|   | Mathbox for Alexander van der Vekens | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrx2pnedifcoorneor | Structured version Visualization version GIF version | ||
| Description: If two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 are different, then at least one difference of two corresponding coordinates is not 0. (Contributed by AV, 26-Feb-2023.) | 
| Ref | Expression | 
|---|---|
| rrx2pnecoorneor.i | ⊢ 𝐼 = {1, 2} | 
| rrx2pnecoorneor.b | ⊢ 𝑃 = (ℝ ↑m 𝐼) | 
| rrx2pnedifcoorneor.a | ⊢ 𝐴 = ((𝑌‘1) − (𝑋‘1)) | 
| rrx2pnedifcoorneor.b | ⊢ 𝐵 = ((𝑌‘2) − (𝑋‘2)) | 
| Ref | Expression | 
|---|---|
| rrx2pnedifcoorneor | ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rrx2pnecoorneor.i | . . 3 ⊢ 𝐼 = {1, 2} | |
| 2 | rrx2pnecoorneor.b | . . 3 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
| 3 | 1, 2 | rrx2pnecoorneor 48641 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2))) | 
| 4 | rrx2pnedifcoorneor.a | . . . . . 6 ⊢ 𝐴 = ((𝑌‘1) − (𝑋‘1)) | |
| 5 | 4 | neeq1i 3004 | . . . . 5 ⊢ (𝐴 ≠ 0 ↔ ((𝑌‘1) − (𝑋‘1)) ≠ 0) | 
| 6 | rrx2pnedifcoorneor.b | . . . . . 6 ⊢ 𝐵 = ((𝑌‘2) − (𝑋‘2)) | |
| 7 | 6 | neeq1i 3004 | . . . . 5 ⊢ (𝐵 ≠ 0 ↔ ((𝑌‘2) − (𝑋‘2)) ≠ 0) | 
| 8 | 5, 7 | orbi12i 914 | . . . 4 ⊢ ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ (((𝑌‘1) − (𝑋‘1)) ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0)) | 
| 9 | 1, 2 | rrx2pxel 48637 | . . . . . . . . 9 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘1) ∈ ℝ) | 
| 10 | 9 | recnd 11290 | . . . . . . . 8 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘1) ∈ ℂ) | 
| 11 | 1, 2 | rrx2pxel 48637 | . . . . . . . . 9 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘1) ∈ ℝ) | 
| 12 | 11 | recnd 11290 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘1) ∈ ℂ) | 
| 13 | subeq0 11536 | . . . . . . . 8 ⊢ (((𝑌‘1) ∈ ℂ ∧ (𝑋‘1) ∈ ℂ) → (((𝑌‘1) − (𝑋‘1)) = 0 ↔ (𝑌‘1) = (𝑋‘1))) | |
| 14 | 10, 12, 13 | syl2anr 597 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (((𝑌‘1) − (𝑋‘1)) = 0 ↔ (𝑌‘1) = (𝑋‘1))) | 
| 15 | 14 | necon3bid 2984 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (((𝑌‘1) − (𝑋‘1)) ≠ 0 ↔ (𝑌‘1) ≠ (𝑋‘1))) | 
| 16 | 1, 2 | rrx2pyel 48638 | . . . . . . . . 9 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘2) ∈ ℝ) | 
| 17 | 16 | recnd 11290 | . . . . . . . 8 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘2) ∈ ℂ) | 
| 18 | 1, 2 | rrx2pyel 48638 | . . . . . . . . 9 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘2) ∈ ℝ) | 
| 19 | 18 | recnd 11290 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘2) ∈ ℂ) | 
| 20 | subeq0 11536 | . . . . . . . 8 ⊢ (((𝑌‘2) ∈ ℂ ∧ (𝑋‘2) ∈ ℂ) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ (𝑌‘2) = (𝑋‘2))) | |
| 21 | 17, 19, 20 | syl2anr 597 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ (𝑌‘2) = (𝑋‘2))) | 
| 22 | 21 | necon3bid 2984 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (((𝑌‘2) − (𝑋‘2)) ≠ 0 ↔ (𝑌‘2) ≠ (𝑋‘2))) | 
| 23 | 15, 22 | orbi12d 918 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ((((𝑌‘1) − (𝑋‘1)) ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0) ↔ ((𝑌‘1) ≠ (𝑋‘1) ∨ (𝑌‘2) ≠ (𝑋‘2)))) | 
| 24 | necom 2993 | . . . . . 6 ⊢ ((𝑌‘1) ≠ (𝑋‘1) ↔ (𝑋‘1) ≠ (𝑌‘1)) | |
| 25 | necom 2993 | . . . . . 6 ⊢ ((𝑌‘2) ≠ (𝑋‘2) ↔ (𝑋‘2) ≠ (𝑌‘2)) | |
| 26 | 24, 25 | orbi12i 914 | . . . . 5 ⊢ (((𝑌‘1) ≠ (𝑋‘1) ∨ (𝑌‘2) ≠ (𝑋‘2)) ↔ ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2))) | 
| 27 | 23, 26 | bitrdi 287 | . . . 4 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ((((𝑌‘1) − (𝑋‘1)) ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0) ↔ ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)))) | 
| 28 | 8, 27 | bitrid 283 | . . 3 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)))) | 
| 29 | 28 | 3adant3 1132 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)))) | 
| 30 | 3, 29 | mpbird 257 | 1 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 {cpr 4627 ‘cfv 6560 (class class class)co 7432 ↑m cmap 8867 ℂcc 11154 ℝcr 11155 0cc0 11156 1c1 11157 − cmin 11493 2c2 12322 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-po 5591 df-so 5592 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-er 8746 df-map 8869 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-ltxr 11301 df-sub 11495 df-2 12330 | 
| This theorem is referenced by: rrx2pnedifcoorneorr 48643 | 
| Copyright terms: Public domain | W3C validator |