MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mavmul0g Structured version   Visualization version   GIF version

Theorem mavmul0g 22469
Description: The result of the 0-dimensional multiplication of a matrix with a vector is always the empty set. (Contributed by AV, 1-Mar-2019.)
Hypothesis
Ref Expression
mavmul0.t · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
Assertion
Ref Expression
mavmul0g ((𝑁 = ∅ ∧ 𝑅𝑉) → (𝑋 · 𝑌) = ∅)

Proof of Theorem mavmul0g
Dummy variables 𝑖 𝑗 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 7361 . . 3 ((𝑋 = ∅ ∧ 𝑌 = ∅) → (𝑋 · 𝑌) = (∅ · ∅))
2 mavmul0.t . . . 4 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
32mavmul0 22468 . . 3 ((𝑁 = ∅ ∧ 𝑅𝑉) → (∅ · ∅) = ∅)
41, 3sylan9eq 2788 . 2 (((𝑋 = ∅ ∧ 𝑌 = ∅) ∧ (𝑁 = ∅ ∧ 𝑅𝑉)) → (𝑋 · 𝑌) = ∅)
5 eqid 2733 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
6 eqid 2733 . . . . . 6 (.r𝑅) = (.r𝑅)
7 simpr 484 . . . . . 6 ((𝑁 = ∅ ∧ 𝑅𝑉) → 𝑅𝑉)
8 0fi 8971 . . . . . . . 8 ∅ ∈ Fin
9 eleq1 2821 . . . . . . . 8 (𝑁 = ∅ → (𝑁 ∈ Fin ↔ ∅ ∈ Fin))
108, 9mpbiri 258 . . . . . . 7 (𝑁 = ∅ → 𝑁 ∈ Fin)
1110adantr 480 . . . . . 6 ((𝑁 = ∅ ∧ 𝑅𝑉) → 𝑁 ∈ Fin)
122, 5, 6, 7, 11, 11mvmulfval 22458 . . . . 5 ((𝑁 = ∅ ∧ 𝑅𝑉) → · = (𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)), 𝑗 ∈ ((Base‘𝑅) ↑m 𝑁) ↦ (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙)))))))
1312dmeqd 5849 . . . 4 ((𝑁 = ∅ ∧ 𝑅𝑉) → dom · = dom (𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)), 𝑗 ∈ ((Base‘𝑅) ↑m 𝑁) ↦ (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙)))))))
14 0ex 5247 . . . . . . . . . 10 ∅ ∈ V
15 eleq1 2821 . . . . . . . . . 10 (𝑁 = ∅ → (𝑁 ∈ V ↔ ∅ ∈ V))
1614, 15mpbiri 258 . . . . . . . . 9 (𝑁 = ∅ → 𝑁 ∈ V)
1716mptexd 7164 . . . . . . . 8 (𝑁 = ∅ → (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙))))) ∈ V)
1817adantr 480 . . . . . . 7 ((𝑁 = ∅ ∧ 𝑅𝑉) → (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙))))) ∈ V)
1918adantr 480 . . . . . 6 (((𝑁 = ∅ ∧ 𝑅𝑉) ∧ (𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑗 ∈ ((Base‘𝑅) ↑m 𝑁))) → (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙))))) ∈ V)
2019ralrimivva 3176 . . . . 5 ((𝑁 = ∅ ∧ 𝑅𝑉) → ∀𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))∀𝑗 ∈ ((Base‘𝑅) ↑m 𝑁)(𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙))))) ∈ V)
21 eqid 2733 . . . . . 6 (𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)), 𝑗 ∈ ((Base‘𝑅) ↑m 𝑁) ↦ (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙)))))) = (𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)), 𝑗 ∈ ((Base‘𝑅) ↑m 𝑁) ↦ (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙))))))
2221dmmpoga 8011 . . . . 5 (∀𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))∀𝑗 ∈ ((Base‘𝑅) ↑m 𝑁)(𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙))))) ∈ V → dom (𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)), 𝑗 ∈ ((Base‘𝑅) ↑m 𝑁) ↦ (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙)))))) = (((Base‘𝑅) ↑m (𝑁 × 𝑁)) × ((Base‘𝑅) ↑m 𝑁)))
2320, 22syl 17 . . . 4 ((𝑁 = ∅ ∧ 𝑅𝑉) → dom (𝑖 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)), 𝑗 ∈ ((Base‘𝑅) ↑m 𝑁) ↦ (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙)))))) = (((Base‘𝑅) ↑m (𝑁 × 𝑁)) × ((Base‘𝑅) ↑m 𝑁)))
24 id 22 . . . . . . . . . . 11 (𝑁 = ∅ → 𝑁 = ∅)
2524, 24xpeq12d 5650 . . . . . . . . . 10 (𝑁 = ∅ → (𝑁 × 𝑁) = (∅ × ∅))
26 0xp 5718 . . . . . . . . . 10 (∅ × ∅) = ∅
2725, 26eqtrdi 2784 . . . . . . . . 9 (𝑁 = ∅ → (𝑁 × 𝑁) = ∅)
2827oveq2d 7368 . . . . . . . 8 (𝑁 = ∅ → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = ((Base‘𝑅) ↑m ∅))
29 fvex 6841 . . . . . . . . 9 (Base‘𝑅) ∈ V
30 map0e 8812 . . . . . . . . 9 ((Base‘𝑅) ∈ V → ((Base‘𝑅) ↑m ∅) = 1o)
3129, 30mp1i 13 . . . . . . . 8 (𝑁 = ∅ → ((Base‘𝑅) ↑m ∅) = 1o)
3228, 31eqtrd 2768 . . . . . . 7 (𝑁 = ∅ → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = 1o)
3332adantr 480 . . . . . 6 ((𝑁 = ∅ ∧ 𝑅𝑉) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = 1o)
34 df1o2 8398 . . . . . 6 1o = {∅}
3533, 34eqtrdi 2784 . . . . 5 ((𝑁 = ∅ ∧ 𝑅𝑉) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = {∅})
36 oveq2 7360 . . . . . 6 (𝑁 = ∅ → ((Base‘𝑅) ↑m 𝑁) = ((Base‘𝑅) ↑m ∅))
3729, 30mp1i 13 . . . . . . 7 (𝑅𝑉 → ((Base‘𝑅) ↑m ∅) = 1o)
3837, 34eqtrdi 2784 . . . . . 6 (𝑅𝑉 → ((Base‘𝑅) ↑m ∅) = {∅})
3936, 38sylan9eq 2788 . . . . 5 ((𝑁 = ∅ ∧ 𝑅𝑉) → ((Base‘𝑅) ↑m 𝑁) = {∅})
4035, 39xpeq12d 5650 . . . 4 ((𝑁 = ∅ ∧ 𝑅𝑉) → (((Base‘𝑅) ↑m (𝑁 × 𝑁)) × ((Base‘𝑅) ↑m 𝑁)) = ({∅} × {∅}))
4113, 23, 403eqtrd 2772 . . 3 ((𝑁 = ∅ ∧ 𝑅𝑉) → dom · = ({∅} × {∅}))
42 elsni 4592 . . . . 5 (𝑋 ∈ {∅} → 𝑋 = ∅)
43 elsni 4592 . . . . 5 (𝑌 ∈ {∅} → 𝑌 = ∅)
4442, 43anim12i 613 . . . 4 ((𝑋 ∈ {∅} ∧ 𝑌 ∈ {∅}) → (𝑋 = ∅ ∧ 𝑌 = ∅))
4544con3i 154 . . 3 (¬ (𝑋 = ∅ ∧ 𝑌 = ∅) → ¬ (𝑋 ∈ {∅} ∧ 𝑌 ∈ {∅}))
46 ndmovg 7535 . . 3 ((dom · = ({∅} × {∅}) ∧ ¬ (𝑋 ∈ {∅} ∧ 𝑌 ∈ {∅})) → (𝑋 · 𝑌) = ∅)
4741, 45, 46syl2anr 597 . 2 ((¬ (𝑋 = ∅ ∧ 𝑌 = ∅) ∧ (𝑁 = ∅ ∧ 𝑅𝑉)) → (𝑋 · 𝑌) = ∅)
484, 47pm2.61ian 811 1 ((𝑁 = ∅ ∧ 𝑅𝑉) → (𝑋 · 𝑌) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  Vcvv 3437  c0 4282  {csn 4575  cop 4581  cmpt 5174   × cxp 5617  dom cdm 5619  cfv 6486  (class class class)co 7352  cmpo 7354  1oc1o 8384  m cmap 8756  Fincfn 8875  Basecbs 17122  .rcmulr 17164   Σg cgsu 17346   maVecMul cmvmul 22456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-ot 4584  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-sup 9333  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-hom 17187  df-cco 17188  df-0g 17347  df-prds 17353  df-pws 17355  df-sra 21109  df-rgmod 21110  df-dsmm 21671  df-frlm 21686  df-mat 22324  df-mvmul 22457
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator