Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2pnedifcoorneor Structured version   Visualization version   GIF version

Theorem rrx2pnedifcoorneor 45130
Description: If two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 are different, then at least one difference of two corresponding coordinates is not 0. (Contributed by AV, 26-Feb-2023.)
Hypotheses
Ref Expression
rrx2pnecoorneor.i 𝐼 = {1, 2}
rrx2pnecoorneor.b 𝑃 = (ℝ ↑m 𝐼)
rrx2pnedifcoorneor.a 𝐴 = ((𝑌‘1) − (𝑋‘1))
rrx2pnedifcoorneor.b 𝐵 = ((𝑌‘2) − (𝑋‘2))
Assertion
Ref Expression
rrx2pnedifcoorneor ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))

Proof of Theorem rrx2pnedifcoorneor
StepHypRef Expression
1 rrx2pnecoorneor.i . . 3 𝐼 = {1, 2}
2 rrx2pnecoorneor.b . . 3 𝑃 = (ℝ ↑m 𝐼)
31, 2rrx2pnecoorneor 45129 . 2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)))
4 rrx2pnedifcoorneor.a . . . . . 6 𝐴 = ((𝑌‘1) − (𝑋‘1))
54neeq1i 3051 . . . . 5 (𝐴 ≠ 0 ↔ ((𝑌‘1) − (𝑋‘1)) ≠ 0)
6 rrx2pnedifcoorneor.b . . . . . 6 𝐵 = ((𝑌‘2) − (𝑋‘2))
76neeq1i 3051 . . . . 5 (𝐵 ≠ 0 ↔ ((𝑌‘2) − (𝑋‘2)) ≠ 0)
85, 7orbi12i 912 . . . 4 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ (((𝑌‘1) − (𝑋‘1)) ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0))
91, 2rrx2pxel 45125 . . . . . . . . 9 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
109recnd 10658 . . . . . . . 8 (𝑌𝑃 → (𝑌‘1) ∈ ℂ)
111, 2rrx2pxel 45125 . . . . . . . . 9 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
1211recnd 10658 . . . . . . . 8 (𝑋𝑃 → (𝑋‘1) ∈ ℂ)
13 subeq0 10901 . . . . . . . 8 (((𝑌‘1) ∈ ℂ ∧ (𝑋‘1) ∈ ℂ) → (((𝑌‘1) − (𝑋‘1)) = 0 ↔ (𝑌‘1) = (𝑋‘1)))
1410, 12, 13syl2anr 599 . . . . . . 7 ((𝑋𝑃𝑌𝑃) → (((𝑌‘1) − (𝑋‘1)) = 0 ↔ (𝑌‘1) = (𝑋‘1)))
1514necon3bid 3031 . . . . . 6 ((𝑋𝑃𝑌𝑃) → (((𝑌‘1) − (𝑋‘1)) ≠ 0 ↔ (𝑌‘1) ≠ (𝑋‘1)))
161, 2rrx2pyel 45126 . . . . . . . . 9 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
1716recnd 10658 . . . . . . . 8 (𝑌𝑃 → (𝑌‘2) ∈ ℂ)
181, 2rrx2pyel 45126 . . . . . . . . 9 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
1918recnd 10658 . . . . . . . 8 (𝑋𝑃 → (𝑋‘2) ∈ ℂ)
20 subeq0 10901 . . . . . . . 8 (((𝑌‘2) ∈ ℂ ∧ (𝑋‘2) ∈ ℂ) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ (𝑌‘2) = (𝑋‘2)))
2117, 19, 20syl2anr 599 . . . . . . 7 ((𝑋𝑃𝑌𝑃) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ (𝑌‘2) = (𝑋‘2)))
2221necon3bid 3031 . . . . . 6 ((𝑋𝑃𝑌𝑃) → (((𝑌‘2) − (𝑋‘2)) ≠ 0 ↔ (𝑌‘2) ≠ (𝑋‘2)))
2315, 22orbi12d 916 . . . . 5 ((𝑋𝑃𝑌𝑃) → ((((𝑌‘1) − (𝑋‘1)) ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0) ↔ ((𝑌‘1) ≠ (𝑋‘1) ∨ (𝑌‘2) ≠ (𝑋‘2))))
24 necom 3040 . . . . . 6 ((𝑌‘1) ≠ (𝑋‘1) ↔ (𝑋‘1) ≠ (𝑌‘1))
25 necom 3040 . . . . . 6 ((𝑌‘2) ≠ (𝑋‘2) ↔ (𝑋‘2) ≠ (𝑌‘2))
2624, 25orbi12i 912 . . . . 5 (((𝑌‘1) ≠ (𝑋‘1) ∨ (𝑌‘2) ≠ (𝑋‘2)) ↔ ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)))
2723, 26syl6bb 290 . . . 4 ((𝑋𝑃𝑌𝑃) → ((((𝑌‘1) − (𝑋‘1)) ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0) ↔ ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2))))
288, 27syl5bb 286 . . 3 ((𝑋𝑃𝑌𝑃) → ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2))))
29283adant3 1129 . 2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2))))
303, 29mpbird 260 1 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wne 2987  {cpr 4527  cfv 6324  (class class class)co 7135  m cmap 8389  cc 10524  cr 10525  0cc0 10526  1c1 10527  cmin 10859  2c2 11680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-ltxr 10669  df-sub 10861  df-2 11688
This theorem is referenced by:  rrx2pnedifcoorneorr  45131
  Copyright terms: Public domain W3C validator