| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpnnen1lem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for rpnnen1 12918. (Contributed by Mario Carneiro, 12-May-2013.) |
| Ref | Expression |
|---|---|
| rpnnen1lem.1 | ⊢ 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} |
| rpnnen1lem.2 | ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) |
| Ref | Expression |
|---|---|
| rpnnen1lem2 | ⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → sup(𝑇, ℝ, < ) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpnnen1lem.1 | . . 3 ⊢ 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} | |
| 2 | 1 | ssrab3 4041 | . 2 ⊢ 𝑇 ⊆ ℤ |
| 3 | nnre 12169 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℝ) | |
| 4 | remulcl 11129 | . . . . . . . . 9 ⊢ ((𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑘 · 𝑥) ∈ ℝ) | |
| 5 | 4 | ancoms 458 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑘 · 𝑥) ∈ ℝ) |
| 6 | 3, 5 | sylan2 593 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝑘 · 𝑥) ∈ ℝ) |
| 7 | btwnz 12613 | . . . . . . . 8 ⊢ ((𝑘 · 𝑥) ∈ ℝ → (∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥) ∧ ∃𝑛 ∈ ℤ (𝑘 · 𝑥) < 𝑛)) | |
| 8 | 7 | simpld 494 | . . . . . . 7 ⊢ ((𝑘 · 𝑥) ∈ ℝ → ∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥)) |
| 9 | 6, 8 | syl 17 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥)) |
| 10 | zre 12509 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ ℝ) | |
| 11 | 10 | adantl 481 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℝ) |
| 12 | simpll 766 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑥 ∈ ℝ) | |
| 13 | nngt0 12193 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℕ → 0 < 𝑘) | |
| 14 | 3, 13 | jca 511 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℕ → (𝑘 ∈ ℝ ∧ 0 < 𝑘)) |
| 15 | 14 | ad2antlr 727 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑘 ∈ ℝ ∧ 0 < 𝑘)) |
| 16 | ltdivmul 12034 | . . . . . . . 8 ⊢ ((𝑛 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → ((𝑛 / 𝑘) < 𝑥 ↔ 𝑛 < (𝑘 · 𝑥))) | |
| 17 | 11, 12, 15, 16 | syl3anc 1373 | . . . . . . 7 ⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → ((𝑛 / 𝑘) < 𝑥 ↔ 𝑛 < (𝑘 · 𝑥))) |
| 18 | 17 | rexbidva 3155 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (∃𝑛 ∈ ℤ (𝑛 / 𝑘) < 𝑥 ↔ ∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥))) |
| 19 | 9, 18 | mpbird 257 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∃𝑛 ∈ ℤ (𝑛 / 𝑘) < 𝑥) |
| 20 | rabn0 4348 | . . . . 5 ⊢ ({𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅ ↔ ∃𝑛 ∈ ℤ (𝑛 / 𝑘) < 𝑥) | |
| 21 | 19, 20 | sylibr 234 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅) |
| 22 | 1 | neeq1i 2989 | . . . 4 ⊢ (𝑇 ≠ ∅ ↔ {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅) |
| 23 | 21, 22 | sylibr 234 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → 𝑇 ≠ ∅) |
| 24 | 1 | reqabi 3426 | . . . . . 6 ⊢ (𝑛 ∈ 𝑇 ↔ (𝑛 ∈ ℤ ∧ (𝑛 / 𝑘) < 𝑥)) |
| 25 | 3 | ad2antlr 727 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑘 ∈ ℝ) |
| 26 | 25, 12, 4 | syl2anc 584 | . . . . . . . . 9 ⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑘 · 𝑥) ∈ ℝ) |
| 27 | ltle 11238 | . . . . . . . . 9 ⊢ ((𝑛 ∈ ℝ ∧ (𝑘 · 𝑥) ∈ ℝ) → (𝑛 < (𝑘 · 𝑥) → 𝑛 ≤ (𝑘 · 𝑥))) | |
| 28 | 11, 26, 27 | syl2anc 584 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑛 < (𝑘 · 𝑥) → 𝑛 ≤ (𝑘 · 𝑥))) |
| 29 | 17, 28 | sylbid 240 | . . . . . . 7 ⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → ((𝑛 / 𝑘) < 𝑥 → 𝑛 ≤ (𝑘 · 𝑥))) |
| 30 | 29 | impr 454 | . . . . . 6 ⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ ℤ ∧ (𝑛 / 𝑘) < 𝑥)) → 𝑛 ≤ (𝑘 · 𝑥)) |
| 31 | 24, 30 | sylan2b 594 | . . . . 5 ⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ 𝑇) → 𝑛 ≤ (𝑘 · 𝑥)) |
| 32 | 31 | ralrimiva 3125 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∀𝑛 ∈ 𝑇 𝑛 ≤ (𝑘 · 𝑥)) |
| 33 | brralrspcev 5162 | . . . 4 ⊢ (((𝑘 · 𝑥) ∈ ℝ ∧ ∀𝑛 ∈ 𝑇 𝑛 ≤ (𝑘 · 𝑥)) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑇 𝑛 ≤ 𝑦) | |
| 34 | 6, 32, 33 | syl2anc 584 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑇 𝑛 ≤ 𝑦) |
| 35 | suprzcl 12590 | . . 3 ⊢ ((𝑇 ⊆ ℤ ∧ 𝑇 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑇 𝑛 ≤ 𝑦) → sup(𝑇, ℝ, < ) ∈ 𝑇) | |
| 36 | 2, 23, 34, 35 | mp3an2i 1468 | . 2 ⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → sup(𝑇, ℝ, < ) ∈ 𝑇) |
| 37 | 2, 36 | sselid 3941 | 1 ⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → sup(𝑇, ℝ, < ) ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 {crab 3402 ⊆ wss 3911 ∅c0 4292 class class class wbr 5102 ↦ cmpt 5183 (class class class)co 7369 supcsup 9367 ℝcr 11043 0cc0 11044 · cmul 11049 < clt 11184 ≤ cle 11185 / cdiv 11811 ℕcn 12162 ℤcz 12505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-n0 12419 df-z 12506 |
| This theorem is referenced by: rpnnen1lem3 12914 rpnnen1lem5 12916 |
| Copyright terms: Public domain | W3C validator |