MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mavmul0g Structured version   Visualization version   GIF version

Theorem mavmul0g 22559
Description: The result of the 0-dimensional multiplication of a matrix with a vector is always the empty set. (Contributed by AV, 1-Mar-2019.)
Hypothesis
Ref Expression
mavmul0.t · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
Assertion
Ref Expression
mavmul0g ((𝑁 = ∅ ∧ 𝑅𝑉) → (𝑋 · 𝑌) = ∅)

Proof of Theorem mavmul0g
Dummy variables 𝑖 𝑗 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 7440 . . 3 ((𝑋 = ∅ ∧ 𝑌 = ∅) → (𝑋 · 𝑌) = (∅ · ∅))
2 mavmul0.t . . . 4 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
32mavmul0 22558 . . 3 ((𝑁 = ∅ ∧ 𝑅𝑉) → (∅ · ∅) = ∅)
41, 3sylan9eq 2797 . 2 (((𝑋 = ∅ ∧ 𝑌 = ∅) ∧ (𝑁 = ∅ ∧ 𝑅𝑉)) → (𝑋 · 𝑌) = ∅)
5 eqid 2737 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
6 eqid 2737 . . . . . 6 (.r𝑅) = (.r𝑅)
7 simpr 484 . . . . . 6 ((𝑁 = ∅ ∧ 𝑅𝑉) → 𝑅𝑉)
8 0fi 9082 . . . . . . . 8 ∅ ∈ Fin
9 eleq1 2829 . . . . . . . 8 (𝑁 = ∅ → (𝑁 ∈ Fin ↔ ∅ ∈ Fin))
108, 9mpbiri 258 . . . . . . 7 (𝑁 = ∅ → 𝑁 ∈ Fin)
1110adantr 480 . . . . . 6 ((𝑁 = ∅ ∧ 𝑅𝑉) → 𝑁 ∈ Fin)
122, 5, 6, 7, 11, 11mvmulfval 22548 . . . . 5 ((𝑁 = ∅ ∧ 𝑅𝑉) → · = (𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)), 𝑗 ∈ ((Base‘𝑅) ↑m 𝑁) ↦ (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙)))))))
1312dmeqd 5916 . . . 4 ((𝑁 = ∅ ∧ 𝑅𝑉) → dom · = dom (𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)), 𝑗 ∈ ((Base‘𝑅) ↑m 𝑁) ↦ (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙)))))))
14 0ex 5307 . . . . . . . . . 10 ∅ ∈ V
15 eleq1 2829 . . . . . . . . . 10 (𝑁 = ∅ → (𝑁 ∈ V ↔ ∅ ∈ V))
1614, 15mpbiri 258 . . . . . . . . 9 (𝑁 = ∅ → 𝑁 ∈ V)
1716mptexd 7244 . . . . . . . 8 (𝑁 = ∅ → (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙))))) ∈ V)
1817adantr 480 . . . . . . 7 ((𝑁 = ∅ ∧ 𝑅𝑉) → (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙))))) ∈ V)
1918adantr 480 . . . . . 6 (((𝑁 = ∅ ∧ 𝑅𝑉) ∧ (𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑗 ∈ ((Base‘𝑅) ↑m 𝑁))) → (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙))))) ∈ V)
2019ralrimivva 3202 . . . . 5 ((𝑁 = ∅ ∧ 𝑅𝑉) → ∀𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))∀𝑗 ∈ ((Base‘𝑅) ↑m 𝑁)(𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙))))) ∈ V)
21 eqid 2737 . . . . . 6 (𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)), 𝑗 ∈ ((Base‘𝑅) ↑m 𝑁) ↦ (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙)))))) = (𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)), 𝑗 ∈ ((Base‘𝑅) ↑m 𝑁) ↦ (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙))))))
2221dmmpoga 8098 . . . . 5 (∀𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))∀𝑗 ∈ ((Base‘𝑅) ↑m 𝑁)(𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙))))) ∈ V → dom (𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)), 𝑗 ∈ ((Base‘𝑅) ↑m 𝑁) ↦ (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙)))))) = (((Base‘𝑅) ↑m (𝑁 × 𝑁)) × ((Base‘𝑅) ↑m 𝑁)))
2320, 22syl 17 . . . 4 ((𝑁 = ∅ ∧ 𝑅𝑉) → dom (𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)), 𝑗 ∈ ((Base‘𝑅) ↑m 𝑁) ↦ (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙)))))) = (((Base‘𝑅) ↑m (𝑁 × 𝑁)) × ((Base‘𝑅) ↑m 𝑁)))
24 id 22 . . . . . . . . . . 11 (𝑁 = ∅ → 𝑁 = ∅)
2524, 24xpeq12d 5716 . . . . . . . . . 10 (𝑁 = ∅ → (𝑁 × 𝑁) = (∅ × ∅))
26 0xp 5784 . . . . . . . . . 10 (∅ × ∅) = ∅
2725, 26eqtrdi 2793 . . . . . . . . 9 (𝑁 = ∅ → (𝑁 × 𝑁) = ∅)
2827oveq2d 7447 . . . . . . . 8 (𝑁 = ∅ → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = ((Base‘𝑅) ↑m ∅))
29 fvex 6919 . . . . . . . . 9 (Base‘𝑅) ∈ V
30 map0e 8922 . . . . . . . . 9 ((Base‘𝑅) ∈ V → ((Base‘𝑅) ↑m ∅) = 1o)
3129, 30mp1i 13 . . . . . . . 8 (𝑁 = ∅ → ((Base‘𝑅) ↑m ∅) = 1o)
3228, 31eqtrd 2777 . . . . . . 7 (𝑁 = ∅ → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = 1o)
3332adantr 480 . . . . . 6 ((𝑁 = ∅ ∧ 𝑅𝑉) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = 1o)
34 df1o2 8513 . . . . . 6 1o = {∅}
3533, 34eqtrdi 2793 . . . . 5 ((𝑁 = ∅ ∧ 𝑅𝑉) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = {∅})
36 oveq2 7439 . . . . . 6 (𝑁 = ∅ → ((Base‘𝑅) ↑m 𝑁) = ((Base‘𝑅) ↑m ∅))
3729, 30mp1i 13 . . . . . . 7 (𝑅𝑉 → ((Base‘𝑅) ↑m ∅) = 1o)
3837, 34eqtrdi 2793 . . . . . 6 (𝑅𝑉 → ((Base‘𝑅) ↑m ∅) = {∅})
3936, 38sylan9eq 2797 . . . . 5 ((𝑁 = ∅ ∧ 𝑅𝑉) → ((Base‘𝑅) ↑m 𝑁) = {∅})
4035, 39xpeq12d 5716 . . . 4 ((𝑁 = ∅ ∧ 𝑅𝑉) → (((Base‘𝑅) ↑m (𝑁 × 𝑁)) × ((Base‘𝑅) ↑m 𝑁)) = ({∅} × {∅}))
4113, 23, 403eqtrd 2781 . . 3 ((𝑁 = ∅ ∧ 𝑅𝑉) → dom · = ({∅} × {∅}))
42 elsni 4643 . . . . 5 (𝑋 ∈ {∅} → 𝑋 = ∅)
43 elsni 4643 . . . . 5 (𝑌 ∈ {∅} → 𝑌 = ∅)
4442, 43anim12i 613 . . . 4 ((𝑋 ∈ {∅} ∧ 𝑌 ∈ {∅}) → (𝑋 = ∅ ∧ 𝑌 = ∅))
4544con3i 154 . . 3 (¬ (𝑋 = ∅ ∧ 𝑌 = ∅) → ¬ (𝑋 ∈ {∅} ∧ 𝑌 ∈ {∅}))
46 ndmovg 7616 . . 3 ((dom · = ({∅} × {∅}) ∧ ¬ (𝑋 ∈ {∅} ∧ 𝑌 ∈ {∅})) → (𝑋 · 𝑌) = ∅)
4741, 45, 46syl2anr 597 . 2 ((¬ (𝑋 = ∅ ∧ 𝑌 = ∅) ∧ (𝑁 = ∅ ∧ 𝑅𝑉)) → (𝑋 · 𝑌) = ∅)
484, 47pm2.61ian 812 1 ((𝑁 = ∅ ∧ 𝑅𝑉) → (𝑋 · 𝑌) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  c0 4333  {csn 4626  cop 4632  cmpt 5225   × cxp 5683  dom cdm 5685  cfv 6561  (class class class)co 7431  cmpo 7433  1oc1o 8499  m cmap 8866  Fincfn 8985  Basecbs 17247  .rcmulr 17298   Σg cgsu 17485   maVecMul cmvmul 22546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-ot 4635  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-0g 17486  df-prds 17492  df-pws 17494  df-sra 21172  df-rgmod 21173  df-dsmm 21752  df-frlm 21767  df-mat 22412  df-mvmul 22547
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator