MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen1lem3 Structured version   Visualization version   GIF version

Theorem rpnnen1lem3 12464
Description: Lemma for rpnnen1 12468. (Contributed by Mario Carneiro, 12-May-2013.) (Revised by NM, 13-Aug-2021.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
rpnnen1lem.1 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥}
rpnnen1lem.2 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
rpnnen1lem.n ℕ ∈ V
rpnnen1lem.q ℚ ∈ V
Assertion
Ref Expression
rpnnen1lem3 (𝑥 ∈ ℝ → ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥)
Distinct variable groups:   𝑘,𝐹,𝑛,𝑥   𝑇,𝑛
Allowed substitution hints:   𝑇(𝑥,𝑘)

Proof of Theorem rpnnen1lem3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rpnnen1lem.n . . . . . . . 8 ℕ ∈ V
21mptex 6999 . . . . . . 7 (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)) ∈ V
3 rpnnen1lem.2 . . . . . . . 8 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
43fvmpt2 6789 . . . . . . 7 ((𝑥 ∈ ℝ ∧ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)) ∈ V) → (𝐹𝑥) = (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
52, 4mpan2 691 . . . . . 6 (𝑥 ∈ ℝ → (𝐹𝑥) = (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
65fveq1d 6679 . . . . 5 (𝑥 ∈ ℝ → ((𝐹𝑥)‘𝑘) = ((𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))‘𝑘))
7 ovex 7206 . . . . . 6 (sup(𝑇, ℝ, < ) / 𝑘) ∈ V
8 eqid 2739 . . . . . . 7 (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)) = (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))
98fvmpt2 6789 . . . . . 6 ((𝑘 ∈ ℕ ∧ (sup(𝑇, ℝ, < ) / 𝑘) ∈ V) → ((𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))‘𝑘) = (sup(𝑇, ℝ, < ) / 𝑘))
107, 9mpan2 691 . . . . 5 (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))‘𝑘) = (sup(𝑇, ℝ, < ) / 𝑘))
116, 10sylan9eq 2794 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑥)‘𝑘) = (sup(𝑇, ℝ, < ) / 𝑘))
12 rpnnen1lem.1 . . . . . . . . 9 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥}
1312rabeq2i 3390 . . . . . . . 8 (𝑛𝑇 ↔ (𝑛 ∈ ℤ ∧ (𝑛 / 𝑘) < 𝑥))
14 zre 12069 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → 𝑛 ∈ ℝ)
1514adantl 485 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℝ)
16 simpll 767 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑥 ∈ ℝ)
17 nnre 11726 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
18 nngt0 11750 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 0 < 𝑘)
1917, 18jca 515 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
2019ad2antlr 727 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
21 ltdivmul 11596 . . . . . . . . . . 11 ((𝑛 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → ((𝑛 / 𝑘) < 𝑥𝑛 < (𝑘 · 𝑥)))
2215, 16, 20, 21syl3anc 1372 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → ((𝑛 / 𝑘) < 𝑥𝑛 < (𝑘 · 𝑥)))
2317ad2antlr 727 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑘 ∈ ℝ)
24 remulcl 10703 . . . . . . . . . . . 12 ((𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑘 · 𝑥) ∈ ℝ)
2523, 16, 24syl2anc 587 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑘 · 𝑥) ∈ ℝ)
26 ltle 10810 . . . . . . . . . . 11 ((𝑛 ∈ ℝ ∧ (𝑘 · 𝑥) ∈ ℝ) → (𝑛 < (𝑘 · 𝑥) → 𝑛 ≤ (𝑘 · 𝑥)))
2715, 25, 26syl2anc 587 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑛 < (𝑘 · 𝑥) → 𝑛 ≤ (𝑘 · 𝑥)))
2822, 27sylbid 243 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → ((𝑛 / 𝑘) < 𝑥𝑛 ≤ (𝑘 · 𝑥)))
2928impr 458 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ ℤ ∧ (𝑛 / 𝑘) < 𝑥)) → 𝑛 ≤ (𝑘 · 𝑥))
3013, 29sylan2b 597 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛𝑇) → 𝑛 ≤ (𝑘 · 𝑥))
3130ralrimiva 3097 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∀𝑛𝑇 𝑛 ≤ (𝑘 · 𝑥))
32 ssrab2 3970 . . . . . . . . . 10 {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ⊆ ℤ
3312, 32eqsstri 3912 . . . . . . . . 9 𝑇 ⊆ ℤ
34 zssre 12072 . . . . . . . . 9 ℤ ⊆ ℝ
3533, 34sstri 3887 . . . . . . . 8 𝑇 ⊆ ℝ
3635a1i 11 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → 𝑇 ⊆ ℝ)
3724ancoms 462 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑘 · 𝑥) ∈ ℝ)
3817, 37sylan2 596 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝑘 · 𝑥) ∈ ℝ)
39 btwnz 12168 . . . . . . . . . . . 12 ((𝑘 · 𝑥) ∈ ℝ → (∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥) ∧ ∃𝑛 ∈ ℤ (𝑘 · 𝑥) < 𝑛))
4039simpld 498 . . . . . . . . . . 11 ((𝑘 · 𝑥) ∈ ℝ → ∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥))
4138, 40syl 17 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥))
4222rexbidva 3207 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (∃𝑛 ∈ ℤ (𝑛 / 𝑘) < 𝑥 ↔ ∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥)))
4341, 42mpbird 260 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∃𝑛 ∈ ℤ (𝑛 / 𝑘) < 𝑥)
44 rabn0 4275 . . . . . . . . 9 ({𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅ ↔ ∃𝑛 ∈ ℤ (𝑛 / 𝑘) < 𝑥)
4543, 44sylibr 237 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅)
4612neeq1i 2999 . . . . . . . 8 (𝑇 ≠ ∅ ↔ {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅)
4745, 46sylibr 237 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → 𝑇 ≠ ∅)
48 breq2 5035 . . . . . . . . . 10 (𝑦 = (𝑘 · 𝑥) → (𝑛𝑦𝑛 ≤ (𝑘 · 𝑥)))
4948ralbidv 3110 . . . . . . . . 9 (𝑦 = (𝑘 · 𝑥) → (∀𝑛𝑇 𝑛𝑦 ↔ ∀𝑛𝑇 𝑛 ≤ (𝑘 · 𝑥)))
5049rspcev 3527 . . . . . . . 8 (((𝑘 · 𝑥) ∈ ℝ ∧ ∀𝑛𝑇 𝑛 ≤ (𝑘 · 𝑥)) → ∃𝑦 ∈ ℝ ∀𝑛𝑇 𝑛𝑦)
5138, 31, 50syl2anc 587 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∃𝑦 ∈ ℝ ∀𝑛𝑇 𝑛𝑦)
52 suprleub 11687 . . . . . . 7 (((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛𝑇 𝑛𝑦) ∧ (𝑘 · 𝑥) ∈ ℝ) → (sup(𝑇, ℝ, < ) ≤ (𝑘 · 𝑥) ↔ ∀𝑛𝑇 𝑛 ≤ (𝑘 · 𝑥)))
5336, 47, 51, 38, 52syl31anc 1374 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (sup(𝑇, ℝ, < ) ≤ (𝑘 · 𝑥) ↔ ∀𝑛𝑇 𝑛 ≤ (𝑘 · 𝑥)))
5431, 53mpbird 260 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → sup(𝑇, ℝ, < ) ≤ (𝑘 · 𝑥))
5512, 3rpnnen1lem2 12462 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → sup(𝑇, ℝ, < ) ∈ ℤ)
5655zred 12171 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → sup(𝑇, ℝ, < ) ∈ ℝ)
57 simpl 486 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → 𝑥 ∈ ℝ)
5819adantl 485 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
59 ledivmul 11597 . . . . . 6 ((sup(𝑇, ℝ, < ) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → ((sup(𝑇, ℝ, < ) / 𝑘) ≤ 𝑥 ↔ sup(𝑇, ℝ, < ) ≤ (𝑘 · 𝑥)))
6056, 57, 58, 59syl3anc 1372 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((sup(𝑇, ℝ, < ) / 𝑘) ≤ 𝑥 ↔ sup(𝑇, ℝ, < ) ≤ (𝑘 · 𝑥)))
6154, 60mpbird 260 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (sup(𝑇, ℝ, < ) / 𝑘) ≤ 𝑥)
6211, 61eqbrtrd 5053 . . 3 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑥)‘𝑘) ≤ 𝑥)
6362ralrimiva 3097 . 2 (𝑥 ∈ ℝ → ∀𝑘 ∈ ℕ ((𝐹𝑥)‘𝑘) ≤ 𝑥)
64 rpnnen1lem.q . . . . 5 ℚ ∈ V
6512, 3, 1, 64rpnnen1lem1 12463 . . . 4 (𝑥 ∈ ℝ → (𝐹𝑥) ∈ (ℚ ↑m ℕ))
6664, 1elmap 8484 . . . 4 ((𝐹𝑥) ∈ (ℚ ↑m ℕ) ↔ (𝐹𝑥):ℕ⟶ℚ)
6765, 66sylib 221 . . 3 (𝑥 ∈ ℝ → (𝐹𝑥):ℕ⟶ℚ)
68 ffn 6505 . . 3 ((𝐹𝑥):ℕ⟶ℚ → (𝐹𝑥) Fn ℕ)
69 breq1 5034 . . . 4 (𝑛 = ((𝐹𝑥)‘𝑘) → (𝑛𝑥 ↔ ((𝐹𝑥)‘𝑘) ≤ 𝑥))
7069ralrn 6867 . . 3 ((𝐹𝑥) Fn ℕ → (∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥 ↔ ∀𝑘 ∈ ℕ ((𝐹𝑥)‘𝑘) ≤ 𝑥))
7167, 68, 703syl 18 . 2 (𝑥 ∈ ℝ → (∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥 ↔ ∀𝑘 ∈ ℕ ((𝐹𝑥)‘𝑘) ≤ 𝑥))
7263, 71mpbird 260 1 (𝑥 ∈ ℝ → ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  wne 2935  wral 3054  wrex 3055  {crab 3058  Vcvv 3399  wss 3844  c0 4212   class class class wbr 5031  cmpt 5111  ran crn 5527   Fn wfn 6335  wf 6336  cfv 6340  (class class class)co 7173  m cmap 8440  supcsup 8980  cr 10617  0cc0 10618   · cmul 10623   < clt 10756  cle 10757   / cdiv 11378  cn 11719  cz 12065  cq 12433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7482  ax-resscn 10675  ax-1cn 10676  ax-icn 10677  ax-addcl 10678  ax-addrcl 10679  ax-mulcl 10680  ax-mulrcl 10681  ax-mulcom 10682  ax-addass 10683  ax-mulass 10684  ax-distr 10685  ax-i2m1 10686  ax-1ne0 10687  ax-1rid 10688  ax-rnegex 10689  ax-rrecex 10690  ax-cnre 10691  ax-pre-lttri 10692  ax-pre-lttrn 10693  ax-pre-ltadd 10694  ax-pre-mulgt0 10695  ax-pre-sup 10696
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7130  df-ov 7176  df-oprab 7177  df-mpo 7178  df-om 7603  df-1st 7717  df-2nd 7718  df-wrecs 7979  df-recs 8040  df-rdg 8078  df-er 8323  df-map 8442  df-en 8559  df-dom 8560  df-sdom 8561  df-sup 8982  df-pnf 10758  df-mnf 10759  df-xr 10760  df-ltxr 10761  df-le 10762  df-sub 10953  df-neg 10954  df-div 11379  df-nn 11720  df-n0 11980  df-z 12066  df-q 12434
This theorem is referenced by:  rpnnen1lem4  12465  rpnnen1lem5  12466
  Copyright terms: Public domain W3C validator