Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mavmul0g Structured version   Visualization version   GIF version

Theorem mavmul0g 21162
 Description: The result of the 0-dimensional multiplication of a matrix with a vector is always the empty set. (Contributed by AV, 1-Mar-2019.)
Hypothesis
Ref Expression
mavmul0.t · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
Assertion
Ref Expression
mavmul0g ((𝑁 = ∅ ∧ 𝑅𝑉) → (𝑋 · 𝑌) = ∅)

Proof of Theorem mavmul0g
Dummy variables 𝑖 𝑗 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 7148 . . 3 ((𝑋 = ∅ ∧ 𝑌 = ∅) → (𝑋 · 𝑌) = (∅ · ∅))
2 mavmul0.t . . . 4 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
32mavmul0 21161 . . 3 ((𝑁 = ∅ ∧ 𝑅𝑉) → (∅ · ∅) = ∅)
41, 3sylan9eq 2856 . 2 (((𝑋 = ∅ ∧ 𝑌 = ∅) ∧ (𝑁 = ∅ ∧ 𝑅𝑉)) → (𝑋 · 𝑌) = ∅)
5 eqid 2801 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
6 eqid 2801 . . . . . 6 (.r𝑅) = (.r𝑅)
7 simpr 488 . . . . . 6 ((𝑁 = ∅ ∧ 𝑅𝑉) → 𝑅𝑉)
8 0fin 8734 . . . . . . . 8 ∅ ∈ Fin
9 eleq1 2880 . . . . . . . 8 (𝑁 = ∅ → (𝑁 ∈ Fin ↔ ∅ ∈ Fin))
108, 9mpbiri 261 . . . . . . 7 (𝑁 = ∅ → 𝑁 ∈ Fin)
1110adantr 484 . . . . . 6 ((𝑁 = ∅ ∧ 𝑅𝑉) → 𝑁 ∈ Fin)
122, 5, 6, 7, 11, 11mvmulfval 21151 . . . . 5 ((𝑁 = ∅ ∧ 𝑅𝑉) → · = (𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)), 𝑗 ∈ ((Base‘𝑅) ↑m 𝑁) ↦ (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙)))))))
1312dmeqd 5742 . . . 4 ((𝑁 = ∅ ∧ 𝑅𝑉) → dom · = dom (𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)), 𝑗 ∈ ((Base‘𝑅) ↑m 𝑁) ↦ (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙)))))))
14 0ex 5178 . . . . . . . . . 10 ∅ ∈ V
15 eleq1 2880 . . . . . . . . . 10 (𝑁 = ∅ → (𝑁 ∈ V ↔ ∅ ∈ V))
1614, 15mpbiri 261 . . . . . . . . 9 (𝑁 = ∅ → 𝑁 ∈ V)
1716mptexd 6968 . . . . . . . 8 (𝑁 = ∅ → (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙))))) ∈ V)
1817adantr 484 . . . . . . 7 ((𝑁 = ∅ ∧ 𝑅𝑉) → (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙))))) ∈ V)
1918adantr 484 . . . . . 6 (((𝑁 = ∅ ∧ 𝑅𝑉) ∧ (𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑗 ∈ ((Base‘𝑅) ↑m 𝑁))) → (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙))))) ∈ V)
2019ralrimivva 3159 . . . . 5 ((𝑁 = ∅ ∧ 𝑅𝑉) → ∀𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))∀𝑗 ∈ ((Base‘𝑅) ↑m 𝑁)(𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙))))) ∈ V)
21 eqid 2801 . . . . . 6 (𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)), 𝑗 ∈ ((Base‘𝑅) ↑m 𝑁) ↦ (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙)))))) = (𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)), 𝑗 ∈ ((Base‘𝑅) ↑m 𝑁) ↦ (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙))))))
2221dmmpoga 7757 . . . . 5 (∀𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))∀𝑗 ∈ ((Base‘𝑅) ↑m 𝑁)(𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙))))) ∈ V → dom (𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)), 𝑗 ∈ ((Base‘𝑅) ↑m 𝑁) ↦ (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙)))))) = (((Base‘𝑅) ↑m (𝑁 × 𝑁)) × ((Base‘𝑅) ↑m 𝑁)))
2320, 22syl 17 . . . 4 ((𝑁 = ∅ ∧ 𝑅𝑉) → dom (𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)), 𝑗 ∈ ((Base‘𝑅) ↑m 𝑁) ↦ (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙)))))) = (((Base‘𝑅) ↑m (𝑁 × 𝑁)) × ((Base‘𝑅) ↑m 𝑁)))
24 id 22 . . . . . . . . . . 11 (𝑁 = ∅ → 𝑁 = ∅)
2524, 24xpeq12d 5554 . . . . . . . . . 10 (𝑁 = ∅ → (𝑁 × 𝑁) = (∅ × ∅))
26 0xp 5617 . . . . . . . . . 10 (∅ × ∅) = ∅
2725, 26eqtrdi 2852 . . . . . . . . 9 (𝑁 = ∅ → (𝑁 × 𝑁) = ∅)
2827oveq2d 7155 . . . . . . . 8 (𝑁 = ∅ → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = ((Base‘𝑅) ↑m ∅))
29 fvex 6662 . . . . . . . . 9 (Base‘𝑅) ∈ V
30 map0e 8433 . . . . . . . . 9 ((Base‘𝑅) ∈ V → ((Base‘𝑅) ↑m ∅) = 1o)
3129, 30mp1i 13 . . . . . . . 8 (𝑁 = ∅ → ((Base‘𝑅) ↑m ∅) = 1o)
3228, 31eqtrd 2836 . . . . . . 7 (𝑁 = ∅ → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = 1o)
3332adantr 484 . . . . . 6 ((𝑁 = ∅ ∧ 𝑅𝑉) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = 1o)
34 df1o2 8103 . . . . . 6 1o = {∅}
3533, 34eqtrdi 2852 . . . . 5 ((𝑁 = ∅ ∧ 𝑅𝑉) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = {∅})
36 oveq2 7147 . . . . . 6 (𝑁 = ∅ → ((Base‘𝑅) ↑m 𝑁) = ((Base‘𝑅) ↑m ∅))
3729, 30mp1i 13 . . . . . . 7 (𝑅𝑉 → ((Base‘𝑅) ↑m ∅) = 1o)
3837, 34eqtrdi 2852 . . . . . 6 (𝑅𝑉 → ((Base‘𝑅) ↑m ∅) = {∅})
3936, 38sylan9eq 2856 . . . . 5 ((𝑁 = ∅ ∧ 𝑅𝑉) → ((Base‘𝑅) ↑m 𝑁) = {∅})
4035, 39xpeq12d 5554 . . . 4 ((𝑁 = ∅ ∧ 𝑅𝑉) → (((Base‘𝑅) ↑m (𝑁 × 𝑁)) × ((Base‘𝑅) ↑m 𝑁)) = ({∅} × {∅}))
4113, 23, 403eqtrd 2840 . . 3 ((𝑁 = ∅ ∧ 𝑅𝑉) → dom · = ({∅} × {∅}))
42 elsni 4545 . . . . 5 (𝑋 ∈ {∅} → 𝑋 = ∅)
43 elsni 4545 . . . . 5 (𝑌 ∈ {∅} → 𝑌 = ∅)
4442, 43anim12i 615 . . . 4 ((𝑋 ∈ {∅} ∧ 𝑌 ∈ {∅}) → (𝑋 = ∅ ∧ 𝑌 = ∅))
4544con3i 157 . . 3 (¬ (𝑋 = ∅ ∧ 𝑌 = ∅) → ¬ (𝑋 ∈ {∅} ∧ 𝑌 ∈ {∅}))
46 ndmovg 7315 . . 3 ((dom · = ({∅} × {∅}) ∧ ¬ (𝑋 ∈ {∅} ∧ 𝑌 ∈ {∅})) → (𝑋 · 𝑌) = ∅)
4741, 45, 46syl2anr 599 . 2 ((¬ (𝑋 = ∅ ∧ 𝑌 = ∅) ∧ (𝑁 = ∅ ∧ 𝑅𝑉)) → (𝑋 · 𝑌) = ∅)
484, 47pm2.61ian 811 1 ((𝑁 = ∅ ∧ 𝑅𝑉) → (𝑋 · 𝑌) = ∅)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2112  ∀wral 3109  Vcvv 3444  ∅c0 4246  {csn 4528  ⟨cop 4534   ↦ cmpt 5113   × cxp 5521  dom cdm 5523  ‘cfv 6328  (class class class)co 7139   ∈ cmpo 7141  1oc1o 8082   ↑m cmap 8393  Fincfn 8496  Basecbs 16479  .rcmulr 16562   Σg cgsu 16710   maVecMul cmvmul 21149 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-ot 4537  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-sup 8894  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12890  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-hom 16585  df-cco 16586  df-0g 16711  df-prds 16717  df-pws 16719  df-sra 19941  df-rgmod 19942  df-dsmm 20425  df-frlm 20440  df-mat 21017  df-mvmul 21150 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator