Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2pnedifcoorneor Structured version   Visualization version   GIF version

Theorem rrx2pnedifcoorneor 47402
Description: If two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 are different, then at least one difference of two corresponding coordinates is not 0. (Contributed by AV, 26-Feb-2023.)
Hypotheses
Ref Expression
rrx2pnecoorneor.i 𝐼 = {1, 2}
rrx2pnecoorneor.b 𝑃 = (ℝ ↑m 𝐼)
rrx2pnedifcoorneor.a 𝐴 = ((𝑌‘1) − (𝑋‘1))
rrx2pnedifcoorneor.b 𝐵 = ((𝑌‘2) − (𝑋‘2))
Assertion
Ref Expression
rrx2pnedifcoorneor ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))

Proof of Theorem rrx2pnedifcoorneor
StepHypRef Expression
1 rrx2pnecoorneor.i . . 3 𝐼 = {1, 2}
2 rrx2pnecoorneor.b . . 3 𝑃 = (ℝ ↑m 𝐼)
31, 2rrx2pnecoorneor 47401 . 2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)))
4 rrx2pnedifcoorneor.a . . . . . 6 𝐴 = ((𝑌‘1) − (𝑋‘1))
54neeq1i 3006 . . . . 5 (𝐴 ≠ 0 ↔ ((𝑌‘1) − (𝑋‘1)) ≠ 0)
6 rrx2pnedifcoorneor.b . . . . . 6 𝐵 = ((𝑌‘2) − (𝑋‘2))
76neeq1i 3006 . . . . 5 (𝐵 ≠ 0 ↔ ((𝑌‘2) − (𝑋‘2)) ≠ 0)
85, 7orbi12i 914 . . . 4 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ (((𝑌‘1) − (𝑋‘1)) ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0))
91, 2rrx2pxel 47397 . . . . . . . . 9 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
109recnd 11242 . . . . . . . 8 (𝑌𝑃 → (𝑌‘1) ∈ ℂ)
111, 2rrx2pxel 47397 . . . . . . . . 9 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
1211recnd 11242 . . . . . . . 8 (𝑋𝑃 → (𝑋‘1) ∈ ℂ)
13 subeq0 11486 . . . . . . . 8 (((𝑌‘1) ∈ ℂ ∧ (𝑋‘1) ∈ ℂ) → (((𝑌‘1) − (𝑋‘1)) = 0 ↔ (𝑌‘1) = (𝑋‘1)))
1410, 12, 13syl2anr 598 . . . . . . 7 ((𝑋𝑃𝑌𝑃) → (((𝑌‘1) − (𝑋‘1)) = 0 ↔ (𝑌‘1) = (𝑋‘1)))
1514necon3bid 2986 . . . . . 6 ((𝑋𝑃𝑌𝑃) → (((𝑌‘1) − (𝑋‘1)) ≠ 0 ↔ (𝑌‘1) ≠ (𝑋‘1)))
161, 2rrx2pyel 47398 . . . . . . . . 9 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
1716recnd 11242 . . . . . . . 8 (𝑌𝑃 → (𝑌‘2) ∈ ℂ)
181, 2rrx2pyel 47398 . . . . . . . . 9 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
1918recnd 11242 . . . . . . . 8 (𝑋𝑃 → (𝑋‘2) ∈ ℂ)
20 subeq0 11486 . . . . . . . 8 (((𝑌‘2) ∈ ℂ ∧ (𝑋‘2) ∈ ℂ) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ (𝑌‘2) = (𝑋‘2)))
2117, 19, 20syl2anr 598 . . . . . . 7 ((𝑋𝑃𝑌𝑃) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ (𝑌‘2) = (𝑋‘2)))
2221necon3bid 2986 . . . . . 6 ((𝑋𝑃𝑌𝑃) → (((𝑌‘2) − (𝑋‘2)) ≠ 0 ↔ (𝑌‘2) ≠ (𝑋‘2)))
2315, 22orbi12d 918 . . . . 5 ((𝑋𝑃𝑌𝑃) → ((((𝑌‘1) − (𝑋‘1)) ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0) ↔ ((𝑌‘1) ≠ (𝑋‘1) ∨ (𝑌‘2) ≠ (𝑋‘2))))
24 necom 2995 . . . . . 6 ((𝑌‘1) ≠ (𝑋‘1) ↔ (𝑋‘1) ≠ (𝑌‘1))
25 necom 2995 . . . . . 6 ((𝑌‘2) ≠ (𝑋‘2) ↔ (𝑋‘2) ≠ (𝑌‘2))
2624, 25orbi12i 914 . . . . 5 (((𝑌‘1) ≠ (𝑋‘1) ∨ (𝑌‘2) ≠ (𝑋‘2)) ↔ ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)))
2723, 26bitrdi 287 . . . 4 ((𝑋𝑃𝑌𝑃) → ((((𝑌‘1) − (𝑋‘1)) ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0) ↔ ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2))))
288, 27bitrid 283 . . 3 ((𝑋𝑃𝑌𝑃) → ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2))))
29283adant3 1133 . 2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2))))
303, 29mpbird 257 1 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 846  w3a 1088   = wceq 1542  wcel 2107  wne 2941  {cpr 4631  cfv 6544  (class class class)co 7409  m cmap 8820  cc 11108  cr 11109  0cc0 11110  1c1 11111  cmin 11444  2c2 12267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-ltxr 11253  df-sub 11446  df-2 12275
This theorem is referenced by:  rrx2pnedifcoorneorr  47403
  Copyright terms: Public domain W3C validator