Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrxsphere Structured version   Visualization version   GIF version

Theorem rrxsphere 48741
Description: The sphere with center 𝑀 and radius 𝑅 in a generalized real Euclidean space of finite dimension. Remark: this theorem holds also for the degenerate case 𝑅 < 0 (negative radius): in this case, (𝑀𝑆𝑅) is empty. (Contributed by AV, 5-Feb-2023.)
Hypotheses
Ref Expression
rrxspheres.e 𝐸 = (ℝ^‘𝐼)
rrxspheres.p 𝑃 = (ℝ ↑m 𝐼)
rrxspheres.d 𝐷 = (dist‘𝐸)
rrxspheres.s 𝑆 = (Sphere‘𝐸)
Assertion
Ref Expression
rrxsphere ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (𝑀𝑆𝑅) = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅})
Distinct variable groups:   𝐸,𝑝   𝐼,𝑝   𝑀,𝑝   𝑃,𝑝   𝑅,𝑝
Allowed substitution hints:   𝐷(𝑝)   𝑆(𝑝)

Proof of Theorem rrxsphere
Dummy variables 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrxspheres.e . . . . . 6 𝐸 = (ℝ^‘𝐼)
21fvexi 6875 . . . . 5 𝐸 ∈ V
3 rrxspheres.p . . . . . . . . . 10 𝑃 = (ℝ ↑m 𝐼)
4 id 22 . . . . . . . . . . 11 (𝐼 ∈ Fin → 𝐼 ∈ Fin)
5 eqid 2730 . . . . . . . . . . 11 (Base‘𝐸) = (Base‘𝐸)
64, 1, 5rrxbasefi 25317 . . . . . . . . . 10 (𝐼 ∈ Fin → (Base‘𝐸) = (ℝ ↑m 𝐼))
73, 6eqtr4id 2784 . . . . . . . . 9 (𝐼 ∈ Fin → 𝑃 = (Base‘𝐸))
87eleq2d 2815 . . . . . . . 8 (𝐼 ∈ Fin → (𝑀𝑃𝑀 ∈ (Base‘𝐸)))
98biimpa 476 . . . . . . 7 ((𝐼 ∈ Fin ∧ 𝑀𝑃) → 𝑀 ∈ (Base‘𝐸))
1093adant3 1132 . . . . . 6 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → 𝑀 ∈ (Base‘𝐸))
1110adantl 481 . . . . 5 ((0 ≤ 𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ)) → 𝑀 ∈ (Base‘𝐸))
12 rexr 11227 . . . . . . . . 9 (𝑅 ∈ ℝ → 𝑅 ∈ ℝ*)
13123ad2ant3 1135 . . . . . . . 8 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → 𝑅 ∈ ℝ*)
1413anim2i 617 . . . . . . 7 ((0 ≤ 𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ)) → (0 ≤ 𝑅𝑅 ∈ ℝ*))
1514ancomd 461 . . . . . 6 ((0 ≤ 𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ)) → (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅))
16 elxrge0 13425 . . . . . 6 (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅))
1715, 16sylibr 234 . . . . 5 ((0 ≤ 𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ)) → 𝑅 ∈ (0[,]+∞))
18 rrxspheres.s . . . . . 6 𝑆 = (Sphere‘𝐸)
19 rrxspheres.d . . . . . 6 𝐷 = (dist‘𝐸)
205, 18, 19sphere 48740 . . . . 5 ((𝐸 ∈ V ∧ 𝑀 ∈ (Base‘𝐸) ∧ 𝑅 ∈ (0[,]+∞)) → (𝑀𝑆𝑅) = {𝑝 ∈ (Base‘𝐸) ∣ (𝑝𝐷𝑀) = 𝑅})
212, 11, 17, 20mp3an2i 1468 . . . 4 ((0 ≤ 𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ)) → (𝑀𝑆𝑅) = {𝑝 ∈ (Base‘𝐸) ∣ (𝑝𝐷𝑀) = 𝑅})
22 simp1 1136 . . . . . . . 8 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → 𝐼 ∈ Fin)
2322, 1, 5rrxbasefi 25317 . . . . . . 7 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (Base‘𝐸) = (ℝ ↑m 𝐼))
2423, 3eqtr4di 2783 . . . . . 6 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (Base‘𝐸) = 𝑃)
2524adantl 481 . . . . 5 ((0 ≤ 𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ)) → (Base‘𝐸) = 𝑃)
2625rabeqdv 3424 . . . 4 ((0 ≤ 𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ)) → {𝑝 ∈ (Base‘𝐸) ∣ (𝑝𝐷𝑀) = 𝑅} = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅})
2721, 26eqtrd 2765 . . 3 ((0 ≤ 𝑅 ∧ (𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ)) → (𝑀𝑆𝑅) = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅})
2827ex 412 . 2 (0 ≤ 𝑅 → ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (𝑀𝑆𝑅) = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅}))
295, 18, 19spheres 48739 . . . . . . 7 (𝐸 ∈ V → 𝑆 = (𝑥 ∈ (Base‘𝐸), 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ (Base‘𝐸) ∣ (𝑝𝐷𝑥) = 𝑟}))
302, 29ax-mp 5 . . . . . 6 𝑆 = (𝑥 ∈ (Base‘𝐸), 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ (Base‘𝐸) ∣ (𝑝𝐷𝑥) = 𝑟})
31 fvex 6874 . . . . . . 7 (Base‘𝐸) ∈ V
3231rabex 5297 . . . . . 6 {𝑝 ∈ (Base‘𝐸) ∣ (𝑝𝐷𝑥) = 𝑟} ∈ V
3330, 32dmmpo 8053 . . . . 5 dom 𝑆 = ((Base‘𝐸) × (0[,]+∞))
34 0xr 11228 . . . . . . . . . . 11 0 ∈ ℝ*
35 pnfxr 11235 . . . . . . . . . . 11 +∞ ∈ ℝ*
3634, 35pm3.2i 470 . . . . . . . . . 10 (0 ∈ ℝ* ∧ +∞ ∈ ℝ*)
37 elicc1 13357 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞)))
3836, 37mp1i 13 . . . . . . . . 9 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞)))
39 simp2 1137 . . . . . . . . 9 ((𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞) → 0 ≤ 𝑅)
4038, 39biimtrdi 253 . . . . . . . 8 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (𝑅 ∈ (0[,]+∞) → 0 ≤ 𝑅))
4140con3d 152 . . . . . . 7 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (¬ 0 ≤ 𝑅 → ¬ 𝑅 ∈ (0[,]+∞)))
4241imp 406 . . . . . 6 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) → ¬ 𝑅 ∈ (0[,]+∞))
4342intnand 488 . . . . 5 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) → ¬ (𝑀 ∈ (Base‘𝐸) ∧ 𝑅 ∈ (0[,]+∞)))
44 ndmovg 7575 . . . . 5 ((dom 𝑆 = ((Base‘𝐸) × (0[,]+∞)) ∧ ¬ (𝑀 ∈ (Base‘𝐸) ∧ 𝑅 ∈ (0[,]+∞))) → (𝑀𝑆𝑅) = ∅)
4533, 43, 44sylancr 587 . . . 4 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) → (𝑀𝑆𝑅) = ∅)
461fveq2i 6864 . . . . . . . . . . . . . . . 16 (dist‘𝐸) = (dist‘(ℝ^‘𝐼))
4719, 46eqtri 2753 . . . . . . . . . . . . . . 15 𝐷 = (dist‘(ℝ^‘𝐼))
4847rrxmetfi 25319 . . . . . . . . . . . . . 14 (𝐼 ∈ Fin → 𝐷 ∈ (Met‘(ℝ ↑m 𝐼)))
49483ad2ant1 1133 . . . . . . . . . . . . 13 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → 𝐷 ∈ (Met‘(ℝ ↑m 𝐼)))
5049adantr 480 . . . . . . . . . . . 12 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ 𝑝𝑃) → 𝐷 ∈ (Met‘(ℝ ↑m 𝐼)))
513fveq2i 6864 . . . . . . . . . . . 12 (Met‘𝑃) = (Met‘(ℝ ↑m 𝐼))
5250, 51eleqtrrdi 2840 . . . . . . . . . . 11 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ 𝑝𝑃) → 𝐷 ∈ (Met‘𝑃))
53 simpr 484 . . . . . . . . . . 11 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ 𝑝𝑃) → 𝑝𝑃)
54 simp2 1137 . . . . . . . . . . . 12 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → 𝑀𝑃)
5554adantr 480 . . . . . . . . . . 11 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ 𝑝𝑃) → 𝑀𝑃)
56 metge0 24240 . . . . . . . . . . 11 ((𝐷 ∈ (Met‘𝑃) ∧ 𝑝𝑃𝑀𝑃) → 0 ≤ (𝑝𝐷𝑀))
5752, 53, 55, 56syl3anc 1373 . . . . . . . . . 10 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ 𝑝𝑃) → 0 ≤ (𝑝𝐷𝑀))
58 breq2 5114 . . . . . . . . . 10 ((𝑝𝐷𝑀) = 𝑅 → (0 ≤ (𝑝𝐷𝑀) ↔ 0 ≤ 𝑅))
5957, 58syl5ibcom 245 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ 𝑝𝑃) → ((𝑝𝐷𝑀) = 𝑅 → 0 ≤ 𝑅))
6059con3d 152 . . . . . . . 8 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ 𝑝𝑃) → (¬ 0 ≤ 𝑅 → ¬ (𝑝𝐷𝑀) = 𝑅))
6160impancom 451 . . . . . . 7 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) → (𝑝𝑃 → ¬ (𝑝𝐷𝑀) = 𝑅))
6261imp 406 . . . . . 6 ((((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) ∧ 𝑝𝑃) → ¬ (𝑝𝐷𝑀) = 𝑅)
6362ralrimiva 3126 . . . . 5 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) → ∀𝑝𝑃 ¬ (𝑝𝐷𝑀) = 𝑅)
64 eqcom 2737 . . . . . 6 (∅ = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅} ↔ {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅} = ∅)
65 rabeq0 4354 . . . . . 6 ({𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅} = ∅ ↔ ∀𝑝𝑃 ¬ (𝑝𝐷𝑀) = 𝑅)
6664, 65bitri 275 . . . . 5 (∅ = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅} ↔ ∀𝑝𝑃 ¬ (𝑝𝐷𝑀) = 𝑅)
6763, 66sylibr 234 . . . 4 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) → ∅ = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅})
6845, 67eqtrd 2765 . . 3 (((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) ∧ ¬ 0 ≤ 𝑅) → (𝑀𝑆𝑅) = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅})
6968expcom 413 . 2 (¬ 0 ≤ 𝑅 → ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (𝑀𝑆𝑅) = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅}))
7028, 69pm2.61i 182 1 ((𝐼 ∈ Fin ∧ 𝑀𝑃𝑅 ∈ ℝ) → (𝑀𝑆𝑅) = {𝑝𝑃 ∣ (𝑝𝐷𝑀) = 𝑅})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  {crab 3408  Vcvv 3450  c0 4299   class class class wbr 5110   × cxp 5639  dom cdm 5641  cfv 6514  (class class class)co 7390  cmpo 7392  m cmap 8802  Fincfn 8921  cr 11074  0cc0 11075  +∞cpnf 11212  *cxr 11214  cle 11216  [,]cicc 13316  Basecbs 17186  distcds 17236  Metcmet 21257  ℝ^crrx 25290  Spherecsph 48721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-drng 20647  df-field 20648  df-staf 20755  df-srng 20756  df-lmod 20775  df-lss 20845  df-sra 21087  df-rgmod 21088  df-xmet 21264  df-met 21265  df-cnfld 21272  df-refld 21521  df-dsmm 21648  df-frlm 21663  df-nm 24477  df-tng 24479  df-tcph 25076  df-rrx 25292  df-sph 48723
This theorem is referenced by:  2sphere  48742
  Copyright terms: Public domain W3C validator