Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrxsphere Structured version   Visualization version   GIF version

Theorem rrxsphere 43310
Description: The sphere with center 𝑀 and radius 𝑅 in a generalized real Euclidean space of finite dimension. Remark: this theorem holds also for the degenerate case 𝑅 < 0 (negative radius): in this case, (𝑀𝑆𝑅) is empty. (Contributed by AV, 5-Feb-2023.)
Hypotheses
Ref Expression
rrxspheres.e 𝐸 = (ℝ^‘𝐼)
rrxspheres.p 𝑃 = (ℝ ↑𝑚 𝐼)
rrxspheres.d 𝐷 = (dist‘𝐸)
rrxspheres.s 𝑆 = (Sphere‘𝐸)
Assertion
Ref Expression
rrxsphere ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (𝑀𝑆𝑅) = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅})
Distinct variable groups:   𝐸,𝑝   𝐼,𝑝   𝑀,𝑝   𝑃,𝑝   𝑅,𝑝
Allowed substitution hints:   𝐷(𝑝)   𝑆(𝑝)

Proof of Theorem rrxsphere
Dummy variables 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrxspheres.e . . . . . 6 𝐸 = (ℝ^‘𝐼)
21fvexi 6451 . . . . 5 𝐸 ∈ V
3 id 22 . . . . . . . . . . 11 (𝐼 ∈ Fin → 𝐼 ∈ Fin)
4 eqid 2825 . . . . . . . . . . 11 (Base‘𝐸) = (Base‘𝐸)
53, 1, 4rrxbasefi 23585 . . . . . . . . . 10 (𝐼 ∈ Fin → (Base‘𝐸) = (ℝ ↑𝑚 𝐼))
6 rrxspheres.p . . . . . . . . . 10 𝑃 = (ℝ ↑𝑚 𝐼)
75, 6syl6reqr 2880 . . . . . . . . 9 (𝐼 ∈ Fin → 𝑃 = (Base‘𝐸))
87eleq2d 2892 . . . . . . . 8 (𝐼 ∈ Fin → (𝑀𝑃𝑀 ∈ (Base‘𝐸)))
98biimpa 470 . . . . . . 7 ((𝐼 ∈ Fin ∧ 𝑀𝑃) → 𝑀 ∈ (Base‘𝐸))
1093adant3 1166 . . . . . 6 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → 𝑀 ∈ (Base‘𝐸))
1110adantl 475 . . . . 5 ((0 ≤ 𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ)) → 𝑀 ∈ (Base‘𝐸))
12 rexr 10409 . . . . . . . . 9 (𝑅 ∈ ℝ → 𝑅 ∈ ℝ*)
13123ad2ant3 1169 . . . . . . . 8 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → 𝑅 ∈ ℝ*)
1413anim2i 610 . . . . . . 7 ((0 ≤ 𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ)) → (0 ≤ 𝑅𝑅 ∈ ℝ*))
1514ancomd 455 . . . . . 6 ((0 ≤ 𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ)) → (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅))
16 elxrge0 12578 . . . . . 6 (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅))
1715, 16sylibr 226 . . . . 5 ((0 ≤ 𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ)) → 𝑅 ∈ (0[,]+∞))
18 rrxspheres.s . . . . . 6 𝑆 = (Sphere‘𝐸)
19 rrxspheres.d . . . . . 6 𝐷 = (dist‘𝐸)
204, 18, 19sphere 43309 . . . . 5 ((𝐸 ∈ V ∧ 𝑀 ∈ (Base‘𝐸) ∧ 𝑅 ∈ (0[,]+∞)) → (𝑀𝑆𝑅) = {𝑝 ∈ (Base‘𝐸) ∣ (𝑝𝐷𝑀) = 𝑅})
212, 11, 17, 20mp3an2i 1594 . . . 4 ((0 ≤ 𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ)) → (𝑀𝑆𝑅) = {𝑝 ∈ (Base‘𝐸) ∣ (𝑝𝐷𝑀) = 𝑅})
22 simp1 1170 . . . . . . . 8 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → 𝐼 ∈ Fin)
2322, 1, 4rrxbasefi 23585 . . . . . . 7 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (Base‘𝐸) = (ℝ ↑𝑚 𝐼))
2423, 6syl6eqr 2879 . . . . . 6 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (Base‘𝐸) = 𝑃)
2524adantl 475 . . . . 5 ((0 ≤ 𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ)) → (Base‘𝐸) = 𝑃)
2625rabeqdv 3407 . . . 4 ((0 ≤ 𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ)) → {𝑝 ∈ (Base‘𝐸) ∣ (𝑝𝐷𝑀) = 𝑅} = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅})
2721, 26eqtrd 2861 . . 3 ((0 ≤ 𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ)) → (𝑀𝑆𝑅) = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅})
2827ex 403 . 2 (0 ≤ 𝑅 → ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (𝑀𝑆𝑅) = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅}))
294, 18, 19spheres 43308 . . . . . . 7 (𝐸 ∈ V → 𝑆 = (𝑥 ∈ (Base‘𝐸), 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ (Base‘𝐸) ∣ (𝑝𝐷𝑥) = 𝑟}))
302, 29ax-mp 5 . . . . . 6 𝑆 = (𝑥 ∈ (Base‘𝐸), 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ (Base‘𝐸) ∣ (𝑝𝐷𝑥) = 𝑟})
31 fvex 6450 . . . . . . 7 (Base‘𝐸) ∈ V
3231rabex 5039 . . . . . 6 {𝑝 ∈ (Base‘𝐸) ∣ (𝑝𝐷𝑥) = 𝑟} ∈ V
3330, 32dmmpt2 7508 . . . . 5 dom 𝑆 = ((Base‘𝐸) × (0[,]+∞))
34 0xr 10410 . . . . . . . . . . 11 0 ∈ ℝ*
35 pnfxr 10417 . . . . . . . . . . 11 +∞ ∈ ℝ*
3634, 35pm3.2i 464 . . . . . . . . . 10 (0 ∈ ℝ* ∧ +∞ ∈ ℝ*)
37 elicc1 12514 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞)))
3836, 37mp1i 13 . . . . . . . . 9 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞)))
39 simp2 1171 . . . . . . . . 9 ((𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞) → 0 ≤ 𝑅)
4038, 39syl6bi 245 . . . . . . . 8 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (𝑅 ∈ (0[,]+∞) → 0 ≤ 𝑅))
4140con3d 150 . . . . . . 7 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (¬ 0 ≤ 𝑅 → ¬ 𝑅 ∈ (0[,]+∞)))
4241imp 397 . . . . . 6 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) → ¬ 𝑅 ∈ (0[,]+∞))
4342intnand 484 . . . . 5 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) → ¬ (𝑀 ∈ (Base‘𝐸) ∧ 𝑅 ∈ (0[,]+∞)))
44 ndmovg 7082 . . . . 5 ((dom 𝑆 = ((Base‘𝐸) × (0[,]+∞)) ∧ ¬ (𝑀 ∈ (Base‘𝐸) ∧ 𝑅 ∈ (0[,]+∞))) → (𝑀𝑆𝑅) = ∅)
4533, 43, 44sylancr 581 . . . 4 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) → (𝑀𝑆𝑅) = ∅)
461fveq2i 6440 . . . . . . . . . . . . . . . 16 (dist‘𝐸) = (dist‘(ℝ^‘𝐼))
4719, 46eqtri 2849 . . . . . . . . . . . . . . 15 𝐷 = (dist‘(ℝ^‘𝐼))
4847rrxmetfi 23587 . . . . . . . . . . . . . 14 (𝐼 ∈ Fin → 𝐷 ∈ (Met‘(ℝ ↑𝑚 𝐼)))
49483ad2ant1 1167 . . . . . . . . . . . . 13 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → 𝐷 ∈ (Met‘(ℝ ↑𝑚 𝐼)))
5049adantr 474 . . . . . . . . . . . 12 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ 𝑝𝑃) → 𝐷 ∈ (Met‘(ℝ ↑𝑚 𝐼)))
516fveq2i 6440 . . . . . . . . . . . 12 (Met‘𝑃) = (Met‘(ℝ ↑𝑚 𝐼))
5250, 51syl6eleqr 2917 . . . . . . . . . . 11 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ 𝑝𝑃) → 𝐷 ∈ (Met‘𝑃))
53 simpr 479 . . . . . . . . . . 11 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ 𝑝𝑃) → 𝑝𝑃)
54 simp2 1171 . . . . . . . . . . . 12 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → 𝑀𝑃)
5554adantr 474 . . . . . . . . . . 11 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ 𝑝𝑃) → 𝑀𝑃)
56 metge0 22527 . . . . . . . . . . 11 ((𝐷 ∈ (Met‘𝑃) ∧ 𝑝𝑃𝑀𝑃) → 0 ≤ (𝑝𝐷𝑀))
5752, 53, 55, 56syl3anc 1494 . . . . . . . . . 10 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ 𝑝𝑃) → 0 ≤ (𝑝𝐷𝑀))
58 breq2 4879 . . . . . . . . . 10 ((𝑝𝐷𝑀) = 𝑅 → (0 ≤ (𝑝𝐷𝑀) ↔ 0 ≤ 𝑅))
5957, 58syl5ibcom 237 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ 𝑝𝑃) → ((𝑝𝐷𝑀) = 𝑅 → 0 ≤ 𝑅))
6059con3d 150 . . . . . . . 8 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ 𝑝𝑃) → (¬ 0 ≤ 𝑅 → ¬ (𝑝𝐷𝑀) = 𝑅))
6160impancom 445 . . . . . . 7 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) → (𝑝𝑃 → ¬ (𝑝𝐷𝑀) = 𝑅))
6261imp 397 . . . . . 6 ((((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) ∧ 𝑝𝑃) → ¬ (𝑝𝐷𝑀) = 𝑅)
6362ralrimiva 3175 . . . . 5 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) → ∀𝑝𝑃 ¬ (𝑝𝐷𝑀) = 𝑅)
64 eqcom 2832 . . . . . 6 (∅ = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅} ↔ {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅} = ∅)
65 rabeq0 4188 . . . . . 6 ({𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅} = ∅ ↔ ∀𝑝𝑃 ¬ (𝑝𝐷𝑀) = 𝑅)
6664, 65bitri 267 . . . . 5 (∅ = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅} ↔ ∀𝑝𝑃 ¬ (𝑝𝐷𝑀) = 𝑅)
6763, 66sylibr 226 . . . 4 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) → ∅ = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅})
6845, 67eqtrd 2861 . . 3 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) → (𝑀𝑆𝑅) = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅})
6968expcom 404 . 2 (¬ 0 ≤ 𝑅 → ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (𝑀𝑆𝑅) = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅}))
7028, 69pm2.61i 177 1 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (𝑀𝑆𝑅) = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1111   = wceq 1656  wcel 2164  wral 3117  {crab 3121  Vcvv 3414  c0 4146   class class class wbr 4875   × cxp 5344  dom cdm 5346  cfv 6127  (class class class)co 6910  cmpt2 6912  𝑚 cmap 8127  Fincfn 8228  cr 10258  0cc0 10259  +∞cpnf 10395  *cxr 10397  cle 10399  [,]cicc 12473  Basecbs 16229  distcds 16321  Metcmet 20099  ℝ^crrx 23558  Spherecsph 43292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-inf2 8822  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337  ax-addf 10338  ax-mulf 10339
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-se 5306  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-isom 6136  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-of 7162  df-om 7332  df-1st 7433  df-2nd 7434  df-supp 7565  df-tpos 7622  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-map 8129  df-ixp 8182  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-fsupp 8551  df-sup 8623  df-oi 8691  df-card 9085  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-5 11424  df-6 11425  df-7 11426  df-8 11427  df-9 11428  df-n0 11626  df-z 11712  df-dec 11829  df-uz 11976  df-rp 12120  df-xneg 12239  df-xadd 12240  df-xmul 12241  df-ico 12476  df-icc 12477  df-fz 12627  df-fzo 12768  df-seq 13103  df-exp 13162  df-hash 13418  df-cj 14223  df-re 14224  df-im 14225  df-sqrt 14359  df-abs 14360  df-clim 14603  df-sum 14801  df-struct 16231  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-ress 16237  df-plusg 16325  df-mulr 16326  df-starv 16327  df-sca 16328  df-vsca 16329  df-ip 16330  df-tset 16331  df-ple 16332  df-ds 16334  df-unif 16335  df-hom 16336  df-cco 16337  df-0g 16462  df-gsum 16463  df-prds 16468  df-pws 16470  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-mhm 17695  df-grp 17786  df-minusg 17787  df-sbg 17788  df-subg 17949  df-ghm 18016  df-cntz 18107  df-cmn 18555  df-abl 18556  df-mgp 18851  df-ur 18863  df-ring 18910  df-cring 18911  df-oppr 18984  df-dvdsr 19002  df-unit 19003  df-invr 19033  df-dvr 19044  df-rnghom 19078  df-drng 19112  df-field 19113  df-subrg 19141  df-staf 19208  df-srng 19209  df-lmod 19228  df-lss 19296  df-sra 19540  df-rgmod 19541  df-xmet 20106  df-met 20107  df-cnfld 20114  df-refld 20319  df-dsmm 20446  df-frlm 20461  df-nm 22764  df-tng 22766  df-tcph 23345  df-rrx 23560  df-sph 43294
This theorem is referenced by:  2sphere  43311
  Copyright terms: Public domain W3C validator