MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen1lem3 Structured version   Visualization version   GIF version

Theorem rpnnen1lem3 12648
Description: Lemma for rpnnen1 12652. (Contributed by Mario Carneiro, 12-May-2013.) (Revised by NM, 13-Aug-2021.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
rpnnen1lem.1 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥}
rpnnen1lem.2 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
rpnnen1lem.n ℕ ∈ V
rpnnen1lem.q ℚ ∈ V
Assertion
Ref Expression
rpnnen1lem3 (𝑥 ∈ ℝ → ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥)
Distinct variable groups:   𝑘,𝐹,𝑛,𝑥   𝑇,𝑛
Allowed substitution hints:   𝑇(𝑥,𝑘)

Proof of Theorem rpnnen1lem3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rpnnen1lem.n . . . . . . . 8 ℕ ∈ V
21mptex 7081 . . . . . . 7 (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)) ∈ V
3 rpnnen1lem.2 . . . . . . . 8 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
43fvmpt2 6868 . . . . . . 7 ((𝑥 ∈ ℝ ∧ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)) ∈ V) → (𝐹𝑥) = (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
52, 4mpan2 687 . . . . . 6 (𝑥 ∈ ℝ → (𝐹𝑥) = (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
65fveq1d 6758 . . . . 5 (𝑥 ∈ ℝ → ((𝐹𝑥)‘𝑘) = ((𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))‘𝑘))
7 ovex 7288 . . . . . 6 (sup(𝑇, ℝ, < ) / 𝑘) ∈ V
8 eqid 2738 . . . . . . 7 (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)) = (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))
98fvmpt2 6868 . . . . . 6 ((𝑘 ∈ ℕ ∧ (sup(𝑇, ℝ, < ) / 𝑘) ∈ V) → ((𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))‘𝑘) = (sup(𝑇, ℝ, < ) / 𝑘))
107, 9mpan2 687 . . . . 5 (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))‘𝑘) = (sup(𝑇, ℝ, < ) / 𝑘))
116, 10sylan9eq 2799 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑥)‘𝑘) = (sup(𝑇, ℝ, < ) / 𝑘))
12 rpnnen1lem.1 . . . . . . . . 9 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥}
1312rabeq2i 3412 . . . . . . . 8 (𝑛𝑇 ↔ (𝑛 ∈ ℤ ∧ (𝑛 / 𝑘) < 𝑥))
14 zre 12253 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → 𝑛 ∈ ℝ)
1514adantl 481 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℝ)
16 simpll 763 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑥 ∈ ℝ)
17 nnre 11910 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
18 nngt0 11934 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 0 < 𝑘)
1917, 18jca 511 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
2019ad2antlr 723 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
21 ltdivmul 11780 . . . . . . . . . . 11 ((𝑛 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → ((𝑛 / 𝑘) < 𝑥𝑛 < (𝑘 · 𝑥)))
2215, 16, 20, 21syl3anc 1369 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → ((𝑛 / 𝑘) < 𝑥𝑛 < (𝑘 · 𝑥)))
2317ad2antlr 723 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑘 ∈ ℝ)
24 remulcl 10887 . . . . . . . . . . . 12 ((𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑘 · 𝑥) ∈ ℝ)
2523, 16, 24syl2anc 583 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑘 · 𝑥) ∈ ℝ)
26 ltle 10994 . . . . . . . . . . 11 ((𝑛 ∈ ℝ ∧ (𝑘 · 𝑥) ∈ ℝ) → (𝑛 < (𝑘 · 𝑥) → 𝑛 ≤ (𝑘 · 𝑥)))
2715, 25, 26syl2anc 583 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑛 < (𝑘 · 𝑥) → 𝑛 ≤ (𝑘 · 𝑥)))
2822, 27sylbid 239 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → ((𝑛 / 𝑘) < 𝑥𝑛 ≤ (𝑘 · 𝑥)))
2928impr 454 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ ℤ ∧ (𝑛 / 𝑘) < 𝑥)) → 𝑛 ≤ (𝑘 · 𝑥))
3013, 29sylan2b 593 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛𝑇) → 𝑛 ≤ (𝑘 · 𝑥))
3130ralrimiva 3107 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∀𝑛𝑇 𝑛 ≤ (𝑘 · 𝑥))
32 ssrab2 4009 . . . . . . . . . 10 {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ⊆ ℤ
3312, 32eqsstri 3951 . . . . . . . . 9 𝑇 ⊆ ℤ
34 zssre 12256 . . . . . . . . 9 ℤ ⊆ ℝ
3533, 34sstri 3926 . . . . . . . 8 𝑇 ⊆ ℝ
3635a1i 11 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → 𝑇 ⊆ ℝ)
3724ancoms 458 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑘 · 𝑥) ∈ ℝ)
3817, 37sylan2 592 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝑘 · 𝑥) ∈ ℝ)
39 btwnz 12352 . . . . . . . . . . . 12 ((𝑘 · 𝑥) ∈ ℝ → (∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥) ∧ ∃𝑛 ∈ ℤ (𝑘 · 𝑥) < 𝑛))
4039simpld 494 . . . . . . . . . . 11 ((𝑘 · 𝑥) ∈ ℝ → ∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥))
4138, 40syl 17 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥))
4222rexbidva 3224 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (∃𝑛 ∈ ℤ (𝑛 / 𝑘) < 𝑥 ↔ ∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥)))
4341, 42mpbird 256 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∃𝑛 ∈ ℤ (𝑛 / 𝑘) < 𝑥)
44 rabn0 4316 . . . . . . . . 9 ({𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅ ↔ ∃𝑛 ∈ ℤ (𝑛 / 𝑘) < 𝑥)
4543, 44sylibr 233 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅)
4612neeq1i 3007 . . . . . . . 8 (𝑇 ≠ ∅ ↔ {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅)
4745, 46sylibr 233 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → 𝑇 ≠ ∅)
48 breq2 5074 . . . . . . . . . 10 (𝑦 = (𝑘 · 𝑥) → (𝑛𝑦𝑛 ≤ (𝑘 · 𝑥)))
4948ralbidv 3120 . . . . . . . . 9 (𝑦 = (𝑘 · 𝑥) → (∀𝑛𝑇 𝑛𝑦 ↔ ∀𝑛𝑇 𝑛 ≤ (𝑘 · 𝑥)))
5049rspcev 3552 . . . . . . . 8 (((𝑘 · 𝑥) ∈ ℝ ∧ ∀𝑛𝑇 𝑛 ≤ (𝑘 · 𝑥)) → ∃𝑦 ∈ ℝ ∀𝑛𝑇 𝑛𝑦)
5138, 31, 50syl2anc 583 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∃𝑦 ∈ ℝ ∀𝑛𝑇 𝑛𝑦)
52 suprleub 11871 . . . . . . 7 (((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛𝑇 𝑛𝑦) ∧ (𝑘 · 𝑥) ∈ ℝ) → (sup(𝑇, ℝ, < ) ≤ (𝑘 · 𝑥) ↔ ∀𝑛𝑇 𝑛 ≤ (𝑘 · 𝑥)))
5336, 47, 51, 38, 52syl31anc 1371 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (sup(𝑇, ℝ, < ) ≤ (𝑘 · 𝑥) ↔ ∀𝑛𝑇 𝑛 ≤ (𝑘 · 𝑥)))
5431, 53mpbird 256 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → sup(𝑇, ℝ, < ) ≤ (𝑘 · 𝑥))
5512, 3rpnnen1lem2 12646 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → sup(𝑇, ℝ, < ) ∈ ℤ)
5655zred 12355 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → sup(𝑇, ℝ, < ) ∈ ℝ)
57 simpl 482 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → 𝑥 ∈ ℝ)
5819adantl 481 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
59 ledivmul 11781 . . . . . 6 ((sup(𝑇, ℝ, < ) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → ((sup(𝑇, ℝ, < ) / 𝑘) ≤ 𝑥 ↔ sup(𝑇, ℝ, < ) ≤ (𝑘 · 𝑥)))
6056, 57, 58, 59syl3anc 1369 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((sup(𝑇, ℝ, < ) / 𝑘) ≤ 𝑥 ↔ sup(𝑇, ℝ, < ) ≤ (𝑘 · 𝑥)))
6154, 60mpbird 256 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (sup(𝑇, ℝ, < ) / 𝑘) ≤ 𝑥)
6211, 61eqbrtrd 5092 . . 3 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑥)‘𝑘) ≤ 𝑥)
6362ralrimiva 3107 . 2 (𝑥 ∈ ℝ → ∀𝑘 ∈ ℕ ((𝐹𝑥)‘𝑘) ≤ 𝑥)
64 rpnnen1lem.q . . . . 5 ℚ ∈ V
6512, 3, 1, 64rpnnen1lem1 12647 . . . 4 (𝑥 ∈ ℝ → (𝐹𝑥) ∈ (ℚ ↑m ℕ))
6664, 1elmap 8617 . . . 4 ((𝐹𝑥) ∈ (ℚ ↑m ℕ) ↔ (𝐹𝑥):ℕ⟶ℚ)
6765, 66sylib 217 . . 3 (𝑥 ∈ ℝ → (𝐹𝑥):ℕ⟶ℚ)
68 ffn 6584 . . 3 ((𝐹𝑥):ℕ⟶ℚ → (𝐹𝑥) Fn ℕ)
69 breq1 5073 . . . 4 (𝑛 = ((𝐹𝑥)‘𝑘) → (𝑛𝑥 ↔ ((𝐹𝑥)‘𝑘) ≤ 𝑥))
7069ralrn 6946 . . 3 ((𝐹𝑥) Fn ℕ → (∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥 ↔ ∀𝑘 ∈ ℕ ((𝐹𝑥)‘𝑘) ≤ 𝑥))
7167, 68, 703syl 18 . 2 (𝑥 ∈ ℝ → (∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥 ↔ ∀𝑘 ∈ ℕ ((𝐹𝑥)‘𝑘) ≤ 𝑥))
7263, 71mpbird 256 1 (𝑥 ∈ ℝ → ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  wss 3883  c0 4253   class class class wbr 5070  cmpt 5153  ran crn 5581   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  supcsup 9129  cr 10801  0cc0 10802   · cmul 10807   < clt 10940  cle 10941   / cdiv 11562  cn 11903  cz 12249  cq 12617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-q 12618
This theorem is referenced by:  rpnnen1lem4  12649  rpnnen1lem5  12650
  Copyright terms: Public domain W3C validator