Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2pnedifcoorneor Structured version   Visualization version   GIF version

Theorem rrx2pnedifcoorneor 46062
Description: If two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 are different, then at least one difference of two corresponding coordinates is not 0. (Contributed by AV, 26-Feb-2023.)
Hypotheses
Ref Expression
rrx2pnecoorneor.i 𝐼 = {1, 2}
rrx2pnecoorneor.b 𝑃 = (ℝ ↑m 𝐼)
rrx2pnedifcoorneor.a 𝐴 = ((𝑌‘1) − (𝑋‘1))
rrx2pnedifcoorneor.b 𝐵 = ((𝑌‘2) − (𝑋‘2))
Assertion
Ref Expression
rrx2pnedifcoorneor ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))

Proof of Theorem rrx2pnedifcoorneor
StepHypRef Expression
1 rrx2pnecoorneor.i . . 3 𝐼 = {1, 2}
2 rrx2pnecoorneor.b . . 3 𝑃 = (ℝ ↑m 𝐼)
31, 2rrx2pnecoorneor 46061 . 2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)))
4 rrx2pnedifcoorneor.a . . . . . 6 𝐴 = ((𝑌‘1) − (𝑋‘1))
54neeq1i 3008 . . . . 5 (𝐴 ≠ 0 ↔ ((𝑌‘1) − (𝑋‘1)) ≠ 0)
6 rrx2pnedifcoorneor.b . . . . . 6 𝐵 = ((𝑌‘2) − (𝑋‘2))
76neeq1i 3008 . . . . 5 (𝐵 ≠ 0 ↔ ((𝑌‘2) − (𝑋‘2)) ≠ 0)
85, 7orbi12i 912 . . . 4 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ (((𝑌‘1) − (𝑋‘1)) ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0))
91, 2rrx2pxel 46057 . . . . . . . . 9 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
109recnd 11003 . . . . . . . 8 (𝑌𝑃 → (𝑌‘1) ∈ ℂ)
111, 2rrx2pxel 46057 . . . . . . . . 9 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
1211recnd 11003 . . . . . . . 8 (𝑋𝑃 → (𝑋‘1) ∈ ℂ)
13 subeq0 11247 . . . . . . . 8 (((𝑌‘1) ∈ ℂ ∧ (𝑋‘1) ∈ ℂ) → (((𝑌‘1) − (𝑋‘1)) = 0 ↔ (𝑌‘1) = (𝑋‘1)))
1410, 12, 13syl2anr 597 . . . . . . 7 ((𝑋𝑃𝑌𝑃) → (((𝑌‘1) − (𝑋‘1)) = 0 ↔ (𝑌‘1) = (𝑋‘1)))
1514necon3bid 2988 . . . . . 6 ((𝑋𝑃𝑌𝑃) → (((𝑌‘1) − (𝑋‘1)) ≠ 0 ↔ (𝑌‘1) ≠ (𝑋‘1)))
161, 2rrx2pyel 46058 . . . . . . . . 9 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
1716recnd 11003 . . . . . . . 8 (𝑌𝑃 → (𝑌‘2) ∈ ℂ)
181, 2rrx2pyel 46058 . . . . . . . . 9 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
1918recnd 11003 . . . . . . . 8 (𝑋𝑃 → (𝑋‘2) ∈ ℂ)
20 subeq0 11247 . . . . . . . 8 (((𝑌‘2) ∈ ℂ ∧ (𝑋‘2) ∈ ℂ) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ (𝑌‘2) = (𝑋‘2)))
2117, 19, 20syl2anr 597 . . . . . . 7 ((𝑋𝑃𝑌𝑃) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ (𝑌‘2) = (𝑋‘2)))
2221necon3bid 2988 . . . . . 6 ((𝑋𝑃𝑌𝑃) → (((𝑌‘2) − (𝑋‘2)) ≠ 0 ↔ (𝑌‘2) ≠ (𝑋‘2)))
2315, 22orbi12d 916 . . . . 5 ((𝑋𝑃𝑌𝑃) → ((((𝑌‘1) − (𝑋‘1)) ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0) ↔ ((𝑌‘1) ≠ (𝑋‘1) ∨ (𝑌‘2) ≠ (𝑋‘2))))
24 necom 2997 . . . . . 6 ((𝑌‘1) ≠ (𝑋‘1) ↔ (𝑋‘1) ≠ (𝑌‘1))
25 necom 2997 . . . . . 6 ((𝑌‘2) ≠ (𝑋‘2) ↔ (𝑋‘2) ≠ (𝑌‘2))
2624, 25orbi12i 912 . . . . 5 (((𝑌‘1) ≠ (𝑋‘1) ∨ (𝑌‘2) ≠ (𝑋‘2)) ↔ ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)))
2723, 26bitrdi 287 . . . 4 ((𝑋𝑃𝑌𝑃) → ((((𝑌‘1) − (𝑋‘1)) ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0) ↔ ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2))))
288, 27syl5bb 283 . . 3 ((𝑋𝑃𝑌𝑃) → ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2))))
29283adant3 1131 . 2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2))))
303, 29mpbird 256 1 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  {cpr 4563  cfv 6433  (class class class)co 7275  m cmap 8615  cc 10869  cr 10870  0cc0 10871  1c1 10872  cmin 11205  2c2 12028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-ltxr 11014  df-sub 11207  df-2 12036
This theorem is referenced by:  rrx2pnedifcoorneorr  46063
  Copyright terms: Public domain W3C validator