MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrptlem2 Structured version   Visualization version   GIF version

Theorem dchrptlem2 27196
Description: Lemma for dchrpt 27198. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrpt.g 𝐺 = (DChr‘𝑁)
dchrpt.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrpt.d 𝐷 = (Base‘𝐺)
dchrpt.b 𝐵 = (Base‘𝑍)
dchrpt.1 1 = (1r𝑍)
dchrpt.n (𝜑𝑁 ∈ ℕ)
dchrpt.n1 (𝜑𝐴1 )
dchrpt.u 𝑈 = (Unit‘𝑍)
dchrpt.h 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈)
dchrpt.m · = (.g𝐻)
dchrpt.s 𝑆 = (𝑘 ∈ dom 𝑊 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))))
dchrpt.au (𝜑𝐴𝑈)
dchrpt.w (𝜑𝑊 ∈ Word 𝑈)
dchrpt.2 (𝜑𝐻dom DProd 𝑆)
dchrpt.3 (𝜑 → (𝐻 DProd 𝑆) = 𝑈)
dchrpt.p 𝑃 = (𝐻dProj𝑆)
dchrpt.o 𝑂 = (od‘𝐻)
dchrpt.t 𝑇 = (-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))
dchrpt.i (𝜑𝐼 ∈ dom 𝑊)
dchrpt.4 (𝜑 → ((𝑃𝐼)‘𝐴) ≠ 1 )
dchrpt.5 𝑋 = (𝑢𝑈 ↦ (℩𝑚 ∈ ℤ (((𝑃𝐼)‘𝑢) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))))
Assertion
Ref Expression
dchrptlem2 (𝜑 → ∃𝑥𝐷 (𝑥𝐴) ≠ 1)
Distinct variable groups:   ,𝑘,𝑚,𝑛,𝑥, 1   𝑢,,𝐴,𝑘,𝑚,𝑛,𝑥   ,𝐼,𝑘,𝑚,𝑢   𝑥,𝐵   𝑥,𝐺   ,𝐻,𝑘,𝑚,𝑛,𝑢,𝑥   𝑥,𝑁   ,𝑊,𝑘,𝑚,𝑛,𝑢,𝑥   · ,,𝑘,𝑚,𝑛,𝑢,𝑥   𝑥,𝑋   𝑃,,𝑚,𝑢   𝑆,,𝑘,𝑚,𝑛,𝑢,𝑥   ,𝑍,𝑘,𝑚,𝑛,𝑢,𝑥   𝑥,𝐷   𝜑,,𝑘,𝑚,𝑛,𝑥   𝑇,,𝑚,𝑢   𝑈,,𝑚,𝑢,𝑥
Allowed substitution hints:   𝜑(𝑢)   𝐵(𝑢,,𝑘,𝑚,𝑛)   𝐷(𝑢,,𝑘,𝑚,𝑛)   𝑃(𝑥,𝑘,𝑛)   𝑇(𝑥,𝑘,𝑛)   𝑈(𝑘,𝑛)   1 (𝑢)   𝐺(𝑢,,𝑘,𝑚,𝑛)   𝐼(𝑥,𝑛)   𝑁(𝑢,,𝑘,𝑚,𝑛)   𝑂(𝑥,𝑢,,𝑘,𝑚,𝑛)   𝑋(𝑢,,𝑘,𝑚,𝑛)

Proof of Theorem dchrptlem2
Dummy variables 𝑎 𝑏 𝑣 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchrpt.g . . 3 𝐺 = (DChr‘𝑁)
2 dchrpt.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
3 dchrpt.b . . 3 𝐵 = (Base‘𝑍)
4 dchrpt.u . . 3 𝑈 = (Unit‘𝑍)
5 dchrpt.n . . 3 (𝜑𝑁 ∈ ℕ)
6 dchrpt.d . . 3 𝐷 = (Base‘𝐺)
7 fveq2 6817 . . 3 (𝑣 = 𝑥 → (𝑋𝑣) = (𝑋𝑥))
8 fveq2 6817 . . 3 (𝑣 = 𝑦 → (𝑋𝑣) = (𝑋𝑦))
9 fveq2 6817 . . 3 (𝑣 = (𝑥(.r𝑍)𝑦) → (𝑋𝑣) = (𝑋‘(𝑥(.r𝑍)𝑦)))
10 fveq2 6817 . . 3 (𝑣 = (1r𝑍) → (𝑋𝑣) = (𝑋‘(1r𝑍)))
11 dchrpt.2 . . . . . . . . 9 (𝜑𝐻dom DProd 𝑆)
12 zex 12469 . . . . . . . . . . . . 13 ℤ ∈ V
1312mptex 7152 . . . . . . . . . . . 12 (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))) ∈ V
1413rnex 7835 . . . . . . . . . . 11 ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))) ∈ V
15 dchrpt.s . . . . . . . . . . 11 𝑆 = (𝑘 ∈ dom 𝑊 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))))
1614, 15dmmpti 6621 . . . . . . . . . 10 dom 𝑆 = dom 𝑊
1716a1i 11 . . . . . . . . 9 (𝜑 → dom 𝑆 = dom 𝑊)
18 dchrpt.p . . . . . . . . 9 𝑃 = (𝐻dProj𝑆)
19 dchrpt.i . . . . . . . . 9 (𝜑𝐼 ∈ dom 𝑊)
2011, 17, 18, 19dpjf 19964 . . . . . . . 8 (𝜑 → (𝑃𝐼):(𝐻 DProd 𝑆)⟶(𝑆𝐼))
21 dchrpt.3 . . . . . . . . 9 (𝜑 → (𝐻 DProd 𝑆) = 𝑈)
2221feq2d 6631 . . . . . . . 8 (𝜑 → ((𝑃𝐼):(𝐻 DProd 𝑆)⟶(𝑆𝐼) ↔ (𝑃𝐼):𝑈⟶(𝑆𝐼)))
2320, 22mpbid 232 . . . . . . 7 (𝜑 → (𝑃𝐼):𝑈⟶(𝑆𝐼))
2423ffvelcdmda 7012 . . . . . 6 ((𝜑𝑣𝑈) → ((𝑃𝐼)‘𝑣) ∈ (𝑆𝐼))
2519adantr 480 . . . . . . 7 ((𝜑𝑣𝑈) → 𝐼 ∈ dom 𝑊)
26 oveq1 7348 . . . . . . . . . . 11 (𝑛 = 𝑎 → (𝑛 · (𝑊𝑘)) = (𝑎 · (𝑊𝑘)))
2726cbvmptv 5193 . . . . . . . . . 10 (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))) = (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝑘)))
28 fveq2 6817 . . . . . . . . . . . 12 (𝑘 = 𝐼 → (𝑊𝑘) = (𝑊𝐼))
2928oveq2d 7357 . . . . . . . . . . 11 (𝑘 = 𝐼 → (𝑎 · (𝑊𝑘)) = (𝑎 · (𝑊𝐼)))
3029mpteq2dv 5183 . . . . . . . . . 10 (𝑘 = 𝐼 → (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝑘))) = (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝐼))))
3127, 30eqtrid 2777 . . . . . . . . 9 (𝑘 = 𝐼 → (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))) = (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝐼))))
3231rneqd 5875 . . . . . . . 8 (𝑘 = 𝐼 → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))) = ran (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝐼))))
3332, 15, 14fvmpt3i 6929 . . . . . . 7 (𝐼 ∈ dom 𝑊 → (𝑆𝐼) = ran (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝐼))))
3425, 33syl 17 . . . . . 6 ((𝜑𝑣𝑈) → (𝑆𝐼) = ran (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝐼))))
3524, 34eleqtrd 2831 . . . . 5 ((𝜑𝑣𝑈) → ((𝑃𝐼)‘𝑣) ∈ ran (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝐼))))
36 eqid 2730 . . . . . 6 (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝐼))) = (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝐼)))
37 ovex 7374 . . . . . 6 (𝑎 · (𝑊𝐼)) ∈ V
3836, 37elrnmpti 5899 . . . . 5 (((𝑃𝐼)‘𝑣) ∈ ran (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝐼))) ↔ ∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)))
3935, 38sylib 218 . . . 4 ((𝜑𝑣𝑈) → ∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)))
40 dchrpt.1 . . . . . 6 1 = (1r𝑍)
41 dchrpt.n1 . . . . . 6 (𝜑𝐴1 )
42 dchrpt.h . . . . . 6 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈)
43 dchrpt.m . . . . . 6 · = (.g𝐻)
44 dchrpt.au . . . . . 6 (𝜑𝐴𝑈)
45 dchrpt.w . . . . . 6 (𝜑𝑊 ∈ Word 𝑈)
46 dchrpt.o . . . . . 6 𝑂 = (od‘𝐻)
47 dchrpt.t . . . . . 6 𝑇 = (-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))
48 dchrpt.4 . . . . . 6 (𝜑 → ((𝑃𝐼)‘𝐴) ≠ 1 )
49 dchrpt.5 . . . . . 6 𝑋 = (𝑢𝑈 ↦ (℩𝑚 ∈ ℤ (((𝑃𝐼)‘𝑢) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))))
501, 2, 6, 3, 40, 5, 41, 4, 42, 43, 15, 44, 45, 11, 21, 18, 46, 47, 19, 48, 49dchrptlem1 27195 . . . . 5 (((𝜑𝑣𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)))) → (𝑋𝑣) = (𝑇𝑎))
51 neg1cn 12102 . . . . . . . . 9 -1 ∈ ℂ
52 2re 12191 . . . . . . . . . . 11 2 ∈ ℝ
535nnnn0d 12434 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ0)
542zncrng 21474 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
55 crngring 20156 . . . . . . . . . . . . . 14 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
5653, 54, 553syl 18 . . . . . . . . . . . . 13 (𝜑𝑍 ∈ Ring)
574, 42unitgrp 20294 . . . . . . . . . . . . 13 (𝑍 ∈ Ring → 𝐻 ∈ Grp)
5856, 57syl 17 . . . . . . . . . . . 12 (𝜑𝐻 ∈ Grp)
592, 3znfi 21489 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝐵 ∈ Fin)
605, 59syl 17 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ Fin)
613, 4unitss 20287 . . . . . . . . . . . . 13 𝑈𝐵
62 ssfi 9077 . . . . . . . . . . . . 13 ((𝐵 ∈ Fin ∧ 𝑈𝐵) → 𝑈 ∈ Fin)
6360, 61, 62sylancl 586 . . . . . . . . . . . 12 (𝜑𝑈 ∈ Fin)
64 wrdf 14417 . . . . . . . . . . . . . 14 (𝑊 ∈ Word 𝑈𝑊:(0..^(♯‘𝑊))⟶𝑈)
6545, 64syl 17 . . . . . . . . . . . . 13 (𝜑𝑊:(0..^(♯‘𝑊))⟶𝑈)
6665fdmd 6657 . . . . . . . . . . . . . 14 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
6719, 66eleqtrd 2831 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ (0..^(♯‘𝑊)))
6865, 67ffvelcdmd 7013 . . . . . . . . . . . 12 (𝜑 → (𝑊𝐼) ∈ 𝑈)
694, 42unitgrpbas 20293 . . . . . . . . . . . . 13 𝑈 = (Base‘𝐻)
7069, 46odcl2 19470 . . . . . . . . . . . 12 ((𝐻 ∈ Grp ∧ 𝑈 ∈ Fin ∧ (𝑊𝐼) ∈ 𝑈) → (𝑂‘(𝑊𝐼)) ∈ ℕ)
7158, 63, 68, 70syl3anc 1373 . . . . . . . . . . 11 (𝜑 → (𝑂‘(𝑊𝐼)) ∈ ℕ)
72 nndivre 12158 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ (𝑂‘(𝑊𝐼)) ∈ ℕ) → (2 / (𝑂‘(𝑊𝐼))) ∈ ℝ)
7352, 71, 72sylancr 587 . . . . . . . . . 10 (𝜑 → (2 / (𝑂‘(𝑊𝐼))) ∈ ℝ)
7473recnd 11132 . . . . . . . . 9 (𝜑 → (2 / (𝑂‘(𝑊𝐼))) ∈ ℂ)
75 cxpcl 26603 . . . . . . . . 9 ((-1 ∈ ℂ ∧ (2 / (𝑂‘(𝑊𝐼))) ∈ ℂ) → (-1↑𝑐(2 / (𝑂‘(𝑊𝐼)))) ∈ ℂ)
7651, 74, 75sylancr 587 . . . . . . . 8 (𝜑 → (-1↑𝑐(2 / (𝑂‘(𝑊𝐼)))) ∈ ℂ)
7747, 76eqeltrid 2833 . . . . . . 7 (𝜑𝑇 ∈ ℂ)
7877ad2antrr 726 . . . . . 6 (((𝜑𝑣𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)))) → 𝑇 ∈ ℂ)
7951a1i 11 . . . . . . . . 9 (𝜑 → -1 ∈ ℂ)
80 neg1ne0 12104 . . . . . . . . . 10 -1 ≠ 0
8180a1i 11 . . . . . . . . 9 (𝜑 → -1 ≠ 0)
8279, 81, 74cxpne0d 26642 . . . . . . . 8 (𝜑 → (-1↑𝑐(2 / (𝑂‘(𝑊𝐼)))) ≠ 0)
8347neeq1i 2990 . . . . . . . 8 (𝑇 ≠ 0 ↔ (-1↑𝑐(2 / (𝑂‘(𝑊𝐼)))) ≠ 0)
8482, 83sylibr 234 . . . . . . 7 (𝜑𝑇 ≠ 0)
8584ad2antrr 726 . . . . . 6 (((𝜑𝑣𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)))) → 𝑇 ≠ 0)
86 simprl 770 . . . . . 6 (((𝜑𝑣𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)))) → 𝑎 ∈ ℤ)
8778, 85, 86expclzd 14050 . . . . 5 (((𝜑𝑣𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)))) → (𝑇𝑎) ∈ ℂ)
8850, 87eqeltrd 2829 . . . 4 (((𝜑𝑣𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)))) → (𝑋𝑣) ∈ ℂ)
8939, 88rexlimddv 3137 . . 3 ((𝜑𝑣𝑈) → (𝑋𝑣) ∈ ℂ)
90 fveqeq2 6826 . . . . . 6 (𝑣 = 𝑥 → (((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)) ↔ ((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼))))
9190rexbidv 3154 . . . . 5 (𝑣 = 𝑥 → (∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)) ↔ ∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼))))
9239ralrimiva 3122 . . . . . 6 (𝜑 → ∀𝑣𝑈𝑎 ∈ ℤ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)))
9392adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ∀𝑣𝑈𝑎 ∈ ℤ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)))
94 simprl 770 . . . . 5 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑥𝑈)
9591, 93, 94rspcdva 3576 . . . 4 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)))
96 fveqeq2 6826 . . . . . . 7 (𝑣 = 𝑦 → (((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)) ↔ ((𝑃𝐼)‘𝑦) = (𝑎 · (𝑊𝐼))))
9796rexbidv 3154 . . . . . 6 (𝑣 = 𝑦 → (∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)) ↔ ∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑦) = (𝑎 · (𝑊𝐼))))
98 oveq1 7348 . . . . . . . 8 (𝑎 = 𝑏 → (𝑎 · (𝑊𝐼)) = (𝑏 · (𝑊𝐼)))
9998eqeq2d 2741 . . . . . . 7 (𝑎 = 𝑏 → (((𝑃𝐼)‘𝑦) = (𝑎 · (𝑊𝐼)) ↔ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))
10099cbvrexvw 3209 . . . . . 6 (∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑦) = (𝑎 · (𝑊𝐼)) ↔ ∃𝑏 ∈ ℤ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼)))
10197, 100bitrdi 287 . . . . 5 (𝑣 = 𝑦 → (∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)) ↔ ∃𝑏 ∈ ℤ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))
102 simprr 772 . . . . 5 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑦𝑈)
103101, 93, 102rspcdva 3576 . . . 4 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ∃𝑏 ∈ ℤ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼)))
104 reeanv 3202 . . . . 5 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))) ↔ (∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ∃𝑏 ∈ ℤ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))
10577ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → 𝑇 ∈ ℂ)
10684ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → 𝑇 ≠ 0)
107 simprll 778 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → 𝑎 ∈ ℤ)
108 simprlr 779 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → 𝑏 ∈ ℤ)
109 expaddz 14005 . . . . . . . . 9 (((𝑇 ∈ ℂ ∧ 𝑇 ≠ 0) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑇↑(𝑎 + 𝑏)) = ((𝑇𝑎) · (𝑇𝑏)))
110105, 106, 107, 108, 109syl22anc 838 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → (𝑇↑(𝑎 + 𝑏)) = ((𝑇𝑎) · (𝑇𝑏)))
111 simpll 766 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → 𝜑)
11256ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → 𝑍 ∈ Ring)
11394adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → 𝑥𝑈)
114102adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → 𝑦𝑈)
115 eqid 2730 . . . . . . . . . . 11 (.r𝑍) = (.r𝑍)
1164, 115unitmulcl 20291 . . . . . . . . . 10 ((𝑍 ∈ Ring ∧ 𝑥𝑈𝑦𝑈) → (𝑥(.r𝑍)𝑦) ∈ 𝑈)
117112, 113, 114, 116syl3anc 1373 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → (𝑥(.r𝑍)𝑦) ∈ 𝑈)
118107, 108zaddcld 12573 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → (𝑎 + 𝑏) ∈ ℤ)
119 simprrl 780 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → ((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)))
120 simprrr 781 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼)))
121119, 120oveq12d 7359 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → (((𝑃𝐼)‘𝑥)(.r𝑍)((𝑃𝐼)‘𝑦)) = ((𝑎 · (𝑊𝐼))(.r𝑍)(𝑏 · (𝑊𝐼))))
12211, 17, 18, 19dpjghm 19970 . . . . . . . . . . . . 13 (𝜑 → (𝑃𝐼) ∈ ((𝐻s (𝐻 DProd 𝑆)) GrpHom 𝐻))
12321oveq2d 7357 . . . . . . . . . . . . . . 15 (𝜑 → (𝐻s (𝐻 DProd 𝑆)) = (𝐻s 𝑈))
12442ovexi 7375 . . . . . . . . . . . . . . . 16 𝐻 ∈ V
12569ressid 17147 . . . . . . . . . . . . . . . 16 (𝐻 ∈ V → (𝐻s 𝑈) = 𝐻)
126124, 125ax-mp 5 . . . . . . . . . . . . . . 15 (𝐻s 𝑈) = 𝐻
127123, 126eqtrdi 2781 . . . . . . . . . . . . . 14 (𝜑 → (𝐻s (𝐻 DProd 𝑆)) = 𝐻)
128127oveq1d 7356 . . . . . . . . . . . . 13 (𝜑 → ((𝐻s (𝐻 DProd 𝑆)) GrpHom 𝐻) = (𝐻 GrpHom 𝐻))
129122, 128eleqtrd 2831 . . . . . . . . . . . 12 (𝜑 → (𝑃𝐼) ∈ (𝐻 GrpHom 𝐻))
130129ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → (𝑃𝐼) ∈ (𝐻 GrpHom 𝐻))
1314fvexi 6831 . . . . . . . . . . . . 13 𝑈 ∈ V
132 eqid 2730 . . . . . . . . . . . . . . 15 (mulGrp‘𝑍) = (mulGrp‘𝑍)
133132, 115mgpplusg 20055 . . . . . . . . . . . . . 14 (.r𝑍) = (+g‘(mulGrp‘𝑍))
13442, 133ressplusg 17187 . . . . . . . . . . . . 13 (𝑈 ∈ V → (.r𝑍) = (+g𝐻))
135131, 134ax-mp 5 . . . . . . . . . . . 12 (.r𝑍) = (+g𝐻)
13669, 135, 135ghmlin 19126 . . . . . . . . . . 11 (((𝑃𝐼) ∈ (𝐻 GrpHom 𝐻) ∧ 𝑥𝑈𝑦𝑈) → ((𝑃𝐼)‘(𝑥(.r𝑍)𝑦)) = (((𝑃𝐼)‘𝑥)(.r𝑍)((𝑃𝐼)‘𝑦)))
137130, 113, 114, 136syl3anc 1373 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → ((𝑃𝐼)‘(𝑥(.r𝑍)𝑦)) = (((𝑃𝐼)‘𝑥)(.r𝑍)((𝑃𝐼)‘𝑦)))
13858ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → 𝐻 ∈ Grp)
13968ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → (𝑊𝐼) ∈ 𝑈)
14069, 43, 135mulgdir 19011 . . . . . . . . . . 11 ((𝐻 ∈ Grp ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ (𝑊𝐼) ∈ 𝑈)) → ((𝑎 + 𝑏) · (𝑊𝐼)) = ((𝑎 · (𝑊𝐼))(.r𝑍)(𝑏 · (𝑊𝐼))))
141138, 107, 108, 139, 140syl13anc 1374 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → ((𝑎 + 𝑏) · (𝑊𝐼)) = ((𝑎 · (𝑊𝐼))(.r𝑍)(𝑏 · (𝑊𝐼))))
142121, 137, 1413eqtr4d 2775 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → ((𝑃𝐼)‘(𝑥(.r𝑍)𝑦)) = ((𝑎 + 𝑏) · (𝑊𝐼)))
1431, 2, 6, 3, 40, 5, 41, 4, 42, 43, 15, 44, 45, 11, 21, 18, 46, 47, 19, 48, 49dchrptlem1 27195 . . . . . . . . 9 (((𝜑 ∧ (𝑥(.r𝑍)𝑦) ∈ 𝑈) ∧ ((𝑎 + 𝑏) ∈ ℤ ∧ ((𝑃𝐼)‘(𝑥(.r𝑍)𝑦)) = ((𝑎 + 𝑏) · (𝑊𝐼)))) → (𝑋‘(𝑥(.r𝑍)𝑦)) = (𝑇↑(𝑎 + 𝑏)))
144111, 117, 118, 142, 143syl22anc 838 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → (𝑋‘(𝑥(.r𝑍)𝑦)) = (𝑇↑(𝑎 + 𝑏)))
1451, 2, 6, 3, 40, 5, 41, 4, 42, 43, 15, 44, 45, 11, 21, 18, 46, 47, 19, 48, 49dchrptlem1 27195 . . . . . . . . . 10 (((𝜑𝑥𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)))) → (𝑋𝑥) = (𝑇𝑎))
146111, 113, 107, 119, 145syl22anc 838 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → (𝑋𝑥) = (𝑇𝑎))
1471, 2, 6, 3, 40, 5, 41, 4, 42, 43, 15, 44, 45, 11, 21, 18, 46, 47, 19, 48, 49dchrptlem1 27195 . . . . . . . . . 10 (((𝜑𝑦𝑈) ∧ (𝑏 ∈ ℤ ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼)))) → (𝑋𝑦) = (𝑇𝑏))
148111, 114, 108, 120, 147syl22anc 838 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → (𝑋𝑦) = (𝑇𝑏))
149146, 148oveq12d 7359 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → ((𝑋𝑥) · (𝑋𝑦)) = ((𝑇𝑎) · (𝑇𝑏)))
150110, 144, 1493eqtr4d 2775 . . . . . . 7 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
151150expr 456 . . . . . 6 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
152151rexlimdvva 3187 . . . . 5 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
153104, 152biimtrrid 243 . . . 4 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ∃𝑏 ∈ ℤ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
15495, 103, 153mp2and 699 . . 3 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
155 id 22 . . . . 5 (𝜑𝜑)
156 eqid 2730 . . . . . . 7 (1r𝑍) = (1r𝑍)
1574, 1561unit 20285 . . . . . 6 (𝑍 ∈ Ring → (1r𝑍) ∈ 𝑈)
15856, 157syl 17 . . . . 5 (𝜑 → (1r𝑍) ∈ 𝑈)
159 0zd 12472 . . . . 5 (𝜑 → 0 ∈ ℤ)
160 eqid 2730 . . . . . . . 8 (0g𝐻) = (0g𝐻)
161160, 160ghmid 19127 . . . . . . 7 ((𝑃𝐼) ∈ (𝐻 GrpHom 𝐻) → ((𝑃𝐼)‘(0g𝐻)) = (0g𝐻))
162129, 161syl 17 . . . . . 6 (𝜑 → ((𝑃𝐼)‘(0g𝐻)) = (0g𝐻))
1634, 42, 156unitgrpid 20296 . . . . . . . 8 (𝑍 ∈ Ring → (1r𝑍) = (0g𝐻))
16456, 163syl 17 . . . . . . 7 (𝜑 → (1r𝑍) = (0g𝐻))
165164fveq2d 6821 . . . . . 6 (𝜑 → ((𝑃𝐼)‘(1r𝑍)) = ((𝑃𝐼)‘(0g𝐻)))
16669, 160, 43mulg0 18979 . . . . . . 7 ((𝑊𝐼) ∈ 𝑈 → (0 · (𝑊𝐼)) = (0g𝐻))
16768, 166syl 17 . . . . . 6 (𝜑 → (0 · (𝑊𝐼)) = (0g𝐻))
168162, 165, 1673eqtr4d 2775 . . . . 5 (𝜑 → ((𝑃𝐼)‘(1r𝑍)) = (0 · (𝑊𝐼)))
1691, 2, 6, 3, 40, 5, 41, 4, 42, 43, 15, 44, 45, 11, 21, 18, 46, 47, 19, 48, 49dchrptlem1 27195 . . . . 5 (((𝜑 ∧ (1r𝑍) ∈ 𝑈) ∧ (0 ∈ ℤ ∧ ((𝑃𝐼)‘(1r𝑍)) = (0 · (𝑊𝐼)))) → (𝑋‘(1r𝑍)) = (𝑇↑0))
170155, 158, 159, 168, 169syl22anc 838 . . . 4 (𝜑 → (𝑋‘(1r𝑍)) = (𝑇↑0))
17177exp0d 14039 . . . 4 (𝜑 → (𝑇↑0) = 1)
172170, 171eqtrd 2765 . . 3 (𝜑 → (𝑋‘(1r𝑍)) = 1)
1731, 2, 3, 4, 5, 6, 7, 8, 9, 10, 89, 154, 172dchrelbasd 27170 . 2 (𝜑 → (𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0)) ∈ 𝐷)
17461, 44sselid 3930 . . . . 5 (𝜑𝐴𝐵)
175 eleq1 2817 . . . . . . 7 (𝑣 = 𝐴 → (𝑣𝑈𝐴𝑈))
176 fveq2 6817 . . . . . . 7 (𝑣 = 𝐴 → (𝑋𝑣) = (𝑋𝐴))
177175, 176ifbieq1d 4498 . . . . . 6 (𝑣 = 𝐴 → if(𝑣𝑈, (𝑋𝑣), 0) = if(𝐴𝑈, (𝑋𝐴), 0))
178 eqid 2730 . . . . . 6 (𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0)) = (𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0))
179 fvex 6830 . . . . . . 7 (𝑋𝑣) ∈ V
180 c0ex 11098 . . . . . . 7 0 ∈ V
181179, 180ifex 4524 . . . . . 6 if(𝑣𝑈, (𝑋𝑣), 0) ∈ V
182177, 178, 181fvmpt3i 6929 . . . . 5 (𝐴𝐵 → ((𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0))‘𝐴) = if(𝐴𝑈, (𝑋𝐴), 0))
183174, 182syl 17 . . . 4 (𝜑 → ((𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0))‘𝐴) = if(𝐴𝑈, (𝑋𝐴), 0))
18444iftrued 4481 . . . 4 (𝜑 → if(𝐴𝑈, (𝑋𝐴), 0) = (𝑋𝐴))
185183, 184eqtrd 2765 . . 3 (𝜑 → ((𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0))‘𝐴) = (𝑋𝐴))
186 fveqeq2 6826 . . . . . 6 (𝑣 = 𝐴 → (((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)) ↔ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼))))
187186rexbidv 3154 . . . . 5 (𝑣 = 𝐴 → (∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)) ↔ ∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼))))
188187, 92, 44rspcdva 3576 . . . 4 (𝜑 → ∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))
1891, 2, 6, 3, 40, 5, 41, 4, 42, 43, 15, 44, 45, 11, 21, 18, 46, 47, 19, 48, 49dchrptlem1 27195 . . . . . . . 8 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → (𝑋𝐴) = (𝑇𝑎))
19047oveq1i 7351 . . . . . . . 8 (𝑇𝑎) = ((-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))↑𝑎)
191189, 190eqtrdi 2781 . . . . . . 7 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → (𝑋𝐴) = ((-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))↑𝑎))
19248ad2antrr 726 . . . . . . . 8 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → ((𝑃𝐼)‘𝐴) ≠ 1 )
19358ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → 𝐻 ∈ Grp)
19468ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → (𝑊𝐼) ∈ 𝑈)
195 simprl 770 . . . . . . . . . . 11 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → 𝑎 ∈ ℤ)
19669, 46, 43, 160oddvds 19452 . . . . . . . . . . 11 ((𝐻 ∈ Grp ∧ (𝑊𝐼) ∈ 𝑈𝑎 ∈ ℤ) → ((𝑂‘(𝑊𝐼)) ∥ 𝑎 ↔ (𝑎 · (𝑊𝐼)) = (0g𝐻)))
197193, 194, 195, 196syl3anc 1373 . . . . . . . . . 10 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → ((𝑂‘(𝑊𝐼)) ∥ 𝑎 ↔ (𝑎 · (𝑊𝐼)) = (0g𝐻)))
19871ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → (𝑂‘(𝑊𝐼)) ∈ ℕ)
199 root1eq1 26685 . . . . . . . . . . 11 (((𝑂‘(𝑊𝐼)) ∈ ℕ ∧ 𝑎 ∈ ℤ) → (((-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))↑𝑎) = 1 ↔ (𝑂‘(𝑊𝐼)) ∥ 𝑎))
200198, 195, 199syl2anc 584 . . . . . . . . . 10 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → (((-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))↑𝑎) = 1 ↔ (𝑂‘(𝑊𝐼)) ∥ 𝑎))
201 simprr 772 . . . . . . . . . . 11 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))
20240, 164eqtrid 2777 . . . . . . . . . . . 12 (𝜑1 = (0g𝐻))
203202ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → 1 = (0g𝐻))
204201, 203eqeq12d 2746 . . . . . . . . . 10 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → (((𝑃𝐼)‘𝐴) = 1 ↔ (𝑎 · (𝑊𝐼)) = (0g𝐻)))
205197, 200, 2043bitr4d 311 . . . . . . . . 9 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → (((-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))↑𝑎) = 1 ↔ ((𝑃𝐼)‘𝐴) = 1 ))
206205necon3bid 2970 . . . . . . . 8 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → (((-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))↑𝑎) ≠ 1 ↔ ((𝑃𝐼)‘𝐴) ≠ 1 ))
207192, 206mpbird 257 . . . . . . 7 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → ((-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))↑𝑎) ≠ 1)
208191, 207eqnetrd 2993 . . . . . 6 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → (𝑋𝐴) ≠ 1)
209208rexlimdvaa 3132 . . . . 5 ((𝜑𝐴𝑈) → (∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)) → (𝑋𝐴) ≠ 1))
21044, 209mpdan 687 . . . 4 (𝜑 → (∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)) → (𝑋𝐴) ≠ 1))
211188, 210mpd 15 . . 3 (𝜑 → (𝑋𝐴) ≠ 1)
212185, 211eqnetrd 2993 . 2 (𝜑 → ((𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0))‘𝐴) ≠ 1)
213 fveq1 6816 . . . 4 (𝑥 = (𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0)) → (𝑥𝐴) = ((𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0))‘𝐴))
214213neeq1d 2985 . . 3 (𝑥 = (𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0)) → ((𝑥𝐴) ≠ 1 ↔ ((𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0))‘𝐴) ≠ 1))
215214rspcev 3575 . 2 (((𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0)) ∈ 𝐷 ∧ ((𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0))‘𝐴) ≠ 1) → ∃𝑥𝐷 (𝑥𝐴) ≠ 1)
216173, 212, 215syl2anc 584 1 (𝜑 → ∃𝑥𝐷 (𝑥𝐴) ≠ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  wne 2926  wral 3045  wrex 3054  Vcvv 3434  wss 3900  ifcif 4473   class class class wbr 5089  cmpt 5170  dom cdm 5614  ran crn 5615  cio 6431  wf 6473  cfv 6477  (class class class)co 7341  Fincfn 8864  cc 10996  cr 10997  0cc0 10998  1c1 10999   + caddc 11001   · cmul 11003  -cneg 11337   / cdiv 11766  cn 12117  2c2 12172  0cn0 12373  cz 12460  ..^cfzo 13546  cexp 13960  chash 14229  Word cword 14412  cdvds 16155  Basecbs 17112  s cress 17133  +gcplusg 17153  .rcmulr 17154  0gc0g 17335  Grpcgrp 18838  .gcmg 18972   GrpHom cghm 19117  odcod 19429   DProd cdprd 19900  dProjcdpj 19901  mulGrpcmgp 20051  1rcur 20092  Ringcrg 20144  CRingccrg 20145  Unitcui 20266  ℤ/nczn 21432  𝑐ccxp 26484  DChrcdchr 27163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076  ax-addf 11077  ax-mulf 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-omul 8385  df-er 8617  df-ec 8619  df-qs 8623  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9824  df-acn 9827  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-q 12839  df-rp 12883  df-xneg 13003  df-xadd 13004  df-xmul 13005  df-ioo 13241  df-ioc 13242  df-ico 13243  df-icc 13244  df-fz 13400  df-fzo 13547  df-fl 13688  df-mod 13766  df-seq 13901  df-exp 13961  df-fac 14173  df-bc 14202  df-hash 14230  df-word 14413  df-shft 14966  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-limsup 15370  df-clim 15387  df-rlim 15388  df-sum 15586  df-ef 15966  df-sin 15968  df-cos 15969  df-pi 15971  df-dvds 16156  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-starv 17168  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-unif 17176  df-hom 17177  df-cco 17178  df-rest 17318  df-topn 17319  df-0g 17337  df-gsum 17338  df-topgen 17339  df-pt 17340  df-prds 17343  df-xrs 17398  df-qtop 17403  df-imas 17404  df-qus 17405  df-xps 17406  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-mhm 18683  df-submnd 18684  df-grp 18841  df-minusg 18842  df-sbg 18843  df-mulg 18973  df-subg 19028  df-nsg 19029  df-eqg 19030  df-ghm 19118  df-gim 19164  df-cntz 19222  df-oppg 19251  df-od 19433  df-lsm 19541  df-pj1 19542  df-cmn 19687  df-abl 19688  df-dprd 19902  df-dpj 19903  df-mgp 20052  df-rng 20064  df-ur 20093  df-ring 20146  df-cring 20147  df-oppr 20248  df-dvdsr 20268  df-unit 20269  df-rhm 20383  df-subrng 20454  df-subrg 20478  df-lmod 20788  df-lss 20858  df-lsp 20898  df-sra 21100  df-rgmod 21101  df-lidl 21138  df-rsp 21139  df-2idl 21180  df-psmet 21276  df-xmet 21277  df-met 21278  df-bl 21279  df-mopn 21280  df-fbas 21281  df-fg 21282  df-cnfld 21285  df-zring 21377  df-zrh 21433  df-zn 21436  df-top 22802  df-topon 22819  df-topsp 22841  df-bases 22854  df-cld 22927  df-ntr 22928  df-cls 22929  df-nei 23006  df-lp 23044  df-perf 23045  df-cn 23135  df-cnp 23136  df-haus 23223  df-tx 23470  df-hmeo 23663  df-fil 23754  df-fm 23846  df-flim 23847  df-flf 23848  df-xms 24228  df-ms 24229  df-tms 24230  df-cncf 24791  df-limc 25787  df-dv 25788  df-log 26485  df-cxp 26486  df-dchr 27164
This theorem is referenced by:  dchrptlem3  27197
  Copyright terms: Public domain W3C validator