MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrptlem2 Structured version   Visualization version   GIF version

Theorem dchrptlem2 26146
Description: Lemma for dchrpt 26148. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrpt.g 𝐺 = (DChr‘𝑁)
dchrpt.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrpt.d 𝐷 = (Base‘𝐺)
dchrpt.b 𝐵 = (Base‘𝑍)
dchrpt.1 1 = (1r𝑍)
dchrpt.n (𝜑𝑁 ∈ ℕ)
dchrpt.n1 (𝜑𝐴1 )
dchrpt.u 𝑈 = (Unit‘𝑍)
dchrpt.h 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈)
dchrpt.m · = (.g𝐻)
dchrpt.s 𝑆 = (𝑘 ∈ dom 𝑊 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))))
dchrpt.au (𝜑𝐴𝑈)
dchrpt.w (𝜑𝑊 ∈ Word 𝑈)
dchrpt.2 (𝜑𝐻dom DProd 𝑆)
dchrpt.3 (𝜑 → (𝐻 DProd 𝑆) = 𝑈)
dchrpt.p 𝑃 = (𝐻dProj𝑆)
dchrpt.o 𝑂 = (od‘𝐻)
dchrpt.t 𝑇 = (-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))
dchrpt.i (𝜑𝐼 ∈ dom 𝑊)
dchrpt.4 (𝜑 → ((𝑃𝐼)‘𝐴) ≠ 1 )
dchrpt.5 𝑋 = (𝑢𝑈 ↦ (℩𝑚 ∈ ℤ (((𝑃𝐼)‘𝑢) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))))
Assertion
Ref Expression
dchrptlem2 (𝜑 → ∃𝑥𝐷 (𝑥𝐴) ≠ 1)
Distinct variable groups:   ,𝑘,𝑚,𝑛,𝑥, 1   𝑢,,𝐴,𝑘,𝑚,𝑛,𝑥   ,𝐼,𝑘,𝑚,𝑢   𝑥,𝐵   𝑥,𝐺   ,𝐻,𝑘,𝑚,𝑛,𝑢,𝑥   𝑥,𝑁   ,𝑊,𝑘,𝑚,𝑛,𝑢,𝑥   · ,,𝑘,𝑚,𝑛,𝑢,𝑥   𝑥,𝑋   𝑃,,𝑚,𝑢   𝑆,,𝑘,𝑚,𝑛,𝑢,𝑥   ,𝑍,𝑘,𝑚,𝑛,𝑢,𝑥   𝑥,𝐷   𝜑,,𝑘,𝑚,𝑛,𝑥   𝑇,,𝑚,𝑢   𝑈,,𝑚,𝑢,𝑥
Allowed substitution hints:   𝜑(𝑢)   𝐵(𝑢,,𝑘,𝑚,𝑛)   𝐷(𝑢,,𝑘,𝑚,𝑛)   𝑃(𝑥,𝑘,𝑛)   𝑇(𝑥,𝑘,𝑛)   𝑈(𝑘,𝑛)   1 (𝑢)   𝐺(𝑢,,𝑘,𝑚,𝑛)   𝐼(𝑥,𝑛)   𝑁(𝑢,,𝑘,𝑚,𝑛)   𝑂(𝑥,𝑢,,𝑘,𝑚,𝑛)   𝑋(𝑢,,𝑘,𝑚,𝑛)

Proof of Theorem dchrptlem2
Dummy variables 𝑎 𝑏 𝑣 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchrpt.g . . 3 𝐺 = (DChr‘𝑁)
2 dchrpt.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
3 dchrpt.b . . 3 𝐵 = (Base‘𝑍)
4 dchrpt.u . . 3 𝑈 = (Unit‘𝑍)
5 dchrpt.n . . 3 (𝜑𝑁 ∈ ℕ)
6 dchrpt.d . . 3 𝐷 = (Base‘𝐺)
7 fveq2 6717 . . 3 (𝑣 = 𝑥 → (𝑋𝑣) = (𝑋𝑥))
8 fveq2 6717 . . 3 (𝑣 = 𝑦 → (𝑋𝑣) = (𝑋𝑦))
9 fveq2 6717 . . 3 (𝑣 = (𝑥(.r𝑍)𝑦) → (𝑋𝑣) = (𝑋‘(𝑥(.r𝑍)𝑦)))
10 fveq2 6717 . . 3 (𝑣 = (1r𝑍) → (𝑋𝑣) = (𝑋‘(1r𝑍)))
11 dchrpt.2 . . . . . . . . 9 (𝜑𝐻dom DProd 𝑆)
12 zex 12185 . . . . . . . . . . . . 13 ℤ ∈ V
1312mptex 7039 . . . . . . . . . . . 12 (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))) ∈ V
1413rnex 7690 . . . . . . . . . . 11 ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))) ∈ V
15 dchrpt.s . . . . . . . . . . 11 𝑆 = (𝑘 ∈ dom 𝑊 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))))
1614, 15dmmpti 6522 . . . . . . . . . 10 dom 𝑆 = dom 𝑊
1716a1i 11 . . . . . . . . 9 (𝜑 → dom 𝑆 = dom 𝑊)
18 dchrpt.p . . . . . . . . 9 𝑃 = (𝐻dProj𝑆)
19 dchrpt.i . . . . . . . . 9 (𝜑𝐼 ∈ dom 𝑊)
2011, 17, 18, 19dpjf 19444 . . . . . . . 8 (𝜑 → (𝑃𝐼):(𝐻 DProd 𝑆)⟶(𝑆𝐼))
21 dchrpt.3 . . . . . . . . 9 (𝜑 → (𝐻 DProd 𝑆) = 𝑈)
2221feq2d 6531 . . . . . . . 8 (𝜑 → ((𝑃𝐼):(𝐻 DProd 𝑆)⟶(𝑆𝐼) ↔ (𝑃𝐼):𝑈⟶(𝑆𝐼)))
2320, 22mpbid 235 . . . . . . 7 (𝜑 → (𝑃𝐼):𝑈⟶(𝑆𝐼))
2423ffvelrnda 6904 . . . . . 6 ((𝜑𝑣𝑈) → ((𝑃𝐼)‘𝑣) ∈ (𝑆𝐼))
2519adantr 484 . . . . . . 7 ((𝜑𝑣𝑈) → 𝐼 ∈ dom 𝑊)
26 oveq1 7220 . . . . . . . . . . 11 (𝑛 = 𝑎 → (𝑛 · (𝑊𝑘)) = (𝑎 · (𝑊𝑘)))
2726cbvmptv 5158 . . . . . . . . . 10 (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))) = (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝑘)))
28 fveq2 6717 . . . . . . . . . . . 12 (𝑘 = 𝐼 → (𝑊𝑘) = (𝑊𝐼))
2928oveq2d 7229 . . . . . . . . . . 11 (𝑘 = 𝐼 → (𝑎 · (𝑊𝑘)) = (𝑎 · (𝑊𝐼)))
3029mpteq2dv 5151 . . . . . . . . . 10 (𝑘 = 𝐼 → (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝑘))) = (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝐼))))
3127, 30syl5eq 2790 . . . . . . . . 9 (𝑘 = 𝐼 → (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))) = (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝐼))))
3231rneqd 5807 . . . . . . . 8 (𝑘 = 𝐼 → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))) = ran (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝐼))))
3332, 15, 14fvmpt3i 6823 . . . . . . 7 (𝐼 ∈ dom 𝑊 → (𝑆𝐼) = ran (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝐼))))
3425, 33syl 17 . . . . . 6 ((𝜑𝑣𝑈) → (𝑆𝐼) = ran (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝐼))))
3524, 34eleqtrd 2840 . . . . 5 ((𝜑𝑣𝑈) → ((𝑃𝐼)‘𝑣) ∈ ran (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝐼))))
36 eqid 2737 . . . . . 6 (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝐼))) = (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝐼)))
37 ovex 7246 . . . . . 6 (𝑎 · (𝑊𝐼)) ∈ V
3836, 37elrnmpti 5829 . . . . 5 (((𝑃𝐼)‘𝑣) ∈ ran (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝐼))) ↔ ∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)))
3935, 38sylib 221 . . . 4 ((𝜑𝑣𝑈) → ∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)))
40 dchrpt.1 . . . . . 6 1 = (1r𝑍)
41 dchrpt.n1 . . . . . 6 (𝜑𝐴1 )
42 dchrpt.h . . . . . 6 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈)
43 dchrpt.m . . . . . 6 · = (.g𝐻)
44 dchrpt.au . . . . . 6 (𝜑𝐴𝑈)
45 dchrpt.w . . . . . 6 (𝜑𝑊 ∈ Word 𝑈)
46 dchrpt.o . . . . . 6 𝑂 = (od‘𝐻)
47 dchrpt.t . . . . . 6 𝑇 = (-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))
48 dchrpt.4 . . . . . 6 (𝜑 → ((𝑃𝐼)‘𝐴) ≠ 1 )
49 dchrpt.5 . . . . . 6 𝑋 = (𝑢𝑈 ↦ (℩𝑚 ∈ ℤ (((𝑃𝐼)‘𝑢) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))))
501, 2, 6, 3, 40, 5, 41, 4, 42, 43, 15, 44, 45, 11, 21, 18, 46, 47, 19, 48, 49dchrptlem1 26145 . . . . 5 (((𝜑𝑣𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)))) → (𝑋𝑣) = (𝑇𝑎))
51 neg1cn 11944 . . . . . . . . 9 -1 ∈ ℂ
52 2re 11904 . . . . . . . . . . 11 2 ∈ ℝ
535nnnn0d 12150 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ0)
542zncrng 20509 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
55 crngring 19574 . . . . . . . . . . . . . 14 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
5653, 54, 553syl 18 . . . . . . . . . . . . 13 (𝜑𝑍 ∈ Ring)
574, 42unitgrp 19685 . . . . . . . . . . . . 13 (𝑍 ∈ Ring → 𝐻 ∈ Grp)
5856, 57syl 17 . . . . . . . . . . . 12 (𝜑𝐻 ∈ Grp)
592, 3znfi 20524 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝐵 ∈ Fin)
605, 59syl 17 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ Fin)
613, 4unitss 19678 . . . . . . . . . . . . 13 𝑈𝐵
62 ssfi 8851 . . . . . . . . . . . . 13 ((𝐵 ∈ Fin ∧ 𝑈𝐵) → 𝑈 ∈ Fin)
6360, 61, 62sylancl 589 . . . . . . . . . . . 12 (𝜑𝑈 ∈ Fin)
64 wrdf 14074 . . . . . . . . . . . . . 14 (𝑊 ∈ Word 𝑈𝑊:(0..^(♯‘𝑊))⟶𝑈)
6545, 64syl 17 . . . . . . . . . . . . 13 (𝜑𝑊:(0..^(♯‘𝑊))⟶𝑈)
6665fdmd 6556 . . . . . . . . . . . . . 14 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
6719, 66eleqtrd 2840 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ (0..^(♯‘𝑊)))
6865, 67ffvelrnd 6905 . . . . . . . . . . . 12 (𝜑 → (𝑊𝐼) ∈ 𝑈)
694, 42unitgrpbas 19684 . . . . . . . . . . . . 13 𝑈 = (Base‘𝐻)
7069, 46odcl2 18956 . . . . . . . . . . . 12 ((𝐻 ∈ Grp ∧ 𝑈 ∈ Fin ∧ (𝑊𝐼) ∈ 𝑈) → (𝑂‘(𝑊𝐼)) ∈ ℕ)
7158, 63, 68, 70syl3anc 1373 . . . . . . . . . . 11 (𝜑 → (𝑂‘(𝑊𝐼)) ∈ ℕ)
72 nndivre 11871 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ (𝑂‘(𝑊𝐼)) ∈ ℕ) → (2 / (𝑂‘(𝑊𝐼))) ∈ ℝ)
7352, 71, 72sylancr 590 . . . . . . . . . 10 (𝜑 → (2 / (𝑂‘(𝑊𝐼))) ∈ ℝ)
7473recnd 10861 . . . . . . . . 9 (𝜑 → (2 / (𝑂‘(𝑊𝐼))) ∈ ℂ)
75 cxpcl 25562 . . . . . . . . 9 ((-1 ∈ ℂ ∧ (2 / (𝑂‘(𝑊𝐼))) ∈ ℂ) → (-1↑𝑐(2 / (𝑂‘(𝑊𝐼)))) ∈ ℂ)
7651, 74, 75sylancr 590 . . . . . . . 8 (𝜑 → (-1↑𝑐(2 / (𝑂‘(𝑊𝐼)))) ∈ ℂ)
7747, 76eqeltrid 2842 . . . . . . 7 (𝜑𝑇 ∈ ℂ)
7877ad2antrr 726 . . . . . 6 (((𝜑𝑣𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)))) → 𝑇 ∈ ℂ)
7951a1i 11 . . . . . . . . 9 (𝜑 → -1 ∈ ℂ)
80 neg1ne0 11946 . . . . . . . . . 10 -1 ≠ 0
8180a1i 11 . . . . . . . . 9 (𝜑 → -1 ≠ 0)
8279, 81, 74cxpne0d 25601 . . . . . . . 8 (𝜑 → (-1↑𝑐(2 / (𝑂‘(𝑊𝐼)))) ≠ 0)
8347neeq1i 3005 . . . . . . . 8 (𝑇 ≠ 0 ↔ (-1↑𝑐(2 / (𝑂‘(𝑊𝐼)))) ≠ 0)
8482, 83sylibr 237 . . . . . . 7 (𝜑𝑇 ≠ 0)
8584ad2antrr 726 . . . . . 6 (((𝜑𝑣𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)))) → 𝑇 ≠ 0)
86 simprl 771 . . . . . 6 (((𝜑𝑣𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)))) → 𝑎 ∈ ℤ)
8778, 85, 86expclzd 13721 . . . . 5 (((𝜑𝑣𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)))) → (𝑇𝑎) ∈ ℂ)
8850, 87eqeltrd 2838 . . . 4 (((𝜑𝑣𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)))) → (𝑋𝑣) ∈ ℂ)
8939, 88rexlimddv 3210 . . 3 ((𝜑𝑣𝑈) → (𝑋𝑣) ∈ ℂ)
90 fveqeq2 6726 . . . . . 6 (𝑣 = 𝑥 → (((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)) ↔ ((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼))))
9190rexbidv 3216 . . . . 5 (𝑣 = 𝑥 → (∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)) ↔ ∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼))))
9239ralrimiva 3105 . . . . . 6 (𝜑 → ∀𝑣𝑈𝑎 ∈ ℤ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)))
9392adantr 484 . . . . 5 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ∀𝑣𝑈𝑎 ∈ ℤ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)))
94 simprl 771 . . . . 5 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑥𝑈)
9591, 93, 94rspcdva 3539 . . . 4 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)))
96 fveqeq2 6726 . . . . . . 7 (𝑣 = 𝑦 → (((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)) ↔ ((𝑃𝐼)‘𝑦) = (𝑎 · (𝑊𝐼))))
9796rexbidv 3216 . . . . . 6 (𝑣 = 𝑦 → (∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)) ↔ ∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑦) = (𝑎 · (𝑊𝐼))))
98 oveq1 7220 . . . . . . . 8 (𝑎 = 𝑏 → (𝑎 · (𝑊𝐼)) = (𝑏 · (𝑊𝐼)))
9998eqeq2d 2748 . . . . . . 7 (𝑎 = 𝑏 → (((𝑃𝐼)‘𝑦) = (𝑎 · (𝑊𝐼)) ↔ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))
10099cbvrexvw 3359 . . . . . 6 (∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑦) = (𝑎 · (𝑊𝐼)) ↔ ∃𝑏 ∈ ℤ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼)))
10197, 100bitrdi 290 . . . . 5 (𝑣 = 𝑦 → (∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)) ↔ ∃𝑏 ∈ ℤ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))
102 simprr 773 . . . . 5 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑦𝑈)
103101, 93, 102rspcdva 3539 . . . 4 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ∃𝑏 ∈ ℤ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼)))
104 reeanv 3279 . . . . 5 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))) ↔ (∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ∃𝑏 ∈ ℤ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))
10577ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → 𝑇 ∈ ℂ)
10684ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → 𝑇 ≠ 0)
107 simprll 779 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → 𝑎 ∈ ℤ)
108 simprlr 780 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → 𝑏 ∈ ℤ)
109 expaddz 13679 . . . . . . . . 9 (((𝑇 ∈ ℂ ∧ 𝑇 ≠ 0) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑇↑(𝑎 + 𝑏)) = ((𝑇𝑎) · (𝑇𝑏)))
110105, 106, 107, 108, 109syl22anc 839 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → (𝑇↑(𝑎 + 𝑏)) = ((𝑇𝑎) · (𝑇𝑏)))
111 simpll 767 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → 𝜑)
11256ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → 𝑍 ∈ Ring)
11394adantr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → 𝑥𝑈)
114102adantr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → 𝑦𝑈)
115 eqid 2737 . . . . . . . . . . 11 (.r𝑍) = (.r𝑍)
1164, 115unitmulcl 19682 . . . . . . . . . 10 ((𝑍 ∈ Ring ∧ 𝑥𝑈𝑦𝑈) → (𝑥(.r𝑍)𝑦) ∈ 𝑈)
117112, 113, 114, 116syl3anc 1373 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → (𝑥(.r𝑍)𝑦) ∈ 𝑈)
118107, 108zaddcld 12286 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → (𝑎 + 𝑏) ∈ ℤ)
119 simprrl 781 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → ((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)))
120 simprrr 782 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼)))
121119, 120oveq12d 7231 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → (((𝑃𝐼)‘𝑥)(.r𝑍)((𝑃𝐼)‘𝑦)) = ((𝑎 · (𝑊𝐼))(.r𝑍)(𝑏 · (𝑊𝐼))))
12211, 17, 18, 19dpjghm 19450 . . . . . . . . . . . . 13 (𝜑 → (𝑃𝐼) ∈ ((𝐻s (𝐻 DProd 𝑆)) GrpHom 𝐻))
12321oveq2d 7229 . . . . . . . . . . . . . . 15 (𝜑 → (𝐻s (𝐻 DProd 𝑆)) = (𝐻s 𝑈))
12442ovexi 7247 . . . . . . . . . . . . . . . 16 𝐻 ∈ V
12569ressid 16796 . . . . . . . . . . . . . . . 16 (𝐻 ∈ V → (𝐻s 𝑈) = 𝐻)
126124, 125ax-mp 5 . . . . . . . . . . . . . . 15 (𝐻s 𝑈) = 𝐻
127123, 126eqtrdi 2794 . . . . . . . . . . . . . 14 (𝜑 → (𝐻s (𝐻 DProd 𝑆)) = 𝐻)
128127oveq1d 7228 . . . . . . . . . . . . 13 (𝜑 → ((𝐻s (𝐻 DProd 𝑆)) GrpHom 𝐻) = (𝐻 GrpHom 𝐻))
129122, 128eleqtrd 2840 . . . . . . . . . . . 12 (𝜑 → (𝑃𝐼) ∈ (𝐻 GrpHom 𝐻))
130129ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → (𝑃𝐼) ∈ (𝐻 GrpHom 𝐻))
1314fvexi 6731 . . . . . . . . . . . . 13 𝑈 ∈ V
132 eqid 2737 . . . . . . . . . . . . . . 15 (mulGrp‘𝑍) = (mulGrp‘𝑍)
133132, 115mgpplusg 19508 . . . . . . . . . . . . . 14 (.r𝑍) = (+g‘(mulGrp‘𝑍))
13442, 133ressplusg 16834 . . . . . . . . . . . . 13 (𝑈 ∈ V → (.r𝑍) = (+g𝐻))
135131, 134ax-mp 5 . . . . . . . . . . . 12 (.r𝑍) = (+g𝐻)
13669, 135, 135ghmlin 18627 . . . . . . . . . . 11 (((𝑃𝐼) ∈ (𝐻 GrpHom 𝐻) ∧ 𝑥𝑈𝑦𝑈) → ((𝑃𝐼)‘(𝑥(.r𝑍)𝑦)) = (((𝑃𝐼)‘𝑥)(.r𝑍)((𝑃𝐼)‘𝑦)))
137130, 113, 114, 136syl3anc 1373 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → ((𝑃𝐼)‘(𝑥(.r𝑍)𝑦)) = (((𝑃𝐼)‘𝑥)(.r𝑍)((𝑃𝐼)‘𝑦)))
13858ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → 𝐻 ∈ Grp)
13968ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → (𝑊𝐼) ∈ 𝑈)
14069, 43, 135mulgdir 18523 . . . . . . . . . . 11 ((𝐻 ∈ Grp ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ (𝑊𝐼) ∈ 𝑈)) → ((𝑎 + 𝑏) · (𝑊𝐼)) = ((𝑎 · (𝑊𝐼))(.r𝑍)(𝑏 · (𝑊𝐼))))
141138, 107, 108, 139, 140syl13anc 1374 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → ((𝑎 + 𝑏) · (𝑊𝐼)) = ((𝑎 · (𝑊𝐼))(.r𝑍)(𝑏 · (𝑊𝐼))))
142121, 137, 1413eqtr4d 2787 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → ((𝑃𝐼)‘(𝑥(.r𝑍)𝑦)) = ((𝑎 + 𝑏) · (𝑊𝐼)))
1431, 2, 6, 3, 40, 5, 41, 4, 42, 43, 15, 44, 45, 11, 21, 18, 46, 47, 19, 48, 49dchrptlem1 26145 . . . . . . . . 9 (((𝜑 ∧ (𝑥(.r𝑍)𝑦) ∈ 𝑈) ∧ ((𝑎 + 𝑏) ∈ ℤ ∧ ((𝑃𝐼)‘(𝑥(.r𝑍)𝑦)) = ((𝑎 + 𝑏) · (𝑊𝐼)))) → (𝑋‘(𝑥(.r𝑍)𝑦)) = (𝑇↑(𝑎 + 𝑏)))
144111, 117, 118, 142, 143syl22anc 839 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → (𝑋‘(𝑥(.r𝑍)𝑦)) = (𝑇↑(𝑎 + 𝑏)))
1451, 2, 6, 3, 40, 5, 41, 4, 42, 43, 15, 44, 45, 11, 21, 18, 46, 47, 19, 48, 49dchrptlem1 26145 . . . . . . . . . 10 (((𝜑𝑥𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)))) → (𝑋𝑥) = (𝑇𝑎))
146111, 113, 107, 119, 145syl22anc 839 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → (𝑋𝑥) = (𝑇𝑎))
1471, 2, 6, 3, 40, 5, 41, 4, 42, 43, 15, 44, 45, 11, 21, 18, 46, 47, 19, 48, 49dchrptlem1 26145 . . . . . . . . . 10 (((𝜑𝑦𝑈) ∧ (𝑏 ∈ ℤ ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼)))) → (𝑋𝑦) = (𝑇𝑏))
148111, 114, 108, 120, 147syl22anc 839 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → (𝑋𝑦) = (𝑇𝑏))
149146, 148oveq12d 7231 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → ((𝑋𝑥) · (𝑋𝑦)) = ((𝑇𝑎) · (𝑇𝑏)))
150110, 144, 1493eqtr4d 2787 . . . . . . 7 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
151150expr 460 . . . . . 6 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
152151rexlimdvva 3213 . . . . 5 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
153104, 152syl5bir 246 . . . 4 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ∃𝑏 ∈ ℤ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
15495, 103, 153mp2and 699 . . 3 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
155 id 22 . . . . 5 (𝜑𝜑)
156 eqid 2737 . . . . . . 7 (1r𝑍) = (1r𝑍)
1574, 1561unit 19676 . . . . . 6 (𝑍 ∈ Ring → (1r𝑍) ∈ 𝑈)
15856, 157syl 17 . . . . 5 (𝜑 → (1r𝑍) ∈ 𝑈)
159 0zd 12188 . . . . 5 (𝜑 → 0 ∈ ℤ)
160 eqid 2737 . . . . . . . 8 (0g𝐻) = (0g𝐻)
161160, 160ghmid 18628 . . . . . . 7 ((𝑃𝐼) ∈ (𝐻 GrpHom 𝐻) → ((𝑃𝐼)‘(0g𝐻)) = (0g𝐻))
162129, 161syl 17 . . . . . 6 (𝜑 → ((𝑃𝐼)‘(0g𝐻)) = (0g𝐻))
1634, 42, 156unitgrpid 19687 . . . . . . . 8 (𝑍 ∈ Ring → (1r𝑍) = (0g𝐻))
16456, 163syl 17 . . . . . . 7 (𝜑 → (1r𝑍) = (0g𝐻))
165164fveq2d 6721 . . . . . 6 (𝜑 → ((𝑃𝐼)‘(1r𝑍)) = ((𝑃𝐼)‘(0g𝐻)))
16669, 160, 43mulg0 18495 . . . . . . 7 ((𝑊𝐼) ∈ 𝑈 → (0 · (𝑊𝐼)) = (0g𝐻))
16768, 166syl 17 . . . . . 6 (𝜑 → (0 · (𝑊𝐼)) = (0g𝐻))
168162, 165, 1673eqtr4d 2787 . . . . 5 (𝜑 → ((𝑃𝐼)‘(1r𝑍)) = (0 · (𝑊𝐼)))
1691, 2, 6, 3, 40, 5, 41, 4, 42, 43, 15, 44, 45, 11, 21, 18, 46, 47, 19, 48, 49dchrptlem1 26145 . . . . 5 (((𝜑 ∧ (1r𝑍) ∈ 𝑈) ∧ (0 ∈ ℤ ∧ ((𝑃𝐼)‘(1r𝑍)) = (0 · (𝑊𝐼)))) → (𝑋‘(1r𝑍)) = (𝑇↑0))
170155, 158, 159, 168, 169syl22anc 839 . . . 4 (𝜑 → (𝑋‘(1r𝑍)) = (𝑇↑0))
17177exp0d 13710 . . . 4 (𝜑 → (𝑇↑0) = 1)
172170, 171eqtrd 2777 . . 3 (𝜑 → (𝑋‘(1r𝑍)) = 1)
1731, 2, 3, 4, 5, 6, 7, 8, 9, 10, 89, 154, 172dchrelbasd 26120 . 2 (𝜑 → (𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0)) ∈ 𝐷)
17461, 44sseldi 3899 . . . . 5 (𝜑𝐴𝐵)
175 eleq1 2825 . . . . . . 7 (𝑣 = 𝐴 → (𝑣𝑈𝐴𝑈))
176 fveq2 6717 . . . . . . 7 (𝑣 = 𝐴 → (𝑋𝑣) = (𝑋𝐴))
177175, 176ifbieq1d 4463 . . . . . 6 (𝑣 = 𝐴 → if(𝑣𝑈, (𝑋𝑣), 0) = if(𝐴𝑈, (𝑋𝐴), 0))
178 eqid 2737 . . . . . 6 (𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0)) = (𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0))
179 fvex 6730 . . . . . . 7 (𝑋𝑣) ∈ V
180 c0ex 10827 . . . . . . 7 0 ∈ V
181179, 180ifex 4489 . . . . . 6 if(𝑣𝑈, (𝑋𝑣), 0) ∈ V
182177, 178, 181fvmpt3i 6823 . . . . 5 (𝐴𝐵 → ((𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0))‘𝐴) = if(𝐴𝑈, (𝑋𝐴), 0))
183174, 182syl 17 . . . 4 (𝜑 → ((𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0))‘𝐴) = if(𝐴𝑈, (𝑋𝐴), 0))
18444iftrued 4447 . . . 4 (𝜑 → if(𝐴𝑈, (𝑋𝐴), 0) = (𝑋𝐴))
185183, 184eqtrd 2777 . . 3 (𝜑 → ((𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0))‘𝐴) = (𝑋𝐴))
186 fveqeq2 6726 . . . . . 6 (𝑣 = 𝐴 → (((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)) ↔ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼))))
187186rexbidv 3216 . . . . 5 (𝑣 = 𝐴 → (∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)) ↔ ∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼))))
188187, 92, 44rspcdva 3539 . . . 4 (𝜑 → ∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))
1891, 2, 6, 3, 40, 5, 41, 4, 42, 43, 15, 44, 45, 11, 21, 18, 46, 47, 19, 48, 49dchrptlem1 26145 . . . . . . . 8 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → (𝑋𝐴) = (𝑇𝑎))
19047oveq1i 7223 . . . . . . . 8 (𝑇𝑎) = ((-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))↑𝑎)
191189, 190eqtrdi 2794 . . . . . . 7 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → (𝑋𝐴) = ((-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))↑𝑎))
19248ad2antrr 726 . . . . . . . 8 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → ((𝑃𝐼)‘𝐴) ≠ 1 )
19358ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → 𝐻 ∈ Grp)
19468ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → (𝑊𝐼) ∈ 𝑈)
195 simprl 771 . . . . . . . . . . 11 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → 𝑎 ∈ ℤ)
19669, 46, 43, 160oddvds 18939 . . . . . . . . . . 11 ((𝐻 ∈ Grp ∧ (𝑊𝐼) ∈ 𝑈𝑎 ∈ ℤ) → ((𝑂‘(𝑊𝐼)) ∥ 𝑎 ↔ (𝑎 · (𝑊𝐼)) = (0g𝐻)))
197193, 194, 195, 196syl3anc 1373 . . . . . . . . . 10 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → ((𝑂‘(𝑊𝐼)) ∥ 𝑎 ↔ (𝑎 · (𝑊𝐼)) = (0g𝐻)))
19871ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → (𝑂‘(𝑊𝐼)) ∈ ℕ)
199 root1eq1 25641 . . . . . . . . . . 11 (((𝑂‘(𝑊𝐼)) ∈ ℕ ∧ 𝑎 ∈ ℤ) → (((-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))↑𝑎) = 1 ↔ (𝑂‘(𝑊𝐼)) ∥ 𝑎))
200198, 195, 199syl2anc 587 . . . . . . . . . 10 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → (((-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))↑𝑎) = 1 ↔ (𝑂‘(𝑊𝐼)) ∥ 𝑎))
201 simprr 773 . . . . . . . . . . 11 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))
20240, 164syl5eq 2790 . . . . . . . . . . . 12 (𝜑1 = (0g𝐻))
203202ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → 1 = (0g𝐻))
204201, 203eqeq12d 2753 . . . . . . . . . 10 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → (((𝑃𝐼)‘𝐴) = 1 ↔ (𝑎 · (𝑊𝐼)) = (0g𝐻)))
205197, 200, 2043bitr4d 314 . . . . . . . . 9 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → (((-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))↑𝑎) = 1 ↔ ((𝑃𝐼)‘𝐴) = 1 ))
206205necon3bid 2985 . . . . . . . 8 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → (((-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))↑𝑎) ≠ 1 ↔ ((𝑃𝐼)‘𝐴) ≠ 1 ))
207192, 206mpbird 260 . . . . . . 7 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → ((-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))↑𝑎) ≠ 1)
208191, 207eqnetrd 3008 . . . . . 6 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → (𝑋𝐴) ≠ 1)
209208rexlimdvaa 3204 . . . . 5 ((𝜑𝐴𝑈) → (∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)) → (𝑋𝐴) ≠ 1))
21044, 209mpdan 687 . . . 4 (𝜑 → (∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)) → (𝑋𝐴) ≠ 1))
211188, 210mpd 15 . . 3 (𝜑 → (𝑋𝐴) ≠ 1)
212185, 211eqnetrd 3008 . 2 (𝜑 → ((𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0))‘𝐴) ≠ 1)
213 fveq1 6716 . . . 4 (𝑥 = (𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0)) → (𝑥𝐴) = ((𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0))‘𝐴))
214213neeq1d 3000 . . 3 (𝑥 = (𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0)) → ((𝑥𝐴) ≠ 1 ↔ ((𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0))‘𝐴) ≠ 1))
215214rspcev 3537 . 2 (((𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0)) ∈ 𝐷 ∧ ((𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0))‘𝐴) ≠ 1) → ∃𝑥𝐷 (𝑥𝐴) ≠ 1)
216173, 212, 215syl2anc 587 1 (𝜑 → ∃𝑥𝐷 (𝑥𝐴) ≠ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wne 2940  wral 3061  wrex 3062  Vcvv 3408  wss 3866  ifcif 4439   class class class wbr 5053  cmpt 5135  dom cdm 5551  ran crn 5552  cio 6336  wf 6376  cfv 6380  (class class class)co 7213  Fincfn 8626  cc 10727  cr 10728  0cc0 10729  1c1 10730   + caddc 10732   · cmul 10734  -cneg 11063   / cdiv 11489  cn 11830  2c2 11885  0cn0 12090  cz 12176  ..^cfzo 13238  cexp 13635  chash 13896  Word cword 14069  cdvds 15815  Basecbs 16760  s cress 16784  +gcplusg 16802  .rcmulr 16803  0gc0g 16944  Grpcgrp 18365  .gcmg 18488   GrpHom cghm 18619  odcod 18916   DProd cdprd 19380  dProjcdpj 19381  mulGrpcmgp 19504  1rcur 19516  Ringcrg 19562  CRingccrg 19563  Unitcui 19657  ℤ/nczn 20469  𝑐ccxp 25444  DChrcdchr 26113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-tpos 7968  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-oadd 8206  df-omul 8207  df-er 8391  df-ec 8393  df-qs 8397  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-acn 9558  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ioo 12939  df-ioc 12940  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-fl 13367  df-mod 13443  df-seq 13575  df-exp 13636  df-fac 13840  df-bc 13869  df-hash 13897  df-word 14070  df-shft 14630  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-limsup 15032  df-clim 15049  df-rlim 15050  df-sum 15250  df-ef 15629  df-sin 15631  df-cos 15632  df-pi 15634  df-dvds 15816  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-rest 16927  df-topn 16928  df-0g 16946  df-gsum 16947  df-topgen 16948  df-pt 16949  df-prds 16952  df-xrs 17007  df-qtop 17012  df-imas 17013  df-qus 17014  df-xps 17015  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-mhm 18218  df-submnd 18219  df-grp 18368  df-minusg 18369  df-sbg 18370  df-mulg 18489  df-subg 18540  df-nsg 18541  df-eqg 18542  df-ghm 18620  df-gim 18663  df-cntz 18711  df-oppg 18738  df-od 18920  df-lsm 19025  df-pj1 19026  df-cmn 19172  df-abl 19173  df-dprd 19382  df-dpj 19383  df-mgp 19505  df-ur 19517  df-ring 19564  df-cring 19565  df-oppr 19641  df-dvdsr 19659  df-unit 19660  df-rnghom 19735  df-subrg 19798  df-lmod 19901  df-lss 19969  df-lsp 20009  df-sra 20209  df-rgmod 20210  df-lidl 20211  df-rsp 20212  df-2idl 20270  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-fbas 20360  df-fg 20361  df-cnfld 20364  df-zring 20436  df-zrh 20470  df-zn 20473  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cld 21916  df-ntr 21917  df-cls 21918  df-nei 21995  df-lp 22033  df-perf 22034  df-cn 22124  df-cnp 22125  df-haus 22212  df-tx 22459  df-hmeo 22652  df-fil 22743  df-fm 22835  df-flim 22836  df-flf 22837  df-xms 23218  df-ms 23219  df-tms 23220  df-cncf 23775  df-limc 24763  df-dv 24764  df-log 25445  df-cxp 25446  df-dchr 26114
This theorem is referenced by:  dchrptlem3  26147
  Copyright terms: Public domain W3C validator