Step | Hyp | Ref
| Expression |
1 | | oveq12 7264 |
. . 3
⊢ ((𝑋 = ∅ ∧ 𝑌 = ∅) → (𝑋 · 𝑌) = (∅ ·
∅)) |
2 | | mavmul0.t |
. . . 4
⊢ · =
(𝑅 maVecMul 〈𝑁, 𝑁〉) |
3 | 2 | mavmul0 21609 |
. . 3
⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → (∅ · ∅) =
∅) |
4 | 1, 3 | sylan9eq 2799 |
. 2
⊢ (((𝑋 = ∅ ∧ 𝑌 = ∅) ∧ (𝑁 = ∅ ∧ 𝑅 ∈ 𝑉)) → (𝑋 · 𝑌) = ∅) |
5 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
6 | | eqid 2738 |
. . . . . 6
⊢
(.r‘𝑅) = (.r‘𝑅) |
7 | | simpr 484 |
. . . . . 6
⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → 𝑅 ∈ 𝑉) |
8 | | 0fin 8916 |
. . . . . . . 8
⊢ ∅
∈ Fin |
9 | | eleq1 2826 |
. . . . . . . 8
⊢ (𝑁 = ∅ → (𝑁 ∈ Fin ↔ ∅
∈ Fin)) |
10 | 8, 9 | mpbiri 257 |
. . . . . . 7
⊢ (𝑁 = ∅ → 𝑁 ∈ Fin) |
11 | 10 | adantr 480 |
. . . . . 6
⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → 𝑁 ∈ Fin) |
12 | 2, 5, 6, 7, 11, 11 | mvmulfval 21599 |
. . . . 5
⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → · = (𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)), 𝑗 ∈ ((Base‘𝑅) ↑m 𝑁) ↦ (𝑘 ∈ 𝑁 ↦ (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝑘𝑖𝑙)(.r‘𝑅)(𝑗‘𝑙))))))) |
13 | 12 | dmeqd 5803 |
. . . 4
⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → dom · = dom (𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)), 𝑗 ∈ ((Base‘𝑅) ↑m 𝑁) ↦ (𝑘 ∈ 𝑁 ↦ (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝑘𝑖𝑙)(.r‘𝑅)(𝑗‘𝑙))))))) |
14 | | 0ex 5226 |
. . . . . . . . . 10
⊢ ∅
∈ V |
15 | | eleq1 2826 |
. . . . . . . . . 10
⊢ (𝑁 = ∅ → (𝑁 ∈ V ↔ ∅ ∈
V)) |
16 | 14, 15 | mpbiri 257 |
. . . . . . . . 9
⊢ (𝑁 = ∅ → 𝑁 ∈ V) |
17 | 16 | mptexd 7082 |
. . . . . . . 8
⊢ (𝑁 = ∅ → (𝑘 ∈ 𝑁 ↦ (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝑘𝑖𝑙)(.r‘𝑅)(𝑗‘𝑙))))) ∈ V) |
18 | 17 | adantr 480 |
. . . . . . 7
⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → (𝑘 ∈ 𝑁 ↦ (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝑘𝑖𝑙)(.r‘𝑅)(𝑗‘𝑙))))) ∈ V) |
19 | 18 | adantr 480 |
. . . . . 6
⊢ (((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) ∧ (𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑗 ∈ ((Base‘𝑅) ↑m 𝑁))) → (𝑘 ∈ 𝑁 ↦ (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝑘𝑖𝑙)(.r‘𝑅)(𝑗‘𝑙))))) ∈ V) |
20 | 19 | ralrimivva 3114 |
. . . . 5
⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → ∀𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))∀𝑗 ∈ ((Base‘𝑅) ↑m 𝑁)(𝑘 ∈ 𝑁 ↦ (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝑘𝑖𝑙)(.r‘𝑅)(𝑗‘𝑙))))) ∈ V) |
21 | | eqid 2738 |
. . . . . 6
⊢ (𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)), 𝑗 ∈ ((Base‘𝑅) ↑m 𝑁) ↦ (𝑘 ∈ 𝑁 ↦ (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝑘𝑖𝑙)(.r‘𝑅)(𝑗‘𝑙)))))) = (𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)), 𝑗 ∈ ((Base‘𝑅) ↑m 𝑁) ↦ (𝑘 ∈ 𝑁 ↦ (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝑘𝑖𝑙)(.r‘𝑅)(𝑗‘𝑙)))))) |
22 | 21 | dmmpoga 7886 |
. . . . 5
⊢
(∀𝑖 ∈
((Base‘𝑅)
↑m (𝑁
× 𝑁))∀𝑗 ∈ ((Base‘𝑅) ↑m 𝑁)(𝑘 ∈ 𝑁 ↦ (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝑘𝑖𝑙)(.r‘𝑅)(𝑗‘𝑙))))) ∈ V → dom (𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)), 𝑗 ∈ ((Base‘𝑅) ↑m 𝑁) ↦ (𝑘 ∈ 𝑁 ↦ (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝑘𝑖𝑙)(.r‘𝑅)(𝑗‘𝑙)))))) = (((Base‘𝑅) ↑m (𝑁 × 𝑁)) × ((Base‘𝑅) ↑m 𝑁))) |
23 | 20, 22 | syl 17 |
. . . 4
⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → dom (𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)), 𝑗 ∈ ((Base‘𝑅) ↑m 𝑁) ↦ (𝑘 ∈ 𝑁 ↦ (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝑘𝑖𝑙)(.r‘𝑅)(𝑗‘𝑙)))))) = (((Base‘𝑅) ↑m (𝑁 × 𝑁)) × ((Base‘𝑅) ↑m 𝑁))) |
24 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑁 = ∅ → 𝑁 = ∅) |
25 | 24, 24 | xpeq12d 5611 |
. . . . . . . . . 10
⊢ (𝑁 = ∅ → (𝑁 × 𝑁) = (∅ ×
∅)) |
26 | | 0xp 5675 |
. . . . . . . . . 10
⊢ (∅
× ∅) = ∅ |
27 | 25, 26 | eqtrdi 2795 |
. . . . . . . . 9
⊢ (𝑁 = ∅ → (𝑁 × 𝑁) = ∅) |
28 | 27 | oveq2d 7271 |
. . . . . . . 8
⊢ (𝑁 = ∅ →
((Base‘𝑅)
↑m (𝑁
× 𝑁)) =
((Base‘𝑅)
↑m ∅)) |
29 | | fvex 6769 |
. . . . . . . . 9
⊢
(Base‘𝑅)
∈ V |
30 | | map0e 8628 |
. . . . . . . . 9
⊢
((Base‘𝑅)
∈ V → ((Base‘𝑅) ↑m ∅) =
1o) |
31 | 29, 30 | mp1i 13 |
. . . . . . . 8
⊢ (𝑁 = ∅ →
((Base‘𝑅)
↑m ∅) = 1o) |
32 | 28, 31 | eqtrd 2778 |
. . . . . . 7
⊢ (𝑁 = ∅ →
((Base‘𝑅)
↑m (𝑁
× 𝑁)) =
1o) |
33 | 32 | adantr 480 |
. . . . . 6
⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = 1o) |
34 | | df1o2 8279 |
. . . . . 6
⊢
1o = {∅} |
35 | 33, 34 | eqtrdi 2795 |
. . . . 5
⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = {∅}) |
36 | | oveq2 7263 |
. . . . . 6
⊢ (𝑁 = ∅ →
((Base‘𝑅)
↑m 𝑁) =
((Base‘𝑅)
↑m ∅)) |
37 | 29, 30 | mp1i 13 |
. . . . . . 7
⊢ (𝑅 ∈ 𝑉 → ((Base‘𝑅) ↑m ∅) =
1o) |
38 | 37, 34 | eqtrdi 2795 |
. . . . . 6
⊢ (𝑅 ∈ 𝑉 → ((Base‘𝑅) ↑m ∅) =
{∅}) |
39 | 36, 38 | sylan9eq 2799 |
. . . . 5
⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → ((Base‘𝑅) ↑m 𝑁) = {∅}) |
40 | 35, 39 | xpeq12d 5611 |
. . . 4
⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → (((Base‘𝑅) ↑m (𝑁 × 𝑁)) × ((Base‘𝑅) ↑m 𝑁)) = ({∅} ×
{∅})) |
41 | 13, 23, 40 | 3eqtrd 2782 |
. . 3
⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → dom · = ({∅}
× {∅})) |
42 | | elsni 4575 |
. . . . 5
⊢ (𝑋 ∈ {∅} → 𝑋 = ∅) |
43 | | elsni 4575 |
. . . . 5
⊢ (𝑌 ∈ {∅} → 𝑌 = ∅) |
44 | 42, 43 | anim12i 612 |
. . . 4
⊢ ((𝑋 ∈ {∅} ∧ 𝑌 ∈ {∅}) → (𝑋 = ∅ ∧ 𝑌 = ∅)) |
45 | 44 | con3i 154 |
. . 3
⊢ (¬
(𝑋 = ∅ ∧ 𝑌 = ∅) → ¬ (𝑋 ∈ {∅} ∧ 𝑌 ∈
{∅})) |
46 | | ndmovg 7433 |
. . 3
⊢ ((dom
·
= ({∅} × {∅}) ∧ ¬ (𝑋 ∈ {∅} ∧ 𝑌 ∈ {∅})) → (𝑋 · 𝑌) = ∅) |
47 | 41, 45, 46 | syl2anr 596 |
. 2
⊢ ((¬
(𝑋 = ∅ ∧ 𝑌 = ∅) ∧ (𝑁 = ∅ ∧ 𝑅 ∈ 𝑉)) → (𝑋 · 𝑌) = ∅) |
48 | 4, 47 | pm2.61ian 808 |
1
⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → (𝑋 · 𝑌) = ∅) |