Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrxsphere Structured version   Visualization version   GIF version

Theorem rrxsphere 48598
Description: The sphere with center 𝑀 and radius 𝑅 in a generalized real Euclidean space of finite dimension. Remark: this theorem holds also for the degenerate case 𝑅 < 0 (negative radius): in this case, (𝑀𝑆𝑅) is empty. (Contributed by AV, 5-Feb-2023.)
Hypotheses
Ref Expression
rrxspheres.e 𝐸 = (ℝ^‘𝐼)
rrxspheres.p 𝑃 = (ℝ ↑m 𝐼)
rrxspheres.d 𝐷 = (dist‘𝐸)
rrxspheres.s 𝑆 = (Sphere‘𝐸)
Assertion
Ref Expression
rrxsphere ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (𝑀𝑆𝑅) = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅})
Distinct variable groups:   𝐸,𝑝   𝐼,𝑝   𝑀,𝑝   𝑃,𝑝   𝑅,𝑝
Allowed substitution hints:   𝐷(𝑝)   𝑆(𝑝)

Proof of Theorem rrxsphere
Dummy variables 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrxspheres.e . . . . . 6 𝐸 = (ℝ^‘𝐼)
21fvexi 6921 . . . . 5 𝐸 ∈ V
3 rrxspheres.p . . . . . . . . . 10 𝑃 = (ℝ ↑m 𝐼)
4 id 22 . . . . . . . . . . 11 (𝐼 ∈ Fin → 𝐼 ∈ Fin)
5 eqid 2735 . . . . . . . . . . 11 (Base‘𝐸) = (Base‘𝐸)
64, 1, 5rrxbasefi 25458 . . . . . . . . . 10 (𝐼 ∈ Fin → (Base‘𝐸) = (ℝ ↑m 𝐼))
73, 6eqtr4id 2794 . . . . . . . . 9 (𝐼 ∈ Fin → 𝑃 = (Base‘𝐸))
87eleq2d 2825 . . . . . . . 8 (𝐼 ∈ Fin → (𝑀𝑃𝑀 ∈ (Base‘𝐸)))
98biimpa 476 . . . . . . 7 ((𝐼 ∈ Fin ∧ 𝑀𝑃) → 𝑀 ∈ (Base‘𝐸))
1093adant3 1131 . . . . . 6 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → 𝑀 ∈ (Base‘𝐸))
1110adantl 481 . . . . 5 ((0 ≤ 𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ)) → 𝑀 ∈ (Base‘𝐸))
12 rexr 11305 . . . . . . . . 9 (𝑅 ∈ ℝ → 𝑅 ∈ ℝ*)
13123ad2ant3 1134 . . . . . . . 8 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → 𝑅 ∈ ℝ*)
1413anim2i 617 . . . . . . 7 ((0 ≤ 𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ)) → (0 ≤ 𝑅𝑅 ∈ ℝ*))
1514ancomd 461 . . . . . 6 ((0 ≤ 𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ)) → (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅))
16 elxrge0 13494 . . . . . 6 (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅))
1715, 16sylibr 234 . . . . 5 ((0 ≤ 𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ)) → 𝑅 ∈ (0[,]+∞))
18 rrxspheres.s . . . . . 6 𝑆 = (Sphere‘𝐸)
19 rrxspheres.d . . . . . 6 𝐷 = (dist‘𝐸)
205, 18, 19sphere 48597 . . . . 5 ((𝐸 ∈ V ∧ 𝑀 ∈ (Base‘𝐸) ∧ 𝑅 ∈ (0[,]+∞)) → (𝑀𝑆𝑅) = {𝑝 ∈ (Base‘𝐸) ∣ (𝑝𝐷𝑀) = 𝑅})
212, 11, 17, 20mp3an2i 1465 . . . 4 ((0 ≤ 𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ)) → (𝑀𝑆𝑅) = {𝑝 ∈ (Base‘𝐸) ∣ (𝑝𝐷𝑀) = 𝑅})
22 simp1 1135 . . . . . . . 8 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → 𝐼 ∈ Fin)
2322, 1, 5rrxbasefi 25458 . . . . . . 7 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (Base‘𝐸) = (ℝ ↑m 𝐼))
2423, 3eqtr4di 2793 . . . . . 6 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (Base‘𝐸) = 𝑃)
2524adantl 481 . . . . 5 ((0 ≤ 𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ)) → (Base‘𝐸) = 𝑃)
2625rabeqdv 3449 . . . 4 ((0 ≤ 𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ)) → {𝑝 ∈ (Base‘𝐸) ∣ (𝑝𝐷𝑀) = 𝑅} = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅})
2721, 26eqtrd 2775 . . 3 ((0 ≤ 𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ)) → (𝑀𝑆𝑅) = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅})
2827ex 412 . 2 (0 ≤ 𝑅 → ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (𝑀𝑆𝑅) = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅}))
295, 18, 19spheres 48596 . . . . . . 7 (𝐸 ∈ V → 𝑆 = (𝑥 ∈ (Base‘𝐸), 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ (Base‘𝐸) ∣ (𝑝𝐷𝑥) = 𝑟}))
302, 29ax-mp 5 . . . . . 6 𝑆 = (𝑥 ∈ (Base‘𝐸), 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ (Base‘𝐸) ∣ (𝑝𝐷𝑥) = 𝑟})
31 fvex 6920 . . . . . . 7 (Base‘𝐸) ∈ V
3231rabex 5345 . . . . . 6 {𝑝 ∈ (Base‘𝐸) ∣ (𝑝𝐷𝑥) = 𝑟} ∈ V
3330, 32dmmpo 8095 . . . . 5 dom 𝑆 = ((Base‘𝐸) × (0[,]+∞))
34 0xr 11306 . . . . . . . . . . 11 0 ∈ ℝ*
35 pnfxr 11313 . . . . . . . . . . 11 +∞ ∈ ℝ*
3634, 35pm3.2i 470 . . . . . . . . . 10 (0 ∈ ℝ* ∧ +∞ ∈ ℝ*)
37 elicc1 13428 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞)))
3836, 37mp1i 13 . . . . . . . . 9 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞)))
39 simp2 1136 . . . . . . . . 9 ((𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞) → 0 ≤ 𝑅)
4038, 39biimtrdi 253 . . . . . . . 8 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (𝑅 ∈ (0[,]+∞) → 0 ≤ 𝑅))
4140con3d 152 . . . . . . 7 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (¬ 0 ≤ 𝑅 → ¬ 𝑅 ∈ (0[,]+∞)))
4241imp 406 . . . . . 6 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) → ¬ 𝑅 ∈ (0[,]+∞))
4342intnand 488 . . . . 5 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) → ¬ (𝑀 ∈ (Base‘𝐸) ∧ 𝑅 ∈ (0[,]+∞)))
44 ndmovg 7616 . . . . 5 ((dom 𝑆 = ((Base‘𝐸) × (0[,]+∞)) ∧ ¬ (𝑀 ∈ (Base‘𝐸) ∧ 𝑅 ∈ (0[,]+∞))) → (𝑀𝑆𝑅) = ∅)
4533, 43, 44sylancr 587 . . . 4 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) → (𝑀𝑆𝑅) = ∅)
461fveq2i 6910 . . . . . . . . . . . . . . . 16 (dist‘𝐸) = (dist‘(ℝ^‘𝐼))
4719, 46eqtri 2763 . . . . . . . . . . . . . . 15 𝐷 = (dist‘(ℝ^‘𝐼))
4847rrxmetfi 25460 . . . . . . . . . . . . . 14 (𝐼 ∈ Fin → 𝐷 ∈ (Met‘(ℝ ↑m 𝐼)))
49483ad2ant1 1132 . . . . . . . . . . . . 13 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → 𝐷 ∈ (Met‘(ℝ ↑m 𝐼)))
5049adantr 480 . . . . . . . . . . . 12 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ 𝑝𝑃) → 𝐷 ∈ (Met‘(ℝ ↑m 𝐼)))
513fveq2i 6910 . . . . . . . . . . . 12 (Met‘𝑃) = (Met‘(ℝ ↑m 𝐼))
5250, 51eleqtrrdi 2850 . . . . . . . . . . 11 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ 𝑝𝑃) → 𝐷 ∈ (Met‘𝑃))
53 simpr 484 . . . . . . . . . . 11 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ 𝑝𝑃) → 𝑝𝑃)
54 simp2 1136 . . . . . . . . . . . 12 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → 𝑀𝑃)
5554adantr 480 . . . . . . . . . . 11 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ 𝑝𝑃) → 𝑀𝑃)
56 metge0 24371 . . . . . . . . . . 11 ((𝐷 ∈ (Met‘𝑃) ∧ 𝑝𝑃𝑀𝑃) → 0 ≤ (𝑝𝐷𝑀))
5752, 53, 55, 56syl3anc 1370 . . . . . . . . . 10 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ 𝑝𝑃) → 0 ≤ (𝑝𝐷𝑀))
58 breq2 5152 . . . . . . . . . 10 ((𝑝𝐷𝑀) = 𝑅 → (0 ≤ (𝑝𝐷𝑀) ↔ 0 ≤ 𝑅))
5957, 58syl5ibcom 245 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ 𝑝𝑃) → ((𝑝𝐷𝑀) = 𝑅 → 0 ≤ 𝑅))
6059con3d 152 . . . . . . . 8 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ 𝑝𝑃) → (¬ 0 ≤ 𝑅 → ¬ (𝑝𝐷𝑀) = 𝑅))
6160impancom 451 . . . . . . 7 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) → (𝑝𝑃 → ¬ (𝑝𝐷𝑀) = 𝑅))
6261imp 406 . . . . . 6 ((((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) ∧ 𝑝𝑃) → ¬ (𝑝𝐷𝑀) = 𝑅)
6362ralrimiva 3144 . . . . 5 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) → ∀𝑝𝑃 ¬ (𝑝𝐷𝑀) = 𝑅)
64 eqcom 2742 . . . . . 6 (∅ = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅} ↔ {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅} = ∅)
65 rabeq0 4394 . . . . . 6 ({𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅} = ∅ ↔ ∀𝑝𝑃 ¬ (𝑝𝐷𝑀) = 𝑅)
6664, 65bitri 275 . . . . 5 (∅ = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅} ↔ ∀𝑝𝑃 ¬ (𝑝𝐷𝑀) = 𝑅)
6763, 66sylibr 234 . . . 4 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) → ∅ = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅})
6845, 67eqtrd 2775 . . 3 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) → (𝑀𝑆𝑅) = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅})
6968expcom 413 . 2 (¬ 0 ≤ 𝑅 → ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (𝑀𝑆𝑅) = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅}))
7028, 69pm2.61i 182 1 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (𝑀𝑆𝑅) = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  {crab 3433  Vcvv 3478  c0 4339   class class class wbr 5148   × cxp 5687  dom cdm 5689  cfv 6563  (class class class)co 7431  cmpo 7433  m cmap 8865  Fincfn 8984  cr 11152  0cc0 11153  +∞cpnf 11290  *cxr 11292  cle 11294  [,]cicc 13387  Basecbs 17245  distcds 17307  Metcmet 21368  ℝ^crrx 25431  Spherecsph 48578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-ghm 19244  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-rhm 20489  df-subrng 20563  df-subrg 20587  df-drng 20748  df-field 20749  df-staf 20857  df-srng 20858  df-lmod 20877  df-lss 20948  df-sra 21190  df-rgmod 21191  df-xmet 21375  df-met 21376  df-cnfld 21383  df-refld 21641  df-dsmm 21770  df-frlm 21785  df-nm 24611  df-tng 24613  df-tcph 25217  df-rrx 25433  df-sph 48580
This theorem is referenced by:  2sphere  48599
  Copyright terms: Public domain W3C validator