|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > rpnnen1lem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for rpnnen1 13025. (Contributed by Mario Carneiro, 12-May-2013.) | 
| Ref | Expression | 
|---|---|
| rpnnen1lem.1 | ⊢ 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} | 
| rpnnen1lem.2 | ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) | 
| Ref | Expression | 
|---|---|
| rpnnen1lem2 | ⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → sup(𝑇, ℝ, < ) ∈ ℤ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rpnnen1lem.1 | . . 3 ⊢ 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} | |
| 2 | 1 | ssrab3 4082 | . 2 ⊢ 𝑇 ⊆ ℤ | 
| 3 | nnre 12273 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℝ) | |
| 4 | remulcl 11240 | . . . . . . . . 9 ⊢ ((𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑘 · 𝑥) ∈ ℝ) | |
| 5 | 4 | ancoms 458 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑘 · 𝑥) ∈ ℝ) | 
| 6 | 3, 5 | sylan2 593 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝑘 · 𝑥) ∈ ℝ) | 
| 7 | btwnz 12721 | . . . . . . . 8 ⊢ ((𝑘 · 𝑥) ∈ ℝ → (∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥) ∧ ∃𝑛 ∈ ℤ (𝑘 · 𝑥) < 𝑛)) | |
| 8 | 7 | simpld 494 | . . . . . . 7 ⊢ ((𝑘 · 𝑥) ∈ ℝ → ∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥)) | 
| 9 | 6, 8 | syl 17 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥)) | 
| 10 | zre 12617 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ ℝ) | |
| 11 | 10 | adantl 481 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℝ) | 
| 12 | simpll 767 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑥 ∈ ℝ) | |
| 13 | nngt0 12297 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℕ → 0 < 𝑘) | |
| 14 | 3, 13 | jca 511 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℕ → (𝑘 ∈ ℝ ∧ 0 < 𝑘)) | 
| 15 | 14 | ad2antlr 727 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑘 ∈ ℝ ∧ 0 < 𝑘)) | 
| 16 | ltdivmul 12143 | . . . . . . . 8 ⊢ ((𝑛 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → ((𝑛 / 𝑘) < 𝑥 ↔ 𝑛 < (𝑘 · 𝑥))) | |
| 17 | 11, 12, 15, 16 | syl3anc 1373 | . . . . . . 7 ⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → ((𝑛 / 𝑘) < 𝑥 ↔ 𝑛 < (𝑘 · 𝑥))) | 
| 18 | 17 | rexbidva 3177 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (∃𝑛 ∈ ℤ (𝑛 / 𝑘) < 𝑥 ↔ ∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥))) | 
| 19 | 9, 18 | mpbird 257 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∃𝑛 ∈ ℤ (𝑛 / 𝑘) < 𝑥) | 
| 20 | rabn0 4389 | . . . . 5 ⊢ ({𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅ ↔ ∃𝑛 ∈ ℤ (𝑛 / 𝑘) < 𝑥) | |
| 21 | 19, 20 | sylibr 234 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅) | 
| 22 | 1 | neeq1i 3005 | . . . 4 ⊢ (𝑇 ≠ ∅ ↔ {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅) | 
| 23 | 21, 22 | sylibr 234 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → 𝑇 ≠ ∅) | 
| 24 | 1 | reqabi 3460 | . . . . . 6 ⊢ (𝑛 ∈ 𝑇 ↔ (𝑛 ∈ ℤ ∧ (𝑛 / 𝑘) < 𝑥)) | 
| 25 | 3 | ad2antlr 727 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑘 ∈ ℝ) | 
| 26 | 25, 12, 4 | syl2anc 584 | . . . . . . . . 9 ⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑘 · 𝑥) ∈ ℝ) | 
| 27 | ltle 11349 | . . . . . . . . 9 ⊢ ((𝑛 ∈ ℝ ∧ (𝑘 · 𝑥) ∈ ℝ) → (𝑛 < (𝑘 · 𝑥) → 𝑛 ≤ (𝑘 · 𝑥))) | |
| 28 | 11, 26, 27 | syl2anc 584 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑛 < (𝑘 · 𝑥) → 𝑛 ≤ (𝑘 · 𝑥))) | 
| 29 | 17, 28 | sylbid 240 | . . . . . . 7 ⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → ((𝑛 / 𝑘) < 𝑥 → 𝑛 ≤ (𝑘 · 𝑥))) | 
| 30 | 29 | impr 454 | . . . . . 6 ⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ ℤ ∧ (𝑛 / 𝑘) < 𝑥)) → 𝑛 ≤ (𝑘 · 𝑥)) | 
| 31 | 24, 30 | sylan2b 594 | . . . . 5 ⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ 𝑇) → 𝑛 ≤ (𝑘 · 𝑥)) | 
| 32 | 31 | ralrimiva 3146 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∀𝑛 ∈ 𝑇 𝑛 ≤ (𝑘 · 𝑥)) | 
| 33 | brralrspcev 5203 | . . . 4 ⊢ (((𝑘 · 𝑥) ∈ ℝ ∧ ∀𝑛 ∈ 𝑇 𝑛 ≤ (𝑘 · 𝑥)) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑇 𝑛 ≤ 𝑦) | |
| 34 | 6, 32, 33 | syl2anc 584 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑇 𝑛 ≤ 𝑦) | 
| 35 | suprzcl 12698 | . . 3 ⊢ ((𝑇 ⊆ ℤ ∧ 𝑇 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑇 𝑛 ≤ 𝑦) → sup(𝑇, ℝ, < ) ∈ 𝑇) | |
| 36 | 2, 23, 34, 35 | mp3an2i 1468 | . 2 ⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → sup(𝑇, ℝ, < ) ∈ 𝑇) | 
| 37 | 2, 36 | sselid 3981 | 1 ⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → sup(𝑇, ℝ, < ) ∈ ℤ) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 {crab 3436 ⊆ wss 3951 ∅c0 4333 class class class wbr 5143 ↦ cmpt 5225 (class class class)co 7431 supcsup 9480 ℝcr 11154 0cc0 11155 · cmul 11160 < clt 11295 ≤ cle 11296 / cdiv 11920 ℕcn 12266 ℤcz 12613 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-n0 12527 df-z 12614 | 
| This theorem is referenced by: rpnnen1lem3 13021 rpnnen1lem5 13023 | 
| Copyright terms: Public domain | W3C validator |