![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrx2pnedifcoorneor | Structured version Visualization version GIF version |
Description: If two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 are different, then at least one difference of two corresponding coordinates is not 0. (Contributed by AV, 26-Feb-2023.) |
Ref | Expression |
---|---|
rrx2pnecoorneor.i | ⊢ 𝐼 = {1, 2} |
rrx2pnecoorneor.b | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
rrx2pnedifcoorneor.a | ⊢ 𝐴 = ((𝑌‘1) − (𝑋‘1)) |
rrx2pnedifcoorneor.b | ⊢ 𝐵 = ((𝑌‘2) − (𝑋‘2)) |
Ref | Expression |
---|---|
rrx2pnedifcoorneor | ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrx2pnecoorneor.i | . . 3 ⊢ 𝐼 = {1, 2} | |
2 | rrx2pnecoorneor.b | . . 3 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
3 | 1, 2 | rrx2pnecoorneor 48139 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2))) |
4 | rrx2pnedifcoorneor.a | . . . . . 6 ⊢ 𝐴 = ((𝑌‘1) − (𝑋‘1)) | |
5 | 4 | neeq1i 2995 | . . . . 5 ⊢ (𝐴 ≠ 0 ↔ ((𝑌‘1) − (𝑋‘1)) ≠ 0) |
6 | rrx2pnedifcoorneor.b | . . . . . 6 ⊢ 𝐵 = ((𝑌‘2) − (𝑋‘2)) | |
7 | 6 | neeq1i 2995 | . . . . 5 ⊢ (𝐵 ≠ 0 ↔ ((𝑌‘2) − (𝑋‘2)) ≠ 0) |
8 | 5, 7 | orbi12i 912 | . . . 4 ⊢ ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ (((𝑌‘1) − (𝑋‘1)) ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0)) |
9 | 1, 2 | rrx2pxel 48135 | . . . . . . . . 9 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘1) ∈ ℝ) |
10 | 9 | recnd 11283 | . . . . . . . 8 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘1) ∈ ℂ) |
11 | 1, 2 | rrx2pxel 48135 | . . . . . . . . 9 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘1) ∈ ℝ) |
12 | 11 | recnd 11283 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘1) ∈ ℂ) |
13 | subeq0 11527 | . . . . . . . 8 ⊢ (((𝑌‘1) ∈ ℂ ∧ (𝑋‘1) ∈ ℂ) → (((𝑌‘1) − (𝑋‘1)) = 0 ↔ (𝑌‘1) = (𝑋‘1))) | |
14 | 10, 12, 13 | syl2anr 595 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (((𝑌‘1) − (𝑋‘1)) = 0 ↔ (𝑌‘1) = (𝑋‘1))) |
15 | 14 | necon3bid 2975 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (((𝑌‘1) − (𝑋‘1)) ≠ 0 ↔ (𝑌‘1) ≠ (𝑋‘1))) |
16 | 1, 2 | rrx2pyel 48136 | . . . . . . . . 9 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘2) ∈ ℝ) |
17 | 16 | recnd 11283 | . . . . . . . 8 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘2) ∈ ℂ) |
18 | 1, 2 | rrx2pyel 48136 | . . . . . . . . 9 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘2) ∈ ℝ) |
19 | 18 | recnd 11283 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘2) ∈ ℂ) |
20 | subeq0 11527 | . . . . . . . 8 ⊢ (((𝑌‘2) ∈ ℂ ∧ (𝑋‘2) ∈ ℂ) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ (𝑌‘2) = (𝑋‘2))) | |
21 | 17, 19, 20 | syl2anr 595 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ (𝑌‘2) = (𝑋‘2))) |
22 | 21 | necon3bid 2975 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (((𝑌‘2) − (𝑋‘2)) ≠ 0 ↔ (𝑌‘2) ≠ (𝑋‘2))) |
23 | 15, 22 | orbi12d 916 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ((((𝑌‘1) − (𝑋‘1)) ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0) ↔ ((𝑌‘1) ≠ (𝑋‘1) ∨ (𝑌‘2) ≠ (𝑋‘2)))) |
24 | necom 2984 | . . . . . 6 ⊢ ((𝑌‘1) ≠ (𝑋‘1) ↔ (𝑋‘1) ≠ (𝑌‘1)) | |
25 | necom 2984 | . . . . . 6 ⊢ ((𝑌‘2) ≠ (𝑋‘2) ↔ (𝑋‘2) ≠ (𝑌‘2)) | |
26 | 24, 25 | orbi12i 912 | . . . . 5 ⊢ (((𝑌‘1) ≠ (𝑋‘1) ∨ (𝑌‘2) ≠ (𝑋‘2)) ↔ ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2))) |
27 | 23, 26 | bitrdi 286 | . . . 4 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ((((𝑌‘1) − (𝑋‘1)) ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0) ↔ ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)))) |
28 | 8, 27 | bitrid 282 | . . 3 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)))) |
29 | 28 | 3adant3 1129 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)))) |
30 | 3, 29 | mpbird 256 | 1 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 845 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 {cpr 4625 ‘cfv 6546 (class class class)co 7416 ↑m cmap 8847 ℂcc 11147 ℝcr 11148 0cc0 11149 1c1 11150 − cmin 11485 2c2 12313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-po 5586 df-so 5587 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-1st 7995 df-2nd 7996 df-er 8726 df-map 8849 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11291 df-mnf 11292 df-ltxr 11294 df-sub 11487 df-2 12321 |
This theorem is referenced by: rrx2pnedifcoorneorr 48141 |
Copyright terms: Public domain | W3C validator |