![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrx2pnedifcoorneor | Structured version Visualization version GIF version |
Description: If two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 are different, then at least one difference of two corresponding coordinates is not 0. (Contributed by AV, 26-Feb-2023.) |
Ref | Expression |
---|---|
rrx2pnecoorneor.i | ⊢ 𝐼 = {1, 2} |
rrx2pnecoorneor.b | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
rrx2pnedifcoorneor.a | ⊢ 𝐴 = ((𝑌‘1) − (𝑋‘1)) |
rrx2pnedifcoorneor.b | ⊢ 𝐵 = ((𝑌‘2) − (𝑋‘2)) |
Ref | Expression |
---|---|
rrx2pnedifcoorneor | ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrx2pnecoorneor.i | . . 3 ⊢ 𝐼 = {1, 2} | |
2 | rrx2pnecoorneor.b | . . 3 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
3 | 1, 2 | rrx2pnecoorneor 48449 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2))) |
4 | rrx2pnedifcoorneor.a | . . . . . 6 ⊢ 𝐴 = ((𝑌‘1) − (𝑋‘1)) | |
5 | 4 | neeq1i 3011 | . . . . 5 ⊢ (𝐴 ≠ 0 ↔ ((𝑌‘1) − (𝑋‘1)) ≠ 0) |
6 | rrx2pnedifcoorneor.b | . . . . . 6 ⊢ 𝐵 = ((𝑌‘2) − (𝑋‘2)) | |
7 | 6 | neeq1i 3011 | . . . . 5 ⊢ (𝐵 ≠ 0 ↔ ((𝑌‘2) − (𝑋‘2)) ≠ 0) |
8 | 5, 7 | orbi12i 913 | . . . 4 ⊢ ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ (((𝑌‘1) − (𝑋‘1)) ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0)) |
9 | 1, 2 | rrx2pxel 48445 | . . . . . . . . 9 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘1) ∈ ℝ) |
10 | 9 | recnd 11318 | . . . . . . . 8 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘1) ∈ ℂ) |
11 | 1, 2 | rrx2pxel 48445 | . . . . . . . . 9 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘1) ∈ ℝ) |
12 | 11 | recnd 11318 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘1) ∈ ℂ) |
13 | subeq0 11562 | . . . . . . . 8 ⊢ (((𝑌‘1) ∈ ℂ ∧ (𝑋‘1) ∈ ℂ) → (((𝑌‘1) − (𝑋‘1)) = 0 ↔ (𝑌‘1) = (𝑋‘1))) | |
14 | 10, 12, 13 | syl2anr 596 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (((𝑌‘1) − (𝑋‘1)) = 0 ↔ (𝑌‘1) = (𝑋‘1))) |
15 | 14 | necon3bid 2991 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (((𝑌‘1) − (𝑋‘1)) ≠ 0 ↔ (𝑌‘1) ≠ (𝑋‘1))) |
16 | 1, 2 | rrx2pyel 48446 | . . . . . . . . 9 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘2) ∈ ℝ) |
17 | 16 | recnd 11318 | . . . . . . . 8 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘2) ∈ ℂ) |
18 | 1, 2 | rrx2pyel 48446 | . . . . . . . . 9 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘2) ∈ ℝ) |
19 | 18 | recnd 11318 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘2) ∈ ℂ) |
20 | subeq0 11562 | . . . . . . . 8 ⊢ (((𝑌‘2) ∈ ℂ ∧ (𝑋‘2) ∈ ℂ) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ (𝑌‘2) = (𝑋‘2))) | |
21 | 17, 19, 20 | syl2anr 596 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ (𝑌‘2) = (𝑋‘2))) |
22 | 21 | necon3bid 2991 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (((𝑌‘2) − (𝑋‘2)) ≠ 0 ↔ (𝑌‘2) ≠ (𝑋‘2))) |
23 | 15, 22 | orbi12d 917 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ((((𝑌‘1) − (𝑋‘1)) ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0) ↔ ((𝑌‘1) ≠ (𝑋‘1) ∨ (𝑌‘2) ≠ (𝑋‘2)))) |
24 | necom 3000 | . . . . . 6 ⊢ ((𝑌‘1) ≠ (𝑋‘1) ↔ (𝑋‘1) ≠ (𝑌‘1)) | |
25 | necom 3000 | . . . . . 6 ⊢ ((𝑌‘2) ≠ (𝑋‘2) ↔ (𝑋‘2) ≠ (𝑌‘2)) | |
26 | 24, 25 | orbi12i 913 | . . . . 5 ⊢ (((𝑌‘1) ≠ (𝑋‘1) ∨ (𝑌‘2) ≠ (𝑋‘2)) ↔ ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2))) |
27 | 23, 26 | bitrdi 287 | . . . 4 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ((((𝑌‘1) − (𝑋‘1)) ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0) ↔ ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)))) |
28 | 8, 27 | bitrid 283 | . . 3 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)))) |
29 | 28 | 3adant3 1132 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)))) |
30 | 3, 29 | mpbird 257 | 1 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 {cpr 4650 ‘cfv 6573 (class class class)co 7448 ↑m cmap 8884 ℂcc 11182 ℝcr 11183 0cc0 11184 1c1 11185 − cmin 11520 2c2 12348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-sub 11522 df-2 12356 |
This theorem is referenced by: rrx2pnedifcoorneorr 48451 |
Copyright terms: Public domain | W3C validator |