Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2pnedifcoorneor Structured version   Visualization version   GIF version

Theorem rrx2pnedifcoorneor 48140
Description: If two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 are different, then at least one difference of two corresponding coordinates is not 0. (Contributed by AV, 26-Feb-2023.)
Hypotheses
Ref Expression
rrx2pnecoorneor.i 𝐼 = {1, 2}
rrx2pnecoorneor.b 𝑃 = (ℝ ↑m 𝐼)
rrx2pnedifcoorneor.a 𝐴 = ((𝑌‘1) − (𝑋‘1))
rrx2pnedifcoorneor.b 𝐵 = ((𝑌‘2) − (𝑋‘2))
Assertion
Ref Expression
rrx2pnedifcoorneor ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))

Proof of Theorem rrx2pnedifcoorneor
StepHypRef Expression
1 rrx2pnecoorneor.i . . 3 𝐼 = {1, 2}
2 rrx2pnecoorneor.b . . 3 𝑃 = (ℝ ↑m 𝐼)
31, 2rrx2pnecoorneor 48139 . 2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)))
4 rrx2pnedifcoorneor.a . . . . . 6 𝐴 = ((𝑌‘1) − (𝑋‘1))
54neeq1i 2995 . . . . 5 (𝐴 ≠ 0 ↔ ((𝑌‘1) − (𝑋‘1)) ≠ 0)
6 rrx2pnedifcoorneor.b . . . . . 6 𝐵 = ((𝑌‘2) − (𝑋‘2))
76neeq1i 2995 . . . . 5 (𝐵 ≠ 0 ↔ ((𝑌‘2) − (𝑋‘2)) ≠ 0)
85, 7orbi12i 912 . . . 4 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ (((𝑌‘1) − (𝑋‘1)) ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0))
91, 2rrx2pxel 48135 . . . . . . . . 9 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
109recnd 11283 . . . . . . . 8 (𝑌𝑃 → (𝑌‘1) ∈ ℂ)
111, 2rrx2pxel 48135 . . . . . . . . 9 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
1211recnd 11283 . . . . . . . 8 (𝑋𝑃 → (𝑋‘1) ∈ ℂ)
13 subeq0 11527 . . . . . . . 8 (((𝑌‘1) ∈ ℂ ∧ (𝑋‘1) ∈ ℂ) → (((𝑌‘1) − (𝑋‘1)) = 0 ↔ (𝑌‘1) = (𝑋‘1)))
1410, 12, 13syl2anr 595 . . . . . . 7 ((𝑋𝑃𝑌𝑃) → (((𝑌‘1) − (𝑋‘1)) = 0 ↔ (𝑌‘1) = (𝑋‘1)))
1514necon3bid 2975 . . . . . 6 ((𝑋𝑃𝑌𝑃) → (((𝑌‘1) − (𝑋‘1)) ≠ 0 ↔ (𝑌‘1) ≠ (𝑋‘1)))
161, 2rrx2pyel 48136 . . . . . . . . 9 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
1716recnd 11283 . . . . . . . 8 (𝑌𝑃 → (𝑌‘2) ∈ ℂ)
181, 2rrx2pyel 48136 . . . . . . . . 9 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
1918recnd 11283 . . . . . . . 8 (𝑋𝑃 → (𝑋‘2) ∈ ℂ)
20 subeq0 11527 . . . . . . . 8 (((𝑌‘2) ∈ ℂ ∧ (𝑋‘2) ∈ ℂ) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ (𝑌‘2) = (𝑋‘2)))
2117, 19, 20syl2anr 595 . . . . . . 7 ((𝑋𝑃𝑌𝑃) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ (𝑌‘2) = (𝑋‘2)))
2221necon3bid 2975 . . . . . 6 ((𝑋𝑃𝑌𝑃) → (((𝑌‘2) − (𝑋‘2)) ≠ 0 ↔ (𝑌‘2) ≠ (𝑋‘2)))
2315, 22orbi12d 916 . . . . 5 ((𝑋𝑃𝑌𝑃) → ((((𝑌‘1) − (𝑋‘1)) ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0) ↔ ((𝑌‘1) ≠ (𝑋‘1) ∨ (𝑌‘2) ≠ (𝑋‘2))))
24 necom 2984 . . . . . 6 ((𝑌‘1) ≠ (𝑋‘1) ↔ (𝑋‘1) ≠ (𝑌‘1))
25 necom 2984 . . . . . 6 ((𝑌‘2) ≠ (𝑋‘2) ↔ (𝑋‘2) ≠ (𝑌‘2))
2624, 25orbi12i 912 . . . . 5 (((𝑌‘1) ≠ (𝑋‘1) ∨ (𝑌‘2) ≠ (𝑋‘2)) ↔ ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)))
2723, 26bitrdi 286 . . . 4 ((𝑋𝑃𝑌𝑃) → ((((𝑌‘1) − (𝑋‘1)) ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0) ↔ ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2))))
288, 27bitrid 282 . . 3 ((𝑋𝑃𝑌𝑃) → ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2))))
29283adant3 1129 . 2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2))))
303, 29mpbird 256 1 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845  w3a 1084   = wceq 1534  wcel 2099  wne 2930  {cpr 4625  cfv 6546  (class class class)co 7416  m cmap 8847  cc 11147  cr 11148  0cc0 11149  1c1 11150  cmin 11485  2c2 12313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-po 5586  df-so 5587  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-1st 7995  df-2nd 7996  df-er 8726  df-map 8849  df-en 8967  df-dom 8968  df-sdom 8969  df-pnf 11291  df-mnf 11292  df-ltxr 11294  df-sub 11487  df-2 12321
This theorem is referenced by:  rrx2pnedifcoorneorr  48141
  Copyright terms: Public domain W3C validator