MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen1lem3 Structured version   Visualization version   GIF version

Theorem rpnnen1lem3 12377
Description: Lemma for rpnnen1 12381. (Contributed by Mario Carneiro, 12-May-2013.) (Revised by NM, 13-Aug-2021.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
rpnnen1lem.1 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥}
rpnnen1lem.2 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
rpnnen1lem.n ℕ ∈ V
rpnnen1lem.q ℚ ∈ V
Assertion
Ref Expression
rpnnen1lem3 (𝑥 ∈ ℝ → ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥)
Distinct variable groups:   𝑘,𝐹,𝑛,𝑥   𝑇,𝑛
Allowed substitution hints:   𝑇(𝑥,𝑘)

Proof of Theorem rpnnen1lem3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rpnnen1lem.n . . . . . . . 8 ℕ ∈ V
21mptex 6985 . . . . . . 7 (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)) ∈ V
3 rpnnen1lem.2 . . . . . . . 8 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
43fvmpt2 6778 . . . . . . 7 ((𝑥 ∈ ℝ ∧ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)) ∈ V) → (𝐹𝑥) = (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
52, 4mpan2 689 . . . . . 6 (𝑥 ∈ ℝ → (𝐹𝑥) = (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
65fveq1d 6671 . . . . 5 (𝑥 ∈ ℝ → ((𝐹𝑥)‘𝑘) = ((𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))‘𝑘))
7 ovex 7188 . . . . . 6 (sup(𝑇, ℝ, < ) / 𝑘) ∈ V
8 eqid 2821 . . . . . . 7 (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)) = (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))
98fvmpt2 6778 . . . . . 6 ((𝑘 ∈ ℕ ∧ (sup(𝑇, ℝ, < ) / 𝑘) ∈ V) → ((𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))‘𝑘) = (sup(𝑇, ℝ, < ) / 𝑘))
107, 9mpan2 689 . . . . 5 (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))‘𝑘) = (sup(𝑇, ℝ, < ) / 𝑘))
116, 10sylan9eq 2876 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑥)‘𝑘) = (sup(𝑇, ℝ, < ) / 𝑘))
12 rpnnen1lem.1 . . . . . . . . 9 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥}
1312rabeq2i 3487 . . . . . . . 8 (𝑛𝑇 ↔ (𝑛 ∈ ℤ ∧ (𝑛 / 𝑘) < 𝑥))
14 zre 11984 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → 𝑛 ∈ ℝ)
1514adantl 484 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℝ)
16 simpll 765 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑥 ∈ ℝ)
17 nnre 11644 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
18 nngt0 11667 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 0 < 𝑘)
1917, 18jca 514 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
2019ad2antlr 725 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
21 ltdivmul 11514 . . . . . . . . . . 11 ((𝑛 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → ((𝑛 / 𝑘) < 𝑥𝑛 < (𝑘 · 𝑥)))
2215, 16, 20, 21syl3anc 1367 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → ((𝑛 / 𝑘) < 𝑥𝑛 < (𝑘 · 𝑥)))
2317ad2antlr 725 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑘 ∈ ℝ)
24 remulcl 10621 . . . . . . . . . . . 12 ((𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑘 · 𝑥) ∈ ℝ)
2523, 16, 24syl2anc 586 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑘 · 𝑥) ∈ ℝ)
26 ltle 10728 . . . . . . . . . . 11 ((𝑛 ∈ ℝ ∧ (𝑘 · 𝑥) ∈ ℝ) → (𝑛 < (𝑘 · 𝑥) → 𝑛 ≤ (𝑘 · 𝑥)))
2715, 25, 26syl2anc 586 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑛 < (𝑘 · 𝑥) → 𝑛 ≤ (𝑘 · 𝑥)))
2822, 27sylbid 242 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → ((𝑛 / 𝑘) < 𝑥𝑛 ≤ (𝑘 · 𝑥)))
2928impr 457 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ ℤ ∧ (𝑛 / 𝑘) < 𝑥)) → 𝑛 ≤ (𝑘 · 𝑥))
3013, 29sylan2b 595 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛𝑇) → 𝑛 ≤ (𝑘 · 𝑥))
3130ralrimiva 3182 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∀𝑛𝑇 𝑛 ≤ (𝑘 · 𝑥))
32 ssrab2 4055 . . . . . . . . . 10 {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ⊆ ℤ
3312, 32eqsstri 4000 . . . . . . . . 9 𝑇 ⊆ ℤ
34 zssre 11987 . . . . . . . . 9 ℤ ⊆ ℝ
3533, 34sstri 3975 . . . . . . . 8 𝑇 ⊆ ℝ
3635a1i 11 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → 𝑇 ⊆ ℝ)
3724ancoms 461 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑘 · 𝑥) ∈ ℝ)
3817, 37sylan2 594 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝑘 · 𝑥) ∈ ℝ)
39 btwnz 12083 . . . . . . . . . . . 12 ((𝑘 · 𝑥) ∈ ℝ → (∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥) ∧ ∃𝑛 ∈ ℤ (𝑘 · 𝑥) < 𝑛))
4039simpld 497 . . . . . . . . . . 11 ((𝑘 · 𝑥) ∈ ℝ → ∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥))
4138, 40syl 17 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥))
4222rexbidva 3296 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (∃𝑛 ∈ ℤ (𝑛 / 𝑘) < 𝑥 ↔ ∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥)))
4341, 42mpbird 259 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∃𝑛 ∈ ℤ (𝑛 / 𝑘) < 𝑥)
44 rabn0 4338 . . . . . . . . 9 ({𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅ ↔ ∃𝑛 ∈ ℤ (𝑛 / 𝑘) < 𝑥)
4543, 44sylibr 236 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅)
4612neeq1i 3080 . . . . . . . 8 (𝑇 ≠ ∅ ↔ {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅)
4745, 46sylibr 236 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → 𝑇 ≠ ∅)
48 breq2 5069 . . . . . . . . . 10 (𝑦 = (𝑘 · 𝑥) → (𝑛𝑦𝑛 ≤ (𝑘 · 𝑥)))
4948ralbidv 3197 . . . . . . . . 9 (𝑦 = (𝑘 · 𝑥) → (∀𝑛𝑇 𝑛𝑦 ↔ ∀𝑛𝑇 𝑛 ≤ (𝑘 · 𝑥)))
5049rspcev 3622 . . . . . . . 8 (((𝑘 · 𝑥) ∈ ℝ ∧ ∀𝑛𝑇 𝑛 ≤ (𝑘 · 𝑥)) → ∃𝑦 ∈ ℝ ∀𝑛𝑇 𝑛𝑦)
5138, 31, 50syl2anc 586 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∃𝑦 ∈ ℝ ∀𝑛𝑇 𝑛𝑦)
52 suprleub 11606 . . . . . . 7 (((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛𝑇 𝑛𝑦) ∧ (𝑘 · 𝑥) ∈ ℝ) → (sup(𝑇, ℝ, < ) ≤ (𝑘 · 𝑥) ↔ ∀𝑛𝑇 𝑛 ≤ (𝑘 · 𝑥)))
5336, 47, 51, 38, 52syl31anc 1369 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (sup(𝑇, ℝ, < ) ≤ (𝑘 · 𝑥) ↔ ∀𝑛𝑇 𝑛 ≤ (𝑘 · 𝑥)))
5431, 53mpbird 259 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → sup(𝑇, ℝ, < ) ≤ (𝑘 · 𝑥))
5512, 3rpnnen1lem2 12375 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → sup(𝑇, ℝ, < ) ∈ ℤ)
5655zred 12086 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → sup(𝑇, ℝ, < ) ∈ ℝ)
57 simpl 485 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → 𝑥 ∈ ℝ)
5819adantl 484 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
59 ledivmul 11515 . . . . . 6 ((sup(𝑇, ℝ, < ) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → ((sup(𝑇, ℝ, < ) / 𝑘) ≤ 𝑥 ↔ sup(𝑇, ℝ, < ) ≤ (𝑘 · 𝑥)))
6056, 57, 58, 59syl3anc 1367 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((sup(𝑇, ℝ, < ) / 𝑘) ≤ 𝑥 ↔ sup(𝑇, ℝ, < ) ≤ (𝑘 · 𝑥)))
6154, 60mpbird 259 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (sup(𝑇, ℝ, < ) / 𝑘) ≤ 𝑥)
6211, 61eqbrtrd 5087 . . 3 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑥)‘𝑘) ≤ 𝑥)
6362ralrimiva 3182 . 2 (𝑥 ∈ ℝ → ∀𝑘 ∈ ℕ ((𝐹𝑥)‘𝑘) ≤ 𝑥)
64 rpnnen1lem.q . . . . 5 ℚ ∈ V
6512, 3, 1, 64rpnnen1lem1 12376 . . . 4 (𝑥 ∈ ℝ → (𝐹𝑥) ∈ (ℚ ↑m ℕ))
6664, 1elmap 8434 . . . 4 ((𝐹𝑥) ∈ (ℚ ↑m ℕ) ↔ (𝐹𝑥):ℕ⟶ℚ)
6765, 66sylib 220 . . 3 (𝑥 ∈ ℝ → (𝐹𝑥):ℕ⟶ℚ)
68 ffn 6513 . . 3 ((𝐹𝑥):ℕ⟶ℚ → (𝐹𝑥) Fn ℕ)
69 breq1 5068 . . . 4 (𝑛 = ((𝐹𝑥)‘𝑘) → (𝑛𝑥 ↔ ((𝐹𝑥)‘𝑘) ≤ 𝑥))
7069ralrn 6853 . . 3 ((𝐹𝑥) Fn ℕ → (∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥 ↔ ∀𝑘 ∈ ℕ ((𝐹𝑥)‘𝑘) ≤ 𝑥))
7167, 68, 703syl 18 . 2 (𝑥 ∈ ℝ → (∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥 ↔ ∀𝑘 ∈ ℕ ((𝐹𝑥)‘𝑘) ≤ 𝑥))
7263, 71mpbird 259 1 (𝑥 ∈ ℝ → ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  {crab 3142  Vcvv 3494  wss 3935  c0 4290   class class class wbr 5065  cmpt 5145  ran crn 5555   Fn wfn 6349  wf 6350  cfv 6354  (class class class)co 7155  m cmap 8405  supcsup 8903  cr 10535  0cc0 10536   · cmul 10541   < clt 10674  cle 10675   / cdiv 11296  cn 11637  cz 11980  cq 12347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-sup 8905  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-n0 11897  df-z 11981  df-q 12348
This theorem is referenced by:  rpnnen1lem4  12378  rpnnen1lem5  12379
  Copyright terms: Public domain W3C validator