MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mavmul0g Structured version   Visualization version   GIF version

Theorem mavmul0g 21162
Description: The result of the 0-dimensional multiplication of a matrix with a vector is always the empty set. (Contributed by AV, 1-Mar-2019.)
Hypothesis
Ref Expression
mavmul0.t · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
Assertion
Ref Expression
mavmul0g ((𝑁 = ∅ ∧ 𝑅𝑉) → (𝑋 · 𝑌) = ∅)

Proof of Theorem mavmul0g
Dummy variables 𝑖 𝑗 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 7165 . . 3 ((𝑋 = ∅ ∧ 𝑌 = ∅) → (𝑋 · 𝑌) = (∅ · ∅))
2 mavmul0.t . . . 4 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
32mavmul0 21161 . . 3 ((𝑁 = ∅ ∧ 𝑅𝑉) → (∅ · ∅) = ∅)
41, 3sylan9eq 2876 . 2 (((𝑋 = ∅ ∧ 𝑌 = ∅) ∧ (𝑁 = ∅ ∧ 𝑅𝑉)) → (𝑋 · 𝑌) = ∅)
5 eqid 2821 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
6 eqid 2821 . . . . . 6 (.r𝑅) = (.r𝑅)
7 simpr 487 . . . . . 6 ((𝑁 = ∅ ∧ 𝑅𝑉) → 𝑅𝑉)
8 0fin 8746 . . . . . . . 8 ∅ ∈ Fin
9 eleq1 2900 . . . . . . . 8 (𝑁 = ∅ → (𝑁 ∈ Fin ↔ ∅ ∈ Fin))
108, 9mpbiri 260 . . . . . . 7 (𝑁 = ∅ → 𝑁 ∈ Fin)
1110adantr 483 . . . . . 6 ((𝑁 = ∅ ∧ 𝑅𝑉) → 𝑁 ∈ Fin)
122, 5, 6, 7, 11, 11mvmulfval 21151 . . . . 5 ((𝑁 = ∅ ∧ 𝑅𝑉) → · = (𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)), 𝑗 ∈ ((Base‘𝑅) ↑m 𝑁) ↦ (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙)))))))
1312dmeqd 5774 . . . 4 ((𝑁 = ∅ ∧ 𝑅𝑉) → dom · = dom (𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)), 𝑗 ∈ ((Base‘𝑅) ↑m 𝑁) ↦ (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙)))))))
14 0ex 5211 . . . . . . . . . 10 ∅ ∈ V
15 eleq1 2900 . . . . . . . . . 10 (𝑁 = ∅ → (𝑁 ∈ V ↔ ∅ ∈ V))
1614, 15mpbiri 260 . . . . . . . . 9 (𝑁 = ∅ → 𝑁 ∈ V)
1716mptexd 6987 . . . . . . . 8 (𝑁 = ∅ → (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙))))) ∈ V)
1817adantr 483 . . . . . . 7 ((𝑁 = ∅ ∧ 𝑅𝑉) → (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙))))) ∈ V)
1918adantr 483 . . . . . 6 (((𝑁 = ∅ ∧ 𝑅𝑉) ∧ (𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑗 ∈ ((Base‘𝑅) ↑m 𝑁))) → (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙))))) ∈ V)
2019ralrimivva 3191 . . . . 5 ((𝑁 = ∅ ∧ 𝑅𝑉) → ∀𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))∀𝑗 ∈ ((Base‘𝑅) ↑m 𝑁)(𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙))))) ∈ V)
21 eqid 2821 . . . . . 6 (𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)), 𝑗 ∈ ((Base‘𝑅) ↑m 𝑁) ↦ (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙)))))) = (𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)), 𝑗 ∈ ((Base‘𝑅) ↑m 𝑁) ↦ (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙))))))
2221dmmpoga 7771 . . . . 5 (∀𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))∀𝑗 ∈ ((Base‘𝑅) ↑m 𝑁)(𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙))))) ∈ V → dom (𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)), 𝑗 ∈ ((Base‘𝑅) ↑m 𝑁) ↦ (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙)))))) = (((Base‘𝑅) ↑m (𝑁 × 𝑁)) × ((Base‘𝑅) ↑m 𝑁)))
2320, 22syl 17 . . . 4 ((𝑁 = ∅ ∧ 𝑅𝑉) → dom (𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)), 𝑗 ∈ ((Base‘𝑅) ↑m 𝑁) ↦ (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙)))))) = (((Base‘𝑅) ↑m (𝑁 × 𝑁)) × ((Base‘𝑅) ↑m 𝑁)))
24 id 22 . . . . . . . . . . 11 (𝑁 = ∅ → 𝑁 = ∅)
2524, 24xpeq12d 5586 . . . . . . . . . 10 (𝑁 = ∅ → (𝑁 × 𝑁) = (∅ × ∅))
26 0xp 5649 . . . . . . . . . 10 (∅ × ∅) = ∅
2725, 26syl6eq 2872 . . . . . . . . 9 (𝑁 = ∅ → (𝑁 × 𝑁) = ∅)
2827oveq2d 7172 . . . . . . . 8 (𝑁 = ∅ → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = ((Base‘𝑅) ↑m ∅))
29 fvex 6683 . . . . . . . . 9 (Base‘𝑅) ∈ V
30 map0e 8446 . . . . . . . . 9 ((Base‘𝑅) ∈ V → ((Base‘𝑅) ↑m ∅) = 1o)
3129, 30mp1i 13 . . . . . . . 8 (𝑁 = ∅ → ((Base‘𝑅) ↑m ∅) = 1o)
3228, 31eqtrd 2856 . . . . . . 7 (𝑁 = ∅ → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = 1o)
3332adantr 483 . . . . . 6 ((𝑁 = ∅ ∧ 𝑅𝑉) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = 1o)
34 df1o2 8116 . . . . . 6 1o = {∅}
3533, 34syl6eq 2872 . . . . 5 ((𝑁 = ∅ ∧ 𝑅𝑉) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = {∅})
36 oveq2 7164 . . . . . 6 (𝑁 = ∅ → ((Base‘𝑅) ↑m 𝑁) = ((Base‘𝑅) ↑m ∅))
3729, 30mp1i 13 . . . . . . 7 (𝑅𝑉 → ((Base‘𝑅) ↑m ∅) = 1o)
3837, 34syl6eq 2872 . . . . . 6 (𝑅𝑉 → ((Base‘𝑅) ↑m ∅) = {∅})
3936, 38sylan9eq 2876 . . . . 5 ((𝑁 = ∅ ∧ 𝑅𝑉) → ((Base‘𝑅) ↑m 𝑁) = {∅})
4035, 39xpeq12d 5586 . . . 4 ((𝑁 = ∅ ∧ 𝑅𝑉) → (((Base‘𝑅) ↑m (𝑁 × 𝑁)) × ((Base‘𝑅) ↑m 𝑁)) = ({∅} × {∅}))
4113, 23, 403eqtrd 2860 . . 3 ((𝑁 = ∅ ∧ 𝑅𝑉) → dom · = ({∅} × {∅}))
42 elsni 4584 . . . . 5 (𝑋 ∈ {∅} → 𝑋 = ∅)
43 elsni 4584 . . . . 5 (𝑌 ∈ {∅} → 𝑌 = ∅)
4442, 43anim12i 614 . . . 4 ((𝑋 ∈ {∅} ∧ 𝑌 ∈ {∅}) → (𝑋 = ∅ ∧ 𝑌 = ∅))
4544con3i 157 . . 3 (¬ (𝑋 = ∅ ∧ 𝑌 = ∅) → ¬ (𝑋 ∈ {∅} ∧ 𝑌 ∈ {∅}))
46 ndmovg 7331 . . 3 ((dom · = ({∅} × {∅}) ∧ ¬ (𝑋 ∈ {∅} ∧ 𝑌 ∈ {∅})) → (𝑋 · 𝑌) = ∅)
4741, 45, 46syl2anr 598 . 2 ((¬ (𝑋 = ∅ ∧ 𝑌 = ∅) ∧ (𝑁 = ∅ ∧ 𝑅𝑉)) → (𝑋 · 𝑌) = ∅)
484, 47pm2.61ian 810 1 ((𝑁 = ∅ ∧ 𝑅𝑉) → (𝑋 · 𝑌) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3138  Vcvv 3494  c0 4291  {csn 4567  cop 4573  cmpt 5146   × cxp 5553  dom cdm 5555  cfv 6355  (class class class)co 7156  cmpo 7158  1oc1o 8095  m cmap 8406  Fincfn 8509  Basecbs 16483  .rcmulr 16566   Σg cgsu 16714   maVecMul cmvmul 21149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-ot 4576  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-hom 16589  df-cco 16590  df-0g 16715  df-prds 16721  df-pws 16723  df-sra 19944  df-rgmod 19945  df-dsmm 20876  df-frlm 20891  df-mat 21017  df-mvmul 21150
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator