MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen1lem3 Structured version   Visualization version   GIF version

Theorem rpnnen1lem3 12914
Description: Lemma for rpnnen1 12918. (Contributed by Mario Carneiro, 12-May-2013.) (Revised by NM, 13-Aug-2021.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
rpnnen1lem.1 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥}
rpnnen1lem.2 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
rpnnen1lem.n ℕ ∈ V
rpnnen1lem.q ℚ ∈ V
Assertion
Ref Expression
rpnnen1lem3 (𝑥 ∈ ℝ → ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥)
Distinct variable groups:   𝑘,𝐹,𝑛,𝑥   𝑇,𝑛
Allowed substitution hints:   𝑇(𝑥,𝑘)

Proof of Theorem rpnnen1lem3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rpnnen1lem.n . . . . . . . 8 ℕ ∈ V
21mptex 7179 . . . . . . 7 (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)) ∈ V
3 rpnnen1lem.2 . . . . . . . 8 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
43fvmpt2 6961 . . . . . . 7 ((𝑥 ∈ ℝ ∧ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)) ∈ V) → (𝐹𝑥) = (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
52, 4mpan2 691 . . . . . 6 (𝑥 ∈ ℝ → (𝐹𝑥) = (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
65fveq1d 6842 . . . . 5 (𝑥 ∈ ℝ → ((𝐹𝑥)‘𝑘) = ((𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))‘𝑘))
7 ovex 7402 . . . . . 6 (sup(𝑇, ℝ, < ) / 𝑘) ∈ V
8 eqid 2729 . . . . . . 7 (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)) = (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))
98fvmpt2 6961 . . . . . 6 ((𝑘 ∈ ℕ ∧ (sup(𝑇, ℝ, < ) / 𝑘) ∈ V) → ((𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))‘𝑘) = (sup(𝑇, ℝ, < ) / 𝑘))
107, 9mpan2 691 . . . . 5 (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))‘𝑘) = (sup(𝑇, ℝ, < ) / 𝑘))
116, 10sylan9eq 2784 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑥)‘𝑘) = (sup(𝑇, ℝ, < ) / 𝑘))
12 rpnnen1lem.1 . . . . . . . . 9 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥}
1312reqabi 3426 . . . . . . . 8 (𝑛𝑇 ↔ (𝑛 ∈ ℤ ∧ (𝑛 / 𝑘) < 𝑥))
14 zre 12509 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → 𝑛 ∈ ℝ)
1514adantl 481 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℝ)
16 simpll 766 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑥 ∈ ℝ)
17 nnre 12169 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
18 nngt0 12193 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 0 < 𝑘)
1917, 18jca 511 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
2019ad2antlr 727 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
21 ltdivmul 12034 . . . . . . . . . . 11 ((𝑛 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → ((𝑛 / 𝑘) < 𝑥𝑛 < (𝑘 · 𝑥)))
2215, 16, 20, 21syl3anc 1373 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → ((𝑛 / 𝑘) < 𝑥𝑛 < (𝑘 · 𝑥)))
2317ad2antlr 727 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑘 ∈ ℝ)
24 remulcl 11129 . . . . . . . . . . . 12 ((𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑘 · 𝑥) ∈ ℝ)
2523, 16, 24syl2anc 584 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑘 · 𝑥) ∈ ℝ)
26 ltle 11238 . . . . . . . . . . 11 ((𝑛 ∈ ℝ ∧ (𝑘 · 𝑥) ∈ ℝ) → (𝑛 < (𝑘 · 𝑥) → 𝑛 ≤ (𝑘 · 𝑥)))
2715, 25, 26syl2anc 584 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑛 < (𝑘 · 𝑥) → 𝑛 ≤ (𝑘 · 𝑥)))
2822, 27sylbid 240 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → ((𝑛 / 𝑘) < 𝑥𝑛 ≤ (𝑘 · 𝑥)))
2928impr 454 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ ℤ ∧ (𝑛 / 𝑘) < 𝑥)) → 𝑛 ≤ (𝑘 · 𝑥))
3013, 29sylan2b 594 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛𝑇) → 𝑛 ≤ (𝑘 · 𝑥))
3130ralrimiva 3125 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∀𝑛𝑇 𝑛 ≤ (𝑘 · 𝑥))
32 ssrab2 4039 . . . . . . . . . 10 {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ⊆ ℤ
3312, 32eqsstri 3990 . . . . . . . . 9 𝑇 ⊆ ℤ
34 zssre 12512 . . . . . . . . 9 ℤ ⊆ ℝ
3533, 34sstri 3953 . . . . . . . 8 𝑇 ⊆ ℝ
3635a1i 11 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → 𝑇 ⊆ ℝ)
3724ancoms 458 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑘 · 𝑥) ∈ ℝ)
3817, 37sylan2 593 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝑘 · 𝑥) ∈ ℝ)
39 btwnz 12613 . . . . . . . . . . . 12 ((𝑘 · 𝑥) ∈ ℝ → (∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥) ∧ ∃𝑛 ∈ ℤ (𝑘 · 𝑥) < 𝑛))
4039simpld 494 . . . . . . . . . . 11 ((𝑘 · 𝑥) ∈ ℝ → ∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥))
4138, 40syl 17 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥))
4222rexbidva 3155 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (∃𝑛 ∈ ℤ (𝑛 / 𝑘) < 𝑥 ↔ ∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥)))
4341, 42mpbird 257 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∃𝑛 ∈ ℤ (𝑛 / 𝑘) < 𝑥)
44 rabn0 4348 . . . . . . . . 9 ({𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅ ↔ ∃𝑛 ∈ ℤ (𝑛 / 𝑘) < 𝑥)
4543, 44sylibr 234 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅)
4612neeq1i 2989 . . . . . . . 8 (𝑇 ≠ ∅ ↔ {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅)
4745, 46sylibr 234 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → 𝑇 ≠ ∅)
48 breq2 5106 . . . . . . . . . 10 (𝑦 = (𝑘 · 𝑥) → (𝑛𝑦𝑛 ≤ (𝑘 · 𝑥)))
4948ralbidv 3156 . . . . . . . . 9 (𝑦 = (𝑘 · 𝑥) → (∀𝑛𝑇 𝑛𝑦 ↔ ∀𝑛𝑇 𝑛 ≤ (𝑘 · 𝑥)))
5049rspcev 3585 . . . . . . . 8 (((𝑘 · 𝑥) ∈ ℝ ∧ ∀𝑛𝑇 𝑛 ≤ (𝑘 · 𝑥)) → ∃𝑦 ∈ ℝ ∀𝑛𝑇 𝑛𝑦)
5138, 31, 50syl2anc 584 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∃𝑦 ∈ ℝ ∀𝑛𝑇 𝑛𝑦)
52 suprleub 12125 . . . . . . 7 (((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛𝑇 𝑛𝑦) ∧ (𝑘 · 𝑥) ∈ ℝ) → (sup(𝑇, ℝ, < ) ≤ (𝑘 · 𝑥) ↔ ∀𝑛𝑇 𝑛 ≤ (𝑘 · 𝑥)))
5336, 47, 51, 38, 52syl31anc 1375 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (sup(𝑇, ℝ, < ) ≤ (𝑘 · 𝑥) ↔ ∀𝑛𝑇 𝑛 ≤ (𝑘 · 𝑥)))
5431, 53mpbird 257 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → sup(𝑇, ℝ, < ) ≤ (𝑘 · 𝑥))
5512, 3rpnnen1lem2 12912 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → sup(𝑇, ℝ, < ) ∈ ℤ)
5655zred 12614 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → sup(𝑇, ℝ, < ) ∈ ℝ)
57 simpl 482 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → 𝑥 ∈ ℝ)
5819adantl 481 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
59 ledivmul 12035 . . . . . 6 ((sup(𝑇, ℝ, < ) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → ((sup(𝑇, ℝ, < ) / 𝑘) ≤ 𝑥 ↔ sup(𝑇, ℝ, < ) ≤ (𝑘 · 𝑥)))
6056, 57, 58, 59syl3anc 1373 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((sup(𝑇, ℝ, < ) / 𝑘) ≤ 𝑥 ↔ sup(𝑇, ℝ, < ) ≤ (𝑘 · 𝑥)))
6154, 60mpbird 257 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (sup(𝑇, ℝ, < ) / 𝑘) ≤ 𝑥)
6211, 61eqbrtrd 5124 . . 3 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑥)‘𝑘) ≤ 𝑥)
6362ralrimiva 3125 . 2 (𝑥 ∈ ℝ → ∀𝑘 ∈ ℕ ((𝐹𝑥)‘𝑘) ≤ 𝑥)
64 rpnnen1lem.q . . . . 5 ℚ ∈ V
6512, 3, 1, 64rpnnen1lem1 12913 . . . 4 (𝑥 ∈ ℝ → (𝐹𝑥) ∈ (ℚ ↑m ℕ))
6664, 1elmap 8821 . . . 4 ((𝐹𝑥) ∈ (ℚ ↑m ℕ) ↔ (𝐹𝑥):ℕ⟶ℚ)
6765, 66sylib 218 . . 3 (𝑥 ∈ ℝ → (𝐹𝑥):ℕ⟶ℚ)
68 ffn 6670 . . 3 ((𝐹𝑥):ℕ⟶ℚ → (𝐹𝑥) Fn ℕ)
69 breq1 5105 . . . 4 (𝑛 = ((𝐹𝑥)‘𝑘) → (𝑛𝑥 ↔ ((𝐹𝑥)‘𝑘) ≤ 𝑥))
7069ralrn 7042 . . 3 ((𝐹𝑥) Fn ℕ → (∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥 ↔ ∀𝑘 ∈ ℕ ((𝐹𝑥)‘𝑘) ≤ 𝑥))
7167, 68, 703syl 18 . 2 (𝑥 ∈ ℝ → (∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥 ↔ ∀𝑘 ∈ ℕ ((𝐹𝑥)‘𝑘) ≤ 𝑥))
7263, 71mpbird 257 1 (𝑥 ∈ ℝ → ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3402  Vcvv 3444  wss 3911  c0 4292   class class class wbr 5102  cmpt 5183  ran crn 5632   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  m cmap 8776  supcsup 9367  cr 11043  0cc0 11044   · cmul 11049   < clt 11184  cle 11185   / cdiv 11811  cn 12162  cz 12505  cq 12883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-n0 12419  df-z 12506  df-q 12884
This theorem is referenced by:  rpnnen1lem4  12915  rpnnen1lem5  12916
  Copyright terms: Public domain W3C validator