| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrx2pnedifcoorneor | Structured version Visualization version GIF version | ||
| Description: If two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 are different, then at least one difference of two corresponding coordinates is not 0. (Contributed by AV, 26-Feb-2023.) |
| Ref | Expression |
|---|---|
| rrx2pnecoorneor.i | ⊢ 𝐼 = {1, 2} |
| rrx2pnecoorneor.b | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
| rrx2pnedifcoorneor.a | ⊢ 𝐴 = ((𝑌‘1) − (𝑋‘1)) |
| rrx2pnedifcoorneor.b | ⊢ 𝐵 = ((𝑌‘2) − (𝑋‘2)) |
| Ref | Expression |
|---|---|
| rrx2pnedifcoorneor | ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrx2pnecoorneor.i | . . 3 ⊢ 𝐼 = {1, 2} | |
| 2 | rrx2pnecoorneor.b | . . 3 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
| 3 | 1, 2 | rrx2pnecoorneor 48726 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2))) |
| 4 | rrx2pnedifcoorneor.a | . . . . . 6 ⊢ 𝐴 = ((𝑌‘1) − (𝑋‘1)) | |
| 5 | 4 | neeq1i 2990 | . . . . 5 ⊢ (𝐴 ≠ 0 ↔ ((𝑌‘1) − (𝑋‘1)) ≠ 0) |
| 6 | rrx2pnedifcoorneor.b | . . . . . 6 ⊢ 𝐵 = ((𝑌‘2) − (𝑋‘2)) | |
| 7 | 6 | neeq1i 2990 | . . . . 5 ⊢ (𝐵 ≠ 0 ↔ ((𝑌‘2) − (𝑋‘2)) ≠ 0) |
| 8 | 5, 7 | orbi12i 914 | . . . 4 ⊢ ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ (((𝑌‘1) − (𝑋‘1)) ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0)) |
| 9 | 1, 2 | rrx2pxel 48722 | . . . . . . . . 9 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘1) ∈ ℝ) |
| 10 | 9 | recnd 11132 | . . . . . . . 8 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘1) ∈ ℂ) |
| 11 | 1, 2 | rrx2pxel 48722 | . . . . . . . . 9 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘1) ∈ ℝ) |
| 12 | 11 | recnd 11132 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘1) ∈ ℂ) |
| 13 | subeq0 11379 | . . . . . . . 8 ⊢ (((𝑌‘1) ∈ ℂ ∧ (𝑋‘1) ∈ ℂ) → (((𝑌‘1) − (𝑋‘1)) = 0 ↔ (𝑌‘1) = (𝑋‘1))) | |
| 14 | 10, 12, 13 | syl2anr 597 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (((𝑌‘1) − (𝑋‘1)) = 0 ↔ (𝑌‘1) = (𝑋‘1))) |
| 15 | 14 | necon3bid 2970 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (((𝑌‘1) − (𝑋‘1)) ≠ 0 ↔ (𝑌‘1) ≠ (𝑋‘1))) |
| 16 | 1, 2 | rrx2pyel 48723 | . . . . . . . . 9 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘2) ∈ ℝ) |
| 17 | 16 | recnd 11132 | . . . . . . . 8 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘2) ∈ ℂ) |
| 18 | 1, 2 | rrx2pyel 48723 | . . . . . . . . 9 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘2) ∈ ℝ) |
| 19 | 18 | recnd 11132 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘2) ∈ ℂ) |
| 20 | subeq0 11379 | . . . . . . . 8 ⊢ (((𝑌‘2) ∈ ℂ ∧ (𝑋‘2) ∈ ℂ) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ (𝑌‘2) = (𝑋‘2))) | |
| 21 | 17, 19, 20 | syl2anr 597 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ (𝑌‘2) = (𝑋‘2))) |
| 22 | 21 | necon3bid 2970 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (((𝑌‘2) − (𝑋‘2)) ≠ 0 ↔ (𝑌‘2) ≠ (𝑋‘2))) |
| 23 | 15, 22 | orbi12d 918 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ((((𝑌‘1) − (𝑋‘1)) ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0) ↔ ((𝑌‘1) ≠ (𝑋‘1) ∨ (𝑌‘2) ≠ (𝑋‘2)))) |
| 24 | necom 2979 | . . . . . 6 ⊢ ((𝑌‘1) ≠ (𝑋‘1) ↔ (𝑋‘1) ≠ (𝑌‘1)) | |
| 25 | necom 2979 | . . . . . 6 ⊢ ((𝑌‘2) ≠ (𝑋‘2) ↔ (𝑋‘2) ≠ (𝑌‘2)) | |
| 26 | 24, 25 | orbi12i 914 | . . . . 5 ⊢ (((𝑌‘1) ≠ (𝑋‘1) ∨ (𝑌‘2) ≠ (𝑋‘2)) ↔ ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2))) |
| 27 | 23, 26 | bitrdi 287 | . . . 4 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ((((𝑌‘1) − (𝑋‘1)) ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0) ↔ ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)))) |
| 28 | 8, 27 | bitrid 283 | . . 3 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)))) |
| 29 | 28 | 3adant3 1132 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)))) |
| 30 | 3, 29 | mpbird 257 | 1 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ≠ wne 2926 {cpr 4576 ‘cfv 6477 (class class class)co 7341 ↑m cmap 8745 ℂcc 10996 ℝcr 10997 0cc0 10998 1c1 10999 − cmin 11336 2c2 12172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-ltxr 11143 df-sub 11338 df-2 12180 |
| This theorem is referenced by: rrx2pnedifcoorneorr 48728 |
| Copyright terms: Public domain | W3C validator |