MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrptlem2 Structured version   Visualization version   GIF version

Theorem dchrptlem2 25840
Description: Lemma for dchrpt 25842. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrpt.g 𝐺 = (DChr‘𝑁)
dchrpt.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrpt.d 𝐷 = (Base‘𝐺)
dchrpt.b 𝐵 = (Base‘𝑍)
dchrpt.1 1 = (1r𝑍)
dchrpt.n (𝜑𝑁 ∈ ℕ)
dchrpt.n1 (𝜑𝐴1 )
dchrpt.u 𝑈 = (Unit‘𝑍)
dchrpt.h 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈)
dchrpt.m · = (.g𝐻)
dchrpt.s 𝑆 = (𝑘 ∈ dom 𝑊 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))))
dchrpt.au (𝜑𝐴𝑈)
dchrpt.w (𝜑𝑊 ∈ Word 𝑈)
dchrpt.2 (𝜑𝐻dom DProd 𝑆)
dchrpt.3 (𝜑 → (𝐻 DProd 𝑆) = 𝑈)
dchrpt.p 𝑃 = (𝐻dProj𝑆)
dchrpt.o 𝑂 = (od‘𝐻)
dchrpt.t 𝑇 = (-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))
dchrpt.i (𝜑𝐼 ∈ dom 𝑊)
dchrpt.4 (𝜑 → ((𝑃𝐼)‘𝐴) ≠ 1 )
dchrpt.5 𝑋 = (𝑢𝑈 ↦ (℩𝑚 ∈ ℤ (((𝑃𝐼)‘𝑢) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))))
Assertion
Ref Expression
dchrptlem2 (𝜑 → ∃𝑥𝐷 (𝑥𝐴) ≠ 1)
Distinct variable groups:   ,𝑘,𝑚,𝑛,𝑥, 1   𝑢,,𝐴,𝑘,𝑚,𝑛,𝑥   ,𝐼,𝑘,𝑚,𝑢   𝑥,𝐵   𝑥,𝐺   ,𝐻,𝑘,𝑚,𝑛,𝑢,𝑥   𝑥,𝑁   ,𝑊,𝑘,𝑚,𝑛,𝑢,𝑥   · ,,𝑘,𝑚,𝑛,𝑢,𝑥   𝑥,𝑋   𝑃,,𝑚,𝑢   𝑆,,𝑘,𝑚,𝑛,𝑢,𝑥   ,𝑍,𝑘,𝑚,𝑛,𝑢,𝑥   𝑥,𝐷   𝜑,,𝑘,𝑚,𝑛,𝑥   𝑇,,𝑚,𝑢   𝑈,,𝑚,𝑢,𝑥
Allowed substitution hints:   𝜑(𝑢)   𝐵(𝑢,,𝑘,𝑚,𝑛)   𝐷(𝑢,,𝑘,𝑚,𝑛)   𝑃(𝑥,𝑘,𝑛)   𝑇(𝑥,𝑘,𝑛)   𝑈(𝑘,𝑛)   1 (𝑢)   𝐺(𝑢,,𝑘,𝑚,𝑛)   𝐼(𝑥,𝑛)   𝑁(𝑢,,𝑘,𝑚,𝑛)   𝑂(𝑥,𝑢,,𝑘,𝑚,𝑛)   𝑋(𝑢,,𝑘,𝑚,𝑛)

Proof of Theorem dchrptlem2
Dummy variables 𝑎 𝑏 𝑣 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchrpt.g . . 3 𝐺 = (DChr‘𝑁)
2 dchrpt.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
3 dchrpt.b . . 3 𝐵 = (Base‘𝑍)
4 dchrpt.u . . 3 𝑈 = (Unit‘𝑍)
5 dchrpt.n . . 3 (𝜑𝑁 ∈ ℕ)
6 dchrpt.d . . 3 𝐷 = (Base‘𝐺)
7 fveq2 6669 . . 3 (𝑣 = 𝑥 → (𝑋𝑣) = (𝑋𝑥))
8 fveq2 6669 . . 3 (𝑣 = 𝑦 → (𝑋𝑣) = (𝑋𝑦))
9 fveq2 6669 . . 3 (𝑣 = (𝑥(.r𝑍)𝑦) → (𝑋𝑣) = (𝑋‘(𝑥(.r𝑍)𝑦)))
10 fveq2 6669 . . 3 (𝑣 = (1r𝑍) → (𝑋𝑣) = (𝑋‘(1r𝑍)))
11 dchrpt.2 . . . . . . . . 9 (𝜑𝐻dom DProd 𝑆)
12 zex 11989 . . . . . . . . . . . . 13 ℤ ∈ V
1312mptex 6985 . . . . . . . . . . . 12 (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))) ∈ V
1413rnex 7616 . . . . . . . . . . 11 ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))) ∈ V
15 dchrpt.s . . . . . . . . . . 11 𝑆 = (𝑘 ∈ dom 𝑊 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))))
1614, 15dmmpti 6491 . . . . . . . . . 10 dom 𝑆 = dom 𝑊
1716a1i 11 . . . . . . . . 9 (𝜑 → dom 𝑆 = dom 𝑊)
18 dchrpt.p . . . . . . . . 9 𝑃 = (𝐻dProj𝑆)
19 dchrpt.i . . . . . . . . 9 (𝜑𝐼 ∈ dom 𝑊)
2011, 17, 18, 19dpjf 19178 . . . . . . . 8 (𝜑 → (𝑃𝐼):(𝐻 DProd 𝑆)⟶(𝑆𝐼))
21 dchrpt.3 . . . . . . . . 9 (𝜑 → (𝐻 DProd 𝑆) = 𝑈)
2221feq2d 6499 . . . . . . . 8 (𝜑 → ((𝑃𝐼):(𝐻 DProd 𝑆)⟶(𝑆𝐼) ↔ (𝑃𝐼):𝑈⟶(𝑆𝐼)))
2320, 22mpbid 234 . . . . . . 7 (𝜑 → (𝑃𝐼):𝑈⟶(𝑆𝐼))
2423ffvelrnda 6850 . . . . . 6 ((𝜑𝑣𝑈) → ((𝑃𝐼)‘𝑣) ∈ (𝑆𝐼))
2519adantr 483 . . . . . . 7 ((𝜑𝑣𝑈) → 𝐼 ∈ dom 𝑊)
26 oveq1 7162 . . . . . . . . . . 11 (𝑛 = 𝑎 → (𝑛 · (𝑊𝑘)) = (𝑎 · (𝑊𝑘)))
2726cbvmptv 5168 . . . . . . . . . 10 (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))) = (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝑘)))
28 fveq2 6669 . . . . . . . . . . . 12 (𝑘 = 𝐼 → (𝑊𝑘) = (𝑊𝐼))
2928oveq2d 7171 . . . . . . . . . . 11 (𝑘 = 𝐼 → (𝑎 · (𝑊𝑘)) = (𝑎 · (𝑊𝐼)))
3029mpteq2dv 5161 . . . . . . . . . 10 (𝑘 = 𝐼 → (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝑘))) = (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝐼))))
3127, 30syl5eq 2868 . . . . . . . . 9 (𝑘 = 𝐼 → (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))) = (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝐼))))
3231rneqd 5807 . . . . . . . 8 (𝑘 = 𝐼 → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))) = ran (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝐼))))
3332, 15, 14fvmpt3i 6772 . . . . . . 7 (𝐼 ∈ dom 𝑊 → (𝑆𝐼) = ran (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝐼))))
3425, 33syl 17 . . . . . 6 ((𝜑𝑣𝑈) → (𝑆𝐼) = ran (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝐼))))
3524, 34eleqtrd 2915 . . . . 5 ((𝜑𝑣𝑈) → ((𝑃𝐼)‘𝑣) ∈ ran (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝐼))))
36 eqid 2821 . . . . . 6 (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝐼))) = (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝐼)))
37 ovex 7188 . . . . . 6 (𝑎 · (𝑊𝐼)) ∈ V
3836, 37elrnmpti 5831 . . . . 5 (((𝑃𝐼)‘𝑣) ∈ ran (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝐼))) ↔ ∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)))
3935, 38sylib 220 . . . 4 ((𝜑𝑣𝑈) → ∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)))
40 dchrpt.1 . . . . . 6 1 = (1r𝑍)
41 dchrpt.n1 . . . . . 6 (𝜑𝐴1 )
42 dchrpt.h . . . . . 6 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈)
43 dchrpt.m . . . . . 6 · = (.g𝐻)
44 dchrpt.au . . . . . 6 (𝜑𝐴𝑈)
45 dchrpt.w . . . . . 6 (𝜑𝑊 ∈ Word 𝑈)
46 dchrpt.o . . . . . 6 𝑂 = (od‘𝐻)
47 dchrpt.t . . . . . 6 𝑇 = (-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))
48 dchrpt.4 . . . . . 6 (𝜑 → ((𝑃𝐼)‘𝐴) ≠ 1 )
49 dchrpt.5 . . . . . 6 𝑋 = (𝑢𝑈 ↦ (℩𝑚 ∈ ℤ (((𝑃𝐼)‘𝑢) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))))
501, 2, 6, 3, 40, 5, 41, 4, 42, 43, 15, 44, 45, 11, 21, 18, 46, 47, 19, 48, 49dchrptlem1 25839 . . . . 5 (((𝜑𝑣𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)))) → (𝑋𝑣) = (𝑇𝑎))
51 neg1cn 11750 . . . . . . . . 9 -1 ∈ ℂ
52 2re 11710 . . . . . . . . . . 11 2 ∈ ℝ
535nnnn0d 11954 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ0)
542zncrng 20690 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
55 crngring 19307 . . . . . . . . . . . . . 14 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
5653, 54, 553syl 18 . . . . . . . . . . . . 13 (𝜑𝑍 ∈ Ring)
574, 42unitgrp 19416 . . . . . . . . . . . . 13 (𝑍 ∈ Ring → 𝐻 ∈ Grp)
5856, 57syl 17 . . . . . . . . . . . 12 (𝜑𝐻 ∈ Grp)
592, 3znfi 20705 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝐵 ∈ Fin)
605, 59syl 17 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ Fin)
613, 4unitss 19409 . . . . . . . . . . . . 13 𝑈𝐵
62 ssfi 8737 . . . . . . . . . . . . 13 ((𝐵 ∈ Fin ∧ 𝑈𝐵) → 𝑈 ∈ Fin)
6360, 61, 62sylancl 588 . . . . . . . . . . . 12 (𝜑𝑈 ∈ Fin)
64 wrdf 13865 . . . . . . . . . . . . . 14 (𝑊 ∈ Word 𝑈𝑊:(0..^(♯‘𝑊))⟶𝑈)
6545, 64syl 17 . . . . . . . . . . . . 13 (𝜑𝑊:(0..^(♯‘𝑊))⟶𝑈)
6665fdmd 6522 . . . . . . . . . . . . . 14 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
6719, 66eleqtrd 2915 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ (0..^(♯‘𝑊)))
6865, 67ffvelrnd 6851 . . . . . . . . . . . 12 (𝜑 → (𝑊𝐼) ∈ 𝑈)
694, 42unitgrpbas 19415 . . . . . . . . . . . . 13 𝑈 = (Base‘𝐻)
7069, 46odcl2 18691 . . . . . . . . . . . 12 ((𝐻 ∈ Grp ∧ 𝑈 ∈ Fin ∧ (𝑊𝐼) ∈ 𝑈) → (𝑂‘(𝑊𝐼)) ∈ ℕ)
7158, 63, 68, 70syl3anc 1367 . . . . . . . . . . 11 (𝜑 → (𝑂‘(𝑊𝐼)) ∈ ℕ)
72 nndivre 11677 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ (𝑂‘(𝑊𝐼)) ∈ ℕ) → (2 / (𝑂‘(𝑊𝐼))) ∈ ℝ)
7352, 71, 72sylancr 589 . . . . . . . . . 10 (𝜑 → (2 / (𝑂‘(𝑊𝐼))) ∈ ℝ)
7473recnd 10668 . . . . . . . . 9 (𝜑 → (2 / (𝑂‘(𝑊𝐼))) ∈ ℂ)
75 cxpcl 25256 . . . . . . . . 9 ((-1 ∈ ℂ ∧ (2 / (𝑂‘(𝑊𝐼))) ∈ ℂ) → (-1↑𝑐(2 / (𝑂‘(𝑊𝐼)))) ∈ ℂ)
7651, 74, 75sylancr 589 . . . . . . . 8 (𝜑 → (-1↑𝑐(2 / (𝑂‘(𝑊𝐼)))) ∈ ℂ)
7747, 76eqeltrid 2917 . . . . . . 7 (𝜑𝑇 ∈ ℂ)
7877ad2antrr 724 . . . . . 6 (((𝜑𝑣𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)))) → 𝑇 ∈ ℂ)
7951a1i 11 . . . . . . . . 9 (𝜑 → -1 ∈ ℂ)
80 neg1ne0 11752 . . . . . . . . . 10 -1 ≠ 0
8180a1i 11 . . . . . . . . 9 (𝜑 → -1 ≠ 0)
8279, 81, 74cxpne0d 25295 . . . . . . . 8 (𝜑 → (-1↑𝑐(2 / (𝑂‘(𝑊𝐼)))) ≠ 0)
8347neeq1i 3080 . . . . . . . 8 (𝑇 ≠ 0 ↔ (-1↑𝑐(2 / (𝑂‘(𝑊𝐼)))) ≠ 0)
8482, 83sylibr 236 . . . . . . 7 (𝜑𝑇 ≠ 0)
8584ad2antrr 724 . . . . . 6 (((𝜑𝑣𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)))) → 𝑇 ≠ 0)
86 simprl 769 . . . . . 6 (((𝜑𝑣𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)))) → 𝑎 ∈ ℤ)
8778, 85, 86expclzd 13514 . . . . 5 (((𝜑𝑣𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)))) → (𝑇𝑎) ∈ ℂ)
8850, 87eqeltrd 2913 . . . 4 (((𝜑𝑣𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)))) → (𝑋𝑣) ∈ ℂ)
8939, 88rexlimddv 3291 . . 3 ((𝜑𝑣𝑈) → (𝑋𝑣) ∈ ℂ)
90 fveqeq2 6678 . . . . . 6 (𝑣 = 𝑥 → (((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)) ↔ ((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼))))
9190rexbidv 3297 . . . . 5 (𝑣 = 𝑥 → (∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)) ↔ ∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼))))
9239ralrimiva 3182 . . . . . 6 (𝜑 → ∀𝑣𝑈𝑎 ∈ ℤ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)))
9392adantr 483 . . . . 5 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ∀𝑣𝑈𝑎 ∈ ℤ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)))
94 simprl 769 . . . . 5 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑥𝑈)
9591, 93, 94rspcdva 3624 . . . 4 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)))
96 fveqeq2 6678 . . . . . . 7 (𝑣 = 𝑦 → (((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)) ↔ ((𝑃𝐼)‘𝑦) = (𝑎 · (𝑊𝐼))))
9796rexbidv 3297 . . . . . 6 (𝑣 = 𝑦 → (∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)) ↔ ∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑦) = (𝑎 · (𝑊𝐼))))
98 oveq1 7162 . . . . . . . 8 (𝑎 = 𝑏 → (𝑎 · (𝑊𝐼)) = (𝑏 · (𝑊𝐼)))
9998eqeq2d 2832 . . . . . . 7 (𝑎 = 𝑏 → (((𝑃𝐼)‘𝑦) = (𝑎 · (𝑊𝐼)) ↔ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))
10099cbvrexvw 3450 . . . . . 6 (∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑦) = (𝑎 · (𝑊𝐼)) ↔ ∃𝑏 ∈ ℤ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼)))
10197, 100syl6bb 289 . . . . 5 (𝑣 = 𝑦 → (∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)) ↔ ∃𝑏 ∈ ℤ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))
102 simprr 771 . . . . 5 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑦𝑈)
103101, 93, 102rspcdva 3624 . . . 4 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ∃𝑏 ∈ ℤ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼)))
104 reeanv 3367 . . . . 5 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))) ↔ (∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ∃𝑏 ∈ ℤ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))
10577ad2antrr 724 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → 𝑇 ∈ ℂ)
10684ad2antrr 724 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → 𝑇 ≠ 0)
107 simprll 777 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → 𝑎 ∈ ℤ)
108 simprlr 778 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → 𝑏 ∈ ℤ)
109 expaddz 13472 . . . . . . . . 9 (((𝑇 ∈ ℂ ∧ 𝑇 ≠ 0) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑇↑(𝑎 + 𝑏)) = ((𝑇𝑎) · (𝑇𝑏)))
110105, 106, 107, 108, 109syl22anc 836 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → (𝑇↑(𝑎 + 𝑏)) = ((𝑇𝑎) · (𝑇𝑏)))
111 simpll 765 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → 𝜑)
11256ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → 𝑍 ∈ Ring)
11394adantr 483 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → 𝑥𝑈)
114102adantr 483 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → 𝑦𝑈)
115 eqid 2821 . . . . . . . . . . 11 (.r𝑍) = (.r𝑍)
1164, 115unitmulcl 19413 . . . . . . . . . 10 ((𝑍 ∈ Ring ∧ 𝑥𝑈𝑦𝑈) → (𝑥(.r𝑍)𝑦) ∈ 𝑈)
117112, 113, 114, 116syl3anc 1367 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → (𝑥(.r𝑍)𝑦) ∈ 𝑈)
118107, 108zaddcld 12090 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → (𝑎 + 𝑏) ∈ ℤ)
119 simprrl 779 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → ((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)))
120 simprrr 780 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼)))
121119, 120oveq12d 7173 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → (((𝑃𝐼)‘𝑥)(.r𝑍)((𝑃𝐼)‘𝑦)) = ((𝑎 · (𝑊𝐼))(.r𝑍)(𝑏 · (𝑊𝐼))))
12211, 17, 18, 19dpjghm 19184 . . . . . . . . . . . . 13 (𝜑 → (𝑃𝐼) ∈ ((𝐻s (𝐻 DProd 𝑆)) GrpHom 𝐻))
12321oveq2d 7171 . . . . . . . . . . . . . . 15 (𝜑 → (𝐻s (𝐻 DProd 𝑆)) = (𝐻s 𝑈))
12442ovexi 7189 . . . . . . . . . . . . . . . 16 𝐻 ∈ V
12569ressid 16558 . . . . . . . . . . . . . . . 16 (𝐻 ∈ V → (𝐻s 𝑈) = 𝐻)
126124, 125ax-mp 5 . . . . . . . . . . . . . . 15 (𝐻s 𝑈) = 𝐻
127123, 126syl6eq 2872 . . . . . . . . . . . . . 14 (𝜑 → (𝐻s (𝐻 DProd 𝑆)) = 𝐻)
128127oveq1d 7170 . . . . . . . . . . . . 13 (𝜑 → ((𝐻s (𝐻 DProd 𝑆)) GrpHom 𝐻) = (𝐻 GrpHom 𝐻))
129122, 128eleqtrd 2915 . . . . . . . . . . . 12 (𝜑 → (𝑃𝐼) ∈ (𝐻 GrpHom 𝐻))
130129ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → (𝑃𝐼) ∈ (𝐻 GrpHom 𝐻))
1314fvexi 6683 . . . . . . . . . . . . 13 𝑈 ∈ V
132 eqid 2821 . . . . . . . . . . . . . . 15 (mulGrp‘𝑍) = (mulGrp‘𝑍)
133132, 115mgpplusg 19242 . . . . . . . . . . . . . 14 (.r𝑍) = (+g‘(mulGrp‘𝑍))
13442, 133ressplusg 16611 . . . . . . . . . . . . 13 (𝑈 ∈ V → (.r𝑍) = (+g𝐻))
135131, 134ax-mp 5 . . . . . . . . . . . 12 (.r𝑍) = (+g𝐻)
13669, 135, 135ghmlin 18362 . . . . . . . . . . 11 (((𝑃𝐼) ∈ (𝐻 GrpHom 𝐻) ∧ 𝑥𝑈𝑦𝑈) → ((𝑃𝐼)‘(𝑥(.r𝑍)𝑦)) = (((𝑃𝐼)‘𝑥)(.r𝑍)((𝑃𝐼)‘𝑦)))
137130, 113, 114, 136syl3anc 1367 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → ((𝑃𝐼)‘(𝑥(.r𝑍)𝑦)) = (((𝑃𝐼)‘𝑥)(.r𝑍)((𝑃𝐼)‘𝑦)))
13858ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → 𝐻 ∈ Grp)
13968ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → (𝑊𝐼) ∈ 𝑈)
14069, 43, 135mulgdir 18258 . . . . . . . . . . 11 ((𝐻 ∈ Grp ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ (𝑊𝐼) ∈ 𝑈)) → ((𝑎 + 𝑏) · (𝑊𝐼)) = ((𝑎 · (𝑊𝐼))(.r𝑍)(𝑏 · (𝑊𝐼))))
141138, 107, 108, 139, 140syl13anc 1368 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → ((𝑎 + 𝑏) · (𝑊𝐼)) = ((𝑎 · (𝑊𝐼))(.r𝑍)(𝑏 · (𝑊𝐼))))
142121, 137, 1413eqtr4d 2866 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → ((𝑃𝐼)‘(𝑥(.r𝑍)𝑦)) = ((𝑎 + 𝑏) · (𝑊𝐼)))
1431, 2, 6, 3, 40, 5, 41, 4, 42, 43, 15, 44, 45, 11, 21, 18, 46, 47, 19, 48, 49dchrptlem1 25839 . . . . . . . . 9 (((𝜑 ∧ (𝑥(.r𝑍)𝑦) ∈ 𝑈) ∧ ((𝑎 + 𝑏) ∈ ℤ ∧ ((𝑃𝐼)‘(𝑥(.r𝑍)𝑦)) = ((𝑎 + 𝑏) · (𝑊𝐼)))) → (𝑋‘(𝑥(.r𝑍)𝑦)) = (𝑇↑(𝑎 + 𝑏)))
144111, 117, 118, 142, 143syl22anc 836 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → (𝑋‘(𝑥(.r𝑍)𝑦)) = (𝑇↑(𝑎 + 𝑏)))
1451, 2, 6, 3, 40, 5, 41, 4, 42, 43, 15, 44, 45, 11, 21, 18, 46, 47, 19, 48, 49dchrptlem1 25839 . . . . . . . . . 10 (((𝜑𝑥𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)))) → (𝑋𝑥) = (𝑇𝑎))
146111, 113, 107, 119, 145syl22anc 836 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → (𝑋𝑥) = (𝑇𝑎))
1471, 2, 6, 3, 40, 5, 41, 4, 42, 43, 15, 44, 45, 11, 21, 18, 46, 47, 19, 48, 49dchrptlem1 25839 . . . . . . . . . 10 (((𝜑𝑦𝑈) ∧ (𝑏 ∈ ℤ ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼)))) → (𝑋𝑦) = (𝑇𝑏))
148111, 114, 108, 120, 147syl22anc 836 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → (𝑋𝑦) = (𝑇𝑏))
149146, 148oveq12d 7173 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → ((𝑋𝑥) · (𝑋𝑦)) = ((𝑇𝑎) · (𝑇𝑏)))
150110, 144, 1493eqtr4d 2866 . . . . . . 7 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
151150expr 459 . . . . . 6 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
152151rexlimdvva 3294 . . . . 5 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
153104, 152syl5bir 245 . . . 4 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ∃𝑏 ∈ ℤ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
15495, 103, 153mp2and 697 . . 3 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
155 id 22 . . . . 5 (𝜑𝜑)
156 eqid 2821 . . . . . . 7 (1r𝑍) = (1r𝑍)
1574, 1561unit 19407 . . . . . 6 (𝑍 ∈ Ring → (1r𝑍) ∈ 𝑈)
15856, 157syl 17 . . . . 5 (𝜑 → (1r𝑍) ∈ 𝑈)
159 0zd 11992 . . . . 5 (𝜑 → 0 ∈ ℤ)
160 eqid 2821 . . . . . . . 8 (0g𝐻) = (0g𝐻)
161160, 160ghmid 18363 . . . . . . 7 ((𝑃𝐼) ∈ (𝐻 GrpHom 𝐻) → ((𝑃𝐼)‘(0g𝐻)) = (0g𝐻))
162129, 161syl 17 . . . . . 6 (𝜑 → ((𝑃𝐼)‘(0g𝐻)) = (0g𝐻))
1634, 42, 156unitgrpid 19418 . . . . . . . 8 (𝑍 ∈ Ring → (1r𝑍) = (0g𝐻))
16456, 163syl 17 . . . . . . 7 (𝜑 → (1r𝑍) = (0g𝐻))
165164fveq2d 6673 . . . . . 6 (𝜑 → ((𝑃𝐼)‘(1r𝑍)) = ((𝑃𝐼)‘(0g𝐻)))
16669, 160, 43mulg0 18230 . . . . . . 7 ((𝑊𝐼) ∈ 𝑈 → (0 · (𝑊𝐼)) = (0g𝐻))
16768, 166syl 17 . . . . . 6 (𝜑 → (0 · (𝑊𝐼)) = (0g𝐻))
168162, 165, 1673eqtr4d 2866 . . . . 5 (𝜑 → ((𝑃𝐼)‘(1r𝑍)) = (0 · (𝑊𝐼)))
1691, 2, 6, 3, 40, 5, 41, 4, 42, 43, 15, 44, 45, 11, 21, 18, 46, 47, 19, 48, 49dchrptlem1 25839 . . . . 5 (((𝜑 ∧ (1r𝑍) ∈ 𝑈) ∧ (0 ∈ ℤ ∧ ((𝑃𝐼)‘(1r𝑍)) = (0 · (𝑊𝐼)))) → (𝑋‘(1r𝑍)) = (𝑇↑0))
170155, 158, 159, 168, 169syl22anc 836 . . . 4 (𝜑 → (𝑋‘(1r𝑍)) = (𝑇↑0))
17177exp0d 13503 . . . 4 (𝜑 → (𝑇↑0) = 1)
172170, 171eqtrd 2856 . . 3 (𝜑 → (𝑋‘(1r𝑍)) = 1)
1731, 2, 3, 4, 5, 6, 7, 8, 9, 10, 89, 154, 172dchrelbasd 25814 . 2 (𝜑 → (𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0)) ∈ 𝐷)
17461, 44sseldi 3964 . . . . 5 (𝜑𝐴𝐵)
175 eleq1 2900 . . . . . . 7 (𝑣 = 𝐴 → (𝑣𝑈𝐴𝑈))
176 fveq2 6669 . . . . . . 7 (𝑣 = 𝐴 → (𝑋𝑣) = (𝑋𝐴))
177175, 176ifbieq1d 4489 . . . . . 6 (𝑣 = 𝐴 → if(𝑣𝑈, (𝑋𝑣), 0) = if(𝐴𝑈, (𝑋𝐴), 0))
178 eqid 2821 . . . . . 6 (𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0)) = (𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0))
179 fvex 6682 . . . . . . 7 (𝑋𝑣) ∈ V
180 c0ex 10634 . . . . . . 7 0 ∈ V
181179, 180ifex 4514 . . . . . 6 if(𝑣𝑈, (𝑋𝑣), 0) ∈ V
182177, 178, 181fvmpt3i 6772 . . . . 5 (𝐴𝐵 → ((𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0))‘𝐴) = if(𝐴𝑈, (𝑋𝐴), 0))
183174, 182syl 17 . . . 4 (𝜑 → ((𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0))‘𝐴) = if(𝐴𝑈, (𝑋𝐴), 0))
18444iftrued 4474 . . . 4 (𝜑 → if(𝐴𝑈, (𝑋𝐴), 0) = (𝑋𝐴))
185183, 184eqtrd 2856 . . 3 (𝜑 → ((𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0))‘𝐴) = (𝑋𝐴))
186 fveqeq2 6678 . . . . . 6 (𝑣 = 𝐴 → (((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)) ↔ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼))))
187186rexbidv 3297 . . . . 5 (𝑣 = 𝐴 → (∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)) ↔ ∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼))))
188187, 92, 44rspcdva 3624 . . . 4 (𝜑 → ∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))
1891, 2, 6, 3, 40, 5, 41, 4, 42, 43, 15, 44, 45, 11, 21, 18, 46, 47, 19, 48, 49dchrptlem1 25839 . . . . . . . 8 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → (𝑋𝐴) = (𝑇𝑎))
19047oveq1i 7165 . . . . . . . 8 (𝑇𝑎) = ((-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))↑𝑎)
191189, 190syl6eq 2872 . . . . . . 7 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → (𝑋𝐴) = ((-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))↑𝑎))
19248ad2antrr 724 . . . . . . . 8 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → ((𝑃𝐼)‘𝐴) ≠ 1 )
19358ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → 𝐻 ∈ Grp)
19468ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → (𝑊𝐼) ∈ 𝑈)
195 simprl 769 . . . . . . . . . . 11 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → 𝑎 ∈ ℤ)
19669, 46, 43, 160oddvds 18674 . . . . . . . . . . 11 ((𝐻 ∈ Grp ∧ (𝑊𝐼) ∈ 𝑈𝑎 ∈ ℤ) → ((𝑂‘(𝑊𝐼)) ∥ 𝑎 ↔ (𝑎 · (𝑊𝐼)) = (0g𝐻)))
197193, 194, 195, 196syl3anc 1367 . . . . . . . . . 10 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → ((𝑂‘(𝑊𝐼)) ∥ 𝑎 ↔ (𝑎 · (𝑊𝐼)) = (0g𝐻)))
19871ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → (𝑂‘(𝑊𝐼)) ∈ ℕ)
199 root1eq1 25335 . . . . . . . . . . 11 (((𝑂‘(𝑊𝐼)) ∈ ℕ ∧ 𝑎 ∈ ℤ) → (((-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))↑𝑎) = 1 ↔ (𝑂‘(𝑊𝐼)) ∥ 𝑎))
200198, 195, 199syl2anc 586 . . . . . . . . . 10 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → (((-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))↑𝑎) = 1 ↔ (𝑂‘(𝑊𝐼)) ∥ 𝑎))
201 simprr 771 . . . . . . . . . . 11 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))
20240, 164syl5eq 2868 . . . . . . . . . . . 12 (𝜑1 = (0g𝐻))
203202ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → 1 = (0g𝐻))
204201, 203eqeq12d 2837 . . . . . . . . . 10 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → (((𝑃𝐼)‘𝐴) = 1 ↔ (𝑎 · (𝑊𝐼)) = (0g𝐻)))
205197, 200, 2043bitr4d 313 . . . . . . . . 9 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → (((-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))↑𝑎) = 1 ↔ ((𝑃𝐼)‘𝐴) = 1 ))
206205necon3bid 3060 . . . . . . . 8 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → (((-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))↑𝑎) ≠ 1 ↔ ((𝑃𝐼)‘𝐴) ≠ 1 ))
207192, 206mpbird 259 . . . . . . 7 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → ((-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))↑𝑎) ≠ 1)
208191, 207eqnetrd 3083 . . . . . 6 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → (𝑋𝐴) ≠ 1)
209208rexlimdvaa 3285 . . . . 5 ((𝜑𝐴𝑈) → (∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)) → (𝑋𝐴) ≠ 1))
21044, 209mpdan 685 . . . 4 (𝜑 → (∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)) → (𝑋𝐴) ≠ 1))
211188, 210mpd 15 . . 3 (𝜑 → (𝑋𝐴) ≠ 1)
212185, 211eqnetrd 3083 . 2 (𝜑 → ((𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0))‘𝐴) ≠ 1)
213 fveq1 6668 . . . 4 (𝑥 = (𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0)) → (𝑥𝐴) = ((𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0))‘𝐴))
214213neeq1d 3075 . . 3 (𝑥 = (𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0)) → ((𝑥𝐴) ≠ 1 ↔ ((𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0))‘𝐴) ≠ 1))
215214rspcev 3622 . 2 (((𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0)) ∈ 𝐷 ∧ ((𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0))‘𝐴) ≠ 1) → ∃𝑥𝐷 (𝑥𝐴) ≠ 1)
216173, 212, 215syl2anc 586 1 (𝜑 → ∃𝑥𝐷 (𝑥𝐴) ≠ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  Vcvv 3494  wss 3935  ifcif 4466   class class class wbr 5065  cmpt 5145  dom cdm 5554  ran crn 5555  cio 6311  wf 6350  cfv 6354  (class class class)co 7155  Fincfn 8508  cc 10534  cr 10535  0cc0 10536  1c1 10537   + caddc 10539   · cmul 10541  -cneg 10870   / cdiv 11296  cn 11637  2c2 11691  0cn0 11896  cz 11980  ..^cfzo 13032  cexp 13428  chash 13689  Word cword 13860  cdvds 15606  Basecbs 16482  s cress 16483  +gcplusg 16564  .rcmulr 16565  0gc0g 16712  Grpcgrp 18102  .gcmg 18223   GrpHom cghm 18354  odcod 18651   DProd cdprd 19114  dProjcdpj 19115  mulGrpcmgp 19238  1rcur 19250  Ringcrg 19296  CRingccrg 19297  Unitcui 19388  ℤ/nczn 20649  𝑐ccxp 25138  DChrcdchr 25807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615  ax-mulf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-tpos 7891  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-omul 8106  df-er 8288  df-ec 8290  df-qs 8294  df-map 8407  df-pm 8408  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-fi 8874  df-sup 8905  df-inf 8906  df-oi 8973  df-card 9367  df-acn 9370  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-ioo 12741  df-ioc 12742  df-ico 12743  df-icc 12744  df-fz 12892  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13429  df-fac 13633  df-bc 13662  df-hash 13690  df-word 13861  df-shft 14425  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-limsup 14827  df-clim 14844  df-rlim 14845  df-sum 15042  df-ef 15420  df-sin 15422  df-cos 15423  df-pi 15425  df-dvds 15607  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-starv 16579  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-unif 16587  df-hom 16588  df-cco 16589  df-rest 16695  df-topn 16696  df-0g 16714  df-gsum 16715  df-topgen 16716  df-pt 16717  df-prds 16720  df-xrs 16774  df-qtop 16779  df-imas 16780  df-qus 16781  df-xps 16782  df-mre 16856  df-mrc 16857  df-acs 16859  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-mhm 17955  df-submnd 17956  df-grp 18105  df-minusg 18106  df-sbg 18107  df-mulg 18224  df-subg 18275  df-nsg 18276  df-eqg 18277  df-ghm 18355  df-gim 18398  df-cntz 18446  df-oppg 18473  df-od 18655  df-lsm 18760  df-pj1 18761  df-cmn 18907  df-abl 18908  df-dprd 19116  df-dpj 19117  df-mgp 19239  df-ur 19251  df-ring 19298  df-cring 19299  df-oppr 19372  df-dvdsr 19390  df-unit 19391  df-rnghom 19466  df-subrg 19532  df-lmod 19635  df-lss 19703  df-lsp 19743  df-sra 19943  df-rgmod 19944  df-lidl 19945  df-rsp 19946  df-2idl 20004  df-psmet 20536  df-xmet 20537  df-met 20538  df-bl 20539  df-mopn 20540  df-fbas 20541  df-fg 20542  df-cnfld 20545  df-zring 20617  df-zrh 20650  df-zn 20653  df-top 21501  df-topon 21518  df-topsp 21540  df-bases 21553  df-cld 21626  df-ntr 21627  df-cls 21628  df-nei 21705  df-lp 21743  df-perf 21744  df-cn 21834  df-cnp 21835  df-haus 21922  df-tx 22169  df-hmeo 22362  df-fil 22453  df-fm 22545  df-flim 22546  df-flf 22547  df-xms 22929  df-ms 22930  df-tms 22931  df-cncf 23485  df-limc 24463  df-dv 24464  df-log 25139  df-cxp 25140  df-dchr 25808
This theorem is referenced by:  dchrptlem3  25841
  Copyright terms: Public domain W3C validator