . . . . . 10 (𝐼 ∈ Fin → (Base‘𝐸) = (ℝ ↑m 𝐼))
6 rrxspheres.p . . . . . . . . . 10 𝑃 = (ℝ ↑m 𝐼)
75, 6syl6reqr 2875 . . . . . . . . 9 (𝐼 ∈ Fin → 𝑃 = (Base‘𝐸))
87eleq2d 2898 . . . . . . . 8 (𝐼 ∈ Fin → (𝑀𝑃𝑀 ∈ (Base‘𝐸)))
98biimpa 479 . . . . . . 7 ((𝐼 ∈ Fin ∧ 𝑀𝑃) → 𝑀 ∈ (Base‘𝐸))
1093adant3 1128 . . . . . 6 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → 𝑀 ∈ (Base‘𝐸))
1110adantl 484 . . . . 5 ((0 ≤ 𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ)) → 𝑀 ∈ (Base‘𝐸))
12 rexr 10681 . . . . . . . . 9 (𝑅 ∈ ℝ → 𝑅 ∈ ℝ*)
13123ad2ant3 1131 . . . . . . . 8 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → 𝑅 ∈ ℝ*)
1413anim2i 618 . . . . . . 7 ((0 ≤ 𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ)) → (0 ≤ 𝑅𝑅 ∈ ℝ*))
1514ancomd 464 . . . . . 6 ((0 ≤ 𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ)) → (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅))
16 elxrge0 12839 . . . . . 6 (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅))
1715, 16sylibr 236 . . . . 5 ((0 ≤ 𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ)) → 𝑅 ∈ (0[,]+∞))
18 rrxspheres.s . . . . . 6 𝑆 = (Sphere‘𝐸)
19 rrxspheres.d . . . . . 6 𝐷 = (dist‘𝐸)
204, 18, 19sphere 44728 . . . . 5 ((𝐸 ∈ V ∧ 𝑀 ∈ (Base‘𝐸) ∧ 𝑅 ∈ (0[,]+∞)) → (𝑀𝑆𝑅) = {𝑝 ∈ (Base‘𝐸) ∣ (𝑝𝐷𝑀) = 𝑅})
212, 11, 17, 20mp3an2i 1462 . . . 4 ((0 ≤ 𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ)) → (𝑀𝑆𝑅) = {𝑝 ∈ (Base‘𝐸) ∣ (𝑝𝐷𝑀) = 𝑅})
22 simp1 1132 . . . . . . . 8 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → 𝐼 ∈ Fin)
2322, 1, 4rrxbasefi 24007 . . . . . . 7 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (Base‘𝐸) = (ℝ ↑m 𝐼))
2423, 6syl6eqr 2874 . . . . . 6 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (Base‘𝐸) = 𝑃)
2524adantl 484 . . . . 5 ((0 ≤ 𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ)) → (Base‘𝐸) = 𝑃)
2625rabeqdv 3484 . . . 4 ((0 ≤ 𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ)) → {𝑝 ∈ (Base‘𝐸) ∣ (𝑝𝐷𝑀) = 𝑅} = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅})
2721, 26eqtrd 2856 . . 3 ((0 ≤ 𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ)) → (𝑀𝑆𝑅) = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅})
2827ex 415 . 2 (0 ≤ 𝑅 → ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (𝑀𝑆𝑅) = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅}))
294, 18, 19spheres 44727 . . . . . . 7 (𝐸 ∈ V → 𝑆 = (𝑥 ∈ (Base‘𝐸), 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ (Base‘𝐸) ∣ (𝑝𝐷𝑥) = 𝑟}))
302, 29ax-mp 5 . . . . . 6 𝑆 = (𝑥 ∈ (Base‘𝐸), 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ (Base‘𝐸) ∣ (𝑝𝐷𝑥) = 𝑟})
31 fvex 6677 . . . . . . 7 (Base‘𝐸) ∈ V
3231rabex 5227 . . . . . 6 {𝑝 ∈ (Base‘𝐸) ∣ (𝑝𝐷𝑥) = 𝑟} ∈ V
3330, 32dmmpo 7763 . . . . 5 dom 𝑆 = ((Base‘𝐸) × (0[,]+∞))
34 0xr 10682 . . . . . . . . . . 11 0 ∈ ℝ*
35 pnfxr 10689 . . . . . . . . . . 11 +∞ ∈ ℝ*
3634, 35pm3.2i 473 . . . . . . . . . 10 (0 ∈ ℝ* ∧ +∞ ∈ ℝ*)
37 elicc1 12776 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞)))
3836, 37mp1i 13 . . . . . . . . 9 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞)))
39 simp2 1133 . . . . . . . . 9 ((𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞) → 0 ≤ 𝑅)
4038, 39syl6bi 255 . . . . . . . 8 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (𝑅 ∈ (0[,]+∞) → 0 ≤ 𝑅))
4140con3d 155 . . . . . . 7 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (¬ 0 ≤ 𝑅 → ¬ 𝑅 ∈ (0[,]+∞)))
4241imp 409 . . . . . 6 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) → ¬ 𝑅 ∈ (0[,]+∞))
4342intnand 491 . . . . 5 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) → ¬ (𝑀 ∈ (Base‘𝐸) ∧ 𝑅 ∈ (0[,]+∞)))
44 ndmovg 7325 . . . . 5 ((dom 𝑆 = ((Base‘𝐸) × (0[,]+∞)) ∧ ¬ (𝑀 ∈ (Base‘𝐸) ∧ 𝑅 ∈ (0[,]+∞))) → (𝑀𝑆𝑅) = ∅)
4533, 43, 44sylancr 589 . . . 4 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) → (𝑀𝑆𝑅) = ∅)
461fveq2i 6667 . . . . . . . . . . . . . . . 16 (dist‘𝐸) = (dist‘(ℝ^‘𝐼))
4719, 46eqtri 2844 . . . . . . . . . . . . . . 15 𝐷 = (dist‘(ℝ^‘𝐼))
4847rrxmetfi 24009 . . . . . . . . . . . . . 14 (𝐼 ∈ Fin → 𝐷 ∈ (Met‘(ℝ ↑m 𝐼)))
49483ad2ant1 1129 . . . . . . . . . . . . 13 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → 𝐷 ∈ (Met‘(ℝ ↑m 𝐼)))
5049adantr 483 . . . . . . . . . . . 12 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ 𝑝𝑃) → 𝐷 ∈ (Met‘(ℝ ↑m 𝐼)))
516fveq2i 6667 . . . . . . . . . . . 12 (Met‘𝑃) = (Met‘(ℝ ↑m 𝐼))
5250, 51eleqtrrdi 2924 . . . . . . . . . . 11 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ 𝑝𝑃) → 𝐷 ∈ (Met‘𝑃))
53 simpr 487 . . . . . . . . . . 11 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ 𝑝𝑃) → 𝑝𝑃)
54 simp2 1133 . . . . . . . . . . . 12 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → 𝑀𝑃)
5554adantr 483 . . . . . . . . . . 11 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ 𝑝𝑃) → 𝑀𝑃)
56 metge0 22949 . . . . . . . . . . 11 ((𝐷 ∈ (Met‘𝑃) ∧ 𝑝𝑃𝑀𝑃) → 0 ≤ (𝑝𝐷𝑀))
5752, 53, 55, 56syl3anc 1367 . . . . . . . . . 10 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ 𝑝𝑃) → 0 ≤ (𝑝𝐷𝑀))
58 breq2 5062 . . . . . . . . . 10 ((𝑝𝐷𝑀) = 𝑅 → (0 ≤ (𝑝𝐷𝑀) ↔ 0 ≤ 𝑅))
5957, 58syl5ibcom 247 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ 𝑝𝑃) → ((𝑝𝐷𝑀) = 𝑅 → 0 ≤ 𝑅))
6059con3d 155 . . . . . . . 8 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ 𝑝𝑃) → (¬ 0 ≤ 𝑅 → ¬ (𝑝𝐷𝑀) = 𝑅))
6160impancom 454 . . . . . . 7 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) → (𝑝𝑃 → ¬ (𝑝𝐷𝑀) = 𝑅))
6261imp 409 . . . . . 6 ((((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) ∧ 𝑝𝑃) → ¬ (𝑝𝐷𝑀) = 𝑅)
6362ralrimiva 3182 . . . . 5 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) → ∀𝑝𝑃 ¬ (𝑝𝐷𝑀) = 𝑅)
64 eqcom 2828 . . . . . 6 (∅ = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅} ↔ {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅} = ∅)
65 rabeq0 4337 . . . . . 6 ({𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅} = ∅ ↔ ∀𝑝𝑃 ¬ (𝑝𝐷𝑀) = 𝑅)
6664, 65bitri 277 . . . . 5 (∅ = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅} ↔ ∀𝑝𝑃 ¬ (𝑝𝐷𝑀) = 𝑅)
6763, 66sylibr 236 . . . 4 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) → ∅ = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅})
6845, 67eqtrd 2856 . . 3 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) → (𝑀𝑆𝑅) = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅})
6968expcom 416 . 2 (¬ 0 ≤ 𝑅 → ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (𝑀𝑆𝑅) = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅}))
7028, 69pm2.61i 184 1 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (𝑀𝑆𝑅) = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  {crab 3142  Vcvv 3494  c0 4290   class class class wbr 5058   × cxp 5547  dom cdm 5549  cfv 6349  (class class class)co 7150  cmpo 7152  m cmap 8400  Fincfn 8503  cr 10530  0cc0 10531  +∞cpnf 10666  *cxr 10668  cle 10670  [,]cicc 12735  Basecbs 16477  distcds 16568  Metcmet 20525  ℝ^crrx 23980  Spherecsph 44709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-sup 8900  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-0g 16709  df-gsum 16710  df-prds 16715  df-pws 16717  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mhm 17950  df-grp 18100  df-minusg 18101  df-sbg 18102  df-subg 18270  df-ghm 18350  df-cntz 18441  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-cring 19294  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-invr 19416  df-dvr 19427  df-rnghom 19461  df-drng 19498  df-field 19499  df-subrg 19527  df-staf 19610  df-srng 19611  df-lmod 19630  df-lss 19698  df-sra 19938  df-rgmod 19939  df-xmet 20532  df-met 20533  df-cnfld 20540  df-refld 20743  df-dsmm 20870  df-frlm 20885  df-nm 23186  df-tng 23188  df-tcph 23767  df-rrx 23982  df-sph 44711
This theorem is referenced by:  2sphere  44730
  Copyright terms: Public domain W3C validator