| Step | Hyp | Ref
| Expression |
| 1 | | dchrpt.g |
. . 3
⊢ 𝐺 = (DChr‘𝑁) |
| 2 | | dchrpt.z |
. . 3
⊢ 𝑍 =
(ℤ/nℤ‘𝑁) |
| 3 | | dchrpt.b |
. . 3
⊢ 𝐵 = (Base‘𝑍) |
| 4 | | dchrpt.u |
. . 3
⊢ 𝑈 = (Unit‘𝑍) |
| 5 | | dchrpt.n |
. . 3
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 6 | | dchrpt.d |
. . 3
⊢ 𝐷 = (Base‘𝐺) |
| 7 | | fveq2 6881 |
. . 3
⊢ (𝑣 = 𝑥 → (𝑋‘𝑣) = (𝑋‘𝑥)) |
| 8 | | fveq2 6881 |
. . 3
⊢ (𝑣 = 𝑦 → (𝑋‘𝑣) = (𝑋‘𝑦)) |
| 9 | | fveq2 6881 |
. . 3
⊢ (𝑣 = (𝑥(.r‘𝑍)𝑦) → (𝑋‘𝑣) = (𝑋‘(𝑥(.r‘𝑍)𝑦))) |
| 10 | | fveq2 6881 |
. . 3
⊢ (𝑣 = (1r‘𝑍) → (𝑋‘𝑣) = (𝑋‘(1r‘𝑍))) |
| 11 | | dchrpt.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐻dom DProd 𝑆) |
| 12 | | zex 12602 |
. . . . . . . . . . . . 13
⊢ ℤ
∈ V |
| 13 | 12 | mptex 7220 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊‘𝑘))) ∈ V |
| 14 | 13 | rnex 7911 |
. . . . . . . . . . 11
⊢ ran
(𝑛 ∈ ℤ ↦
(𝑛 · (𝑊‘𝑘))) ∈ V |
| 15 | | dchrpt.s |
. . . . . . . . . . 11
⊢ 𝑆 = (𝑘 ∈ dom 𝑊 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊‘𝑘)))) |
| 16 | 14, 15 | dmmpti 6687 |
. . . . . . . . . 10
⊢ dom 𝑆 = dom 𝑊 |
| 17 | 16 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → dom 𝑆 = dom 𝑊) |
| 18 | | dchrpt.p |
. . . . . . . . 9
⊢ 𝑃 = (𝐻dProj𝑆) |
| 19 | | dchrpt.i |
. . . . . . . . 9
⊢ (𝜑 → 𝐼 ∈ dom 𝑊) |
| 20 | 11, 17, 18, 19 | dpjf 20045 |
. . . . . . . 8
⊢ (𝜑 → (𝑃‘𝐼):(𝐻 DProd 𝑆)⟶(𝑆‘𝐼)) |
| 21 | | dchrpt.3 |
. . . . . . . . 9
⊢ (𝜑 → (𝐻 DProd 𝑆) = 𝑈) |
| 22 | 21 | feq2d 6697 |
. . . . . . . 8
⊢ (𝜑 → ((𝑃‘𝐼):(𝐻 DProd 𝑆)⟶(𝑆‘𝐼) ↔ (𝑃‘𝐼):𝑈⟶(𝑆‘𝐼))) |
| 23 | 20, 22 | mpbid 232 |
. . . . . . 7
⊢ (𝜑 → (𝑃‘𝐼):𝑈⟶(𝑆‘𝐼)) |
| 24 | 23 | ffvelcdmda 7079 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑈) → ((𝑃‘𝐼)‘𝑣) ∈ (𝑆‘𝐼)) |
| 25 | 19 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑈) → 𝐼 ∈ dom 𝑊) |
| 26 | | oveq1 7417 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑎 → (𝑛 · (𝑊‘𝑘)) = (𝑎 · (𝑊‘𝑘))) |
| 27 | 26 | cbvmptv 5230 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊‘𝑘))) = (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊‘𝑘))) |
| 28 | | fveq2 6881 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝐼 → (𝑊‘𝑘) = (𝑊‘𝐼)) |
| 29 | 28 | oveq2d 7426 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝐼 → (𝑎 · (𝑊‘𝑘)) = (𝑎 · (𝑊‘𝐼))) |
| 30 | 29 | mpteq2dv 5220 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐼 → (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊‘𝑘))) = (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊‘𝐼)))) |
| 31 | 27, 30 | eqtrid 2783 |
. . . . . . . . 9
⊢ (𝑘 = 𝐼 → (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊‘𝑘))) = (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊‘𝐼)))) |
| 32 | 31 | rneqd 5923 |
. . . . . . . 8
⊢ (𝑘 = 𝐼 → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊‘𝑘))) = ran (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊‘𝐼)))) |
| 33 | 32, 15, 14 | fvmpt3i 6996 |
. . . . . . 7
⊢ (𝐼 ∈ dom 𝑊 → (𝑆‘𝐼) = ran (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊‘𝐼)))) |
| 34 | 25, 33 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑈) → (𝑆‘𝐼) = ran (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊‘𝐼)))) |
| 35 | 24, 34 | eleqtrd 2837 |
. . . . 5
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑈) → ((𝑃‘𝐼)‘𝑣) ∈ ran (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊‘𝐼)))) |
| 36 | | eqid 2736 |
. . . . . 6
⊢ (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊‘𝐼))) = (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊‘𝐼))) |
| 37 | | ovex 7443 |
. . . . . 6
⊢ (𝑎 · (𝑊‘𝐼)) ∈ V |
| 38 | 36, 37 | elrnmpti 5947 |
. . . . 5
⊢ (((𝑃‘𝐼)‘𝑣) ∈ ran (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊‘𝐼))) ↔ ∃𝑎 ∈ ℤ ((𝑃‘𝐼)‘𝑣) = (𝑎 · (𝑊‘𝐼))) |
| 39 | 35, 38 | sylib 218 |
. . . 4
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑈) → ∃𝑎 ∈ ℤ ((𝑃‘𝐼)‘𝑣) = (𝑎 · (𝑊‘𝐼))) |
| 40 | | dchrpt.1 |
. . . . . 6
⊢ 1 =
(1r‘𝑍) |
| 41 | | dchrpt.n1 |
. . . . . 6
⊢ (𝜑 → 𝐴 ≠ 1 ) |
| 42 | | dchrpt.h |
. . . . . 6
⊢ 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈) |
| 43 | | dchrpt.m |
. . . . . 6
⊢ · =
(.g‘𝐻) |
| 44 | | dchrpt.au |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| 45 | | dchrpt.w |
. . . . . 6
⊢ (𝜑 → 𝑊 ∈ Word 𝑈) |
| 46 | | dchrpt.o |
. . . . . 6
⊢ 𝑂 = (od‘𝐻) |
| 47 | | dchrpt.t |
. . . . . 6
⊢ 𝑇 =
(-1↑𝑐(2 / (𝑂‘(𝑊‘𝐼)))) |
| 48 | | dchrpt.4 |
. . . . . 6
⊢ (𝜑 → ((𝑃‘𝐼)‘𝐴) ≠ 1 ) |
| 49 | | dchrpt.5 |
. . . . . 6
⊢ 𝑋 = (𝑢 ∈ 𝑈 ↦ (℩ℎ∃𝑚 ∈ ℤ (((𝑃‘𝐼)‘𝑢) = (𝑚 · (𝑊‘𝐼)) ∧ ℎ = (𝑇↑𝑚)))) |
| 50 | 1, 2, 6, 3, 40, 5,
41, 4, 42, 43, 15, 44, 45, 11, 21, 18, 46, 47, 19, 48, 49 | dchrptlem1 27232 |
. . . . 5
⊢ (((𝜑 ∧ 𝑣 ∈ 𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝑣) = (𝑎 · (𝑊‘𝐼)))) → (𝑋‘𝑣) = (𝑇↑𝑎)) |
| 51 | | neg1cn 12359 |
. . . . . . . . 9
⊢ -1 ∈
ℂ |
| 52 | | 2re 12319 |
. . . . . . . . . . 11
⊢ 2 ∈
ℝ |
| 53 | 5 | nnnn0d 12567 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 54 | 2 | zncrng 21510 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ0
→ 𝑍 ∈
CRing) |
| 55 | | crngring 20210 |
. . . . . . . . . . . . . 14
⊢ (𝑍 ∈ CRing → 𝑍 ∈ Ring) |
| 56 | 53, 54, 55 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑍 ∈ Ring) |
| 57 | 4, 42 | unitgrp 20348 |
. . . . . . . . . . . . 13
⊢ (𝑍 ∈ Ring → 𝐻 ∈ Grp) |
| 58 | 56, 57 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐻 ∈ Grp) |
| 59 | 2, 3 | znfi 21525 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ → 𝐵 ∈ Fin) |
| 60 | 5, 59 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ∈ Fin) |
| 61 | 3, 4 | unitss 20341 |
. . . . . . . . . . . . 13
⊢ 𝑈 ⊆ 𝐵 |
| 62 | | ssfi 9192 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ Fin ∧ 𝑈 ⊆ 𝐵) → 𝑈 ∈ Fin) |
| 63 | 60, 61, 62 | sylancl 586 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑈 ∈ Fin) |
| 64 | | wrdf 14541 |
. . . . . . . . . . . . . 14
⊢ (𝑊 ∈ Word 𝑈 → 𝑊:(0..^(♯‘𝑊))⟶𝑈) |
| 65 | 45, 64 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑊:(0..^(♯‘𝑊))⟶𝑈) |
| 66 | 65 | fdmd 6721 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → dom 𝑊 = (0..^(♯‘𝑊))) |
| 67 | 19, 66 | eleqtrd 2837 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐼 ∈ (0..^(♯‘𝑊))) |
| 68 | 65, 67 | ffvelcdmd 7080 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑊‘𝐼) ∈ 𝑈) |
| 69 | 4, 42 | unitgrpbas 20347 |
. . . . . . . . . . . . 13
⊢ 𝑈 = (Base‘𝐻) |
| 70 | 69, 46 | odcl2 19551 |
. . . . . . . . . . . 12
⊢ ((𝐻 ∈ Grp ∧ 𝑈 ∈ Fin ∧ (𝑊‘𝐼) ∈ 𝑈) → (𝑂‘(𝑊‘𝐼)) ∈ ℕ) |
| 71 | 58, 63, 68, 70 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑂‘(𝑊‘𝐼)) ∈ ℕ) |
| 72 | | nndivre 12286 |
. . . . . . . . . . 11
⊢ ((2
∈ ℝ ∧ (𝑂‘(𝑊‘𝐼)) ∈ ℕ) → (2 / (𝑂‘(𝑊‘𝐼))) ∈ ℝ) |
| 73 | 52, 71, 72 | sylancr 587 |
. . . . . . . . . 10
⊢ (𝜑 → (2 / (𝑂‘(𝑊‘𝐼))) ∈ ℝ) |
| 74 | 73 | recnd 11268 |
. . . . . . . . 9
⊢ (𝜑 → (2 / (𝑂‘(𝑊‘𝐼))) ∈ ℂ) |
| 75 | | cxpcl 26640 |
. . . . . . . . 9
⊢ ((-1
∈ ℂ ∧ (2 / (𝑂‘(𝑊‘𝐼))) ∈ ℂ) →
(-1↑𝑐(2 / (𝑂‘(𝑊‘𝐼)))) ∈ ℂ) |
| 76 | 51, 74, 75 | sylancr 587 |
. . . . . . . 8
⊢ (𝜑 →
(-1↑𝑐(2 / (𝑂‘(𝑊‘𝐼)))) ∈ ℂ) |
| 77 | 47, 76 | eqeltrid 2839 |
. . . . . . 7
⊢ (𝜑 → 𝑇 ∈ ℂ) |
| 78 | 77 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑣 ∈ 𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝑣) = (𝑎 · (𝑊‘𝐼)))) → 𝑇 ∈ ℂ) |
| 79 | 51 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → -1 ∈
ℂ) |
| 80 | | neg1ne0 12361 |
. . . . . . . . . 10
⊢ -1 ≠
0 |
| 81 | 80 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → -1 ≠
0) |
| 82 | 79, 81, 74 | cxpne0d 26679 |
. . . . . . . 8
⊢ (𝜑 →
(-1↑𝑐(2 / (𝑂‘(𝑊‘𝐼)))) ≠ 0) |
| 83 | 47 | neeq1i 2997 |
. . . . . . . 8
⊢ (𝑇 ≠ 0 ↔
(-1↑𝑐(2 / (𝑂‘(𝑊‘𝐼)))) ≠ 0) |
| 84 | 82, 83 | sylibr 234 |
. . . . . . 7
⊢ (𝜑 → 𝑇 ≠ 0) |
| 85 | 84 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑣 ∈ 𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝑣) = (𝑎 · (𝑊‘𝐼)))) → 𝑇 ≠ 0) |
| 86 | | simprl 770 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑣 ∈ 𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝑣) = (𝑎 · (𝑊‘𝐼)))) → 𝑎 ∈ ℤ) |
| 87 | 78, 85, 86 | expclzd 14174 |
. . . . 5
⊢ (((𝜑 ∧ 𝑣 ∈ 𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝑣) = (𝑎 · (𝑊‘𝐼)))) → (𝑇↑𝑎) ∈ ℂ) |
| 88 | 50, 87 | eqeltrd 2835 |
. . . 4
⊢ (((𝜑 ∧ 𝑣 ∈ 𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝑣) = (𝑎 · (𝑊‘𝐼)))) → (𝑋‘𝑣) ∈ ℂ) |
| 89 | 39, 88 | rexlimddv 3148 |
. . 3
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑈) → (𝑋‘𝑣) ∈ ℂ) |
| 90 | | fveqeq2 6890 |
. . . . . 6
⊢ (𝑣 = 𝑥 → (((𝑃‘𝐼)‘𝑣) = (𝑎 · (𝑊‘𝐼)) ↔ ((𝑃‘𝐼)‘𝑥) = (𝑎 · (𝑊‘𝐼)))) |
| 91 | 90 | rexbidv 3165 |
. . . . 5
⊢ (𝑣 = 𝑥 → (∃𝑎 ∈ ℤ ((𝑃‘𝐼)‘𝑣) = (𝑎 · (𝑊‘𝐼)) ↔ ∃𝑎 ∈ ℤ ((𝑃‘𝐼)‘𝑥) = (𝑎 · (𝑊‘𝐼)))) |
| 92 | 39 | ralrimiva 3133 |
. . . . . 6
⊢ (𝜑 → ∀𝑣 ∈ 𝑈 ∃𝑎 ∈ ℤ ((𝑃‘𝐼)‘𝑣) = (𝑎 · (𝑊‘𝐼))) |
| 93 | 92 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → ∀𝑣 ∈ 𝑈 ∃𝑎 ∈ ℤ ((𝑃‘𝐼)‘𝑣) = (𝑎 · (𝑊‘𝐼))) |
| 94 | | simprl 770 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝑥 ∈ 𝑈) |
| 95 | 91, 93, 94 | rspcdva 3607 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → ∃𝑎 ∈ ℤ ((𝑃‘𝐼)‘𝑥) = (𝑎 · (𝑊‘𝐼))) |
| 96 | | fveqeq2 6890 |
. . . . . . 7
⊢ (𝑣 = 𝑦 → (((𝑃‘𝐼)‘𝑣) = (𝑎 · (𝑊‘𝐼)) ↔ ((𝑃‘𝐼)‘𝑦) = (𝑎 · (𝑊‘𝐼)))) |
| 97 | 96 | rexbidv 3165 |
. . . . . 6
⊢ (𝑣 = 𝑦 → (∃𝑎 ∈ ℤ ((𝑃‘𝐼)‘𝑣) = (𝑎 · (𝑊‘𝐼)) ↔ ∃𝑎 ∈ ℤ ((𝑃‘𝐼)‘𝑦) = (𝑎 · (𝑊‘𝐼)))) |
| 98 | | oveq1 7417 |
. . . . . . . 8
⊢ (𝑎 = 𝑏 → (𝑎 · (𝑊‘𝐼)) = (𝑏 · (𝑊‘𝐼))) |
| 99 | 98 | eqeq2d 2747 |
. . . . . . 7
⊢ (𝑎 = 𝑏 → (((𝑃‘𝐼)‘𝑦) = (𝑎 · (𝑊‘𝐼)) ↔ ((𝑃‘𝐼)‘𝑦) = (𝑏 · (𝑊‘𝐼)))) |
| 100 | 99 | cbvrexvw 3225 |
. . . . . 6
⊢
(∃𝑎 ∈
ℤ ((𝑃‘𝐼)‘𝑦) = (𝑎 · (𝑊‘𝐼)) ↔ ∃𝑏 ∈ ℤ ((𝑃‘𝐼)‘𝑦) = (𝑏 · (𝑊‘𝐼))) |
| 101 | 97, 100 | bitrdi 287 |
. . . . 5
⊢ (𝑣 = 𝑦 → (∃𝑎 ∈ ℤ ((𝑃‘𝐼)‘𝑣) = (𝑎 · (𝑊‘𝐼)) ↔ ∃𝑏 ∈ ℤ ((𝑃‘𝐼)‘𝑦) = (𝑏 · (𝑊‘𝐼)))) |
| 102 | | simprr 772 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝑦 ∈ 𝑈) |
| 103 | 101, 93, 102 | rspcdva 3607 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → ∃𝑏 ∈ ℤ ((𝑃‘𝐼)‘𝑦) = (𝑏 · (𝑊‘𝐼))) |
| 104 | | reeanv 3217 |
. . . . 5
⊢
(∃𝑎 ∈
ℤ ∃𝑏 ∈
ℤ (((𝑃‘𝐼)‘𝑥) = (𝑎 · (𝑊‘𝐼)) ∧ ((𝑃‘𝐼)‘𝑦) = (𝑏 · (𝑊‘𝐼))) ↔ (∃𝑎 ∈ ℤ ((𝑃‘𝐼)‘𝑥) = (𝑎 · (𝑊‘𝐼)) ∧ ∃𝑏 ∈ ℤ ((𝑃‘𝐼)‘𝑦) = (𝑏 · (𝑊‘𝐼)))) |
| 105 | 77 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃‘𝐼)‘𝑥) = (𝑎 · (𝑊‘𝐼)) ∧ ((𝑃‘𝐼)‘𝑦) = (𝑏 · (𝑊‘𝐼))))) → 𝑇 ∈ ℂ) |
| 106 | 84 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃‘𝐼)‘𝑥) = (𝑎 · (𝑊‘𝐼)) ∧ ((𝑃‘𝐼)‘𝑦) = (𝑏 · (𝑊‘𝐼))))) → 𝑇 ≠ 0) |
| 107 | | simprll 778 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃‘𝐼)‘𝑥) = (𝑎 · (𝑊‘𝐼)) ∧ ((𝑃‘𝐼)‘𝑦) = (𝑏 · (𝑊‘𝐼))))) → 𝑎 ∈ ℤ) |
| 108 | | simprlr 779 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃‘𝐼)‘𝑥) = (𝑎 · (𝑊‘𝐼)) ∧ ((𝑃‘𝐼)‘𝑦) = (𝑏 · (𝑊‘𝐼))))) → 𝑏 ∈ ℤ) |
| 109 | | expaddz 14129 |
. . . . . . . . 9
⊢ (((𝑇 ∈ ℂ ∧ 𝑇 ≠ 0) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑇↑(𝑎 + 𝑏)) = ((𝑇↑𝑎) · (𝑇↑𝑏))) |
| 110 | 105, 106,
107, 108, 109 | syl22anc 838 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃‘𝐼)‘𝑥) = (𝑎 · (𝑊‘𝐼)) ∧ ((𝑃‘𝐼)‘𝑦) = (𝑏 · (𝑊‘𝐼))))) → (𝑇↑(𝑎 + 𝑏)) = ((𝑇↑𝑎) · (𝑇↑𝑏))) |
| 111 | | simpll 766 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃‘𝐼)‘𝑥) = (𝑎 · (𝑊‘𝐼)) ∧ ((𝑃‘𝐼)‘𝑦) = (𝑏 · (𝑊‘𝐼))))) → 𝜑) |
| 112 | 56 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃‘𝐼)‘𝑥) = (𝑎 · (𝑊‘𝐼)) ∧ ((𝑃‘𝐼)‘𝑦) = (𝑏 · (𝑊‘𝐼))))) → 𝑍 ∈ Ring) |
| 113 | 94 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃‘𝐼)‘𝑥) = (𝑎 · (𝑊‘𝐼)) ∧ ((𝑃‘𝐼)‘𝑦) = (𝑏 · (𝑊‘𝐼))))) → 𝑥 ∈ 𝑈) |
| 114 | 102 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃‘𝐼)‘𝑥) = (𝑎 · (𝑊‘𝐼)) ∧ ((𝑃‘𝐼)‘𝑦) = (𝑏 · (𝑊‘𝐼))))) → 𝑦 ∈ 𝑈) |
| 115 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(.r‘𝑍) = (.r‘𝑍) |
| 116 | 4, 115 | unitmulcl 20345 |
. . . . . . . . . 10
⊢ ((𝑍 ∈ Ring ∧ 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈) → (𝑥(.r‘𝑍)𝑦) ∈ 𝑈) |
| 117 | 112, 113,
114, 116 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃‘𝐼)‘𝑥) = (𝑎 · (𝑊‘𝐼)) ∧ ((𝑃‘𝐼)‘𝑦) = (𝑏 · (𝑊‘𝐼))))) → (𝑥(.r‘𝑍)𝑦) ∈ 𝑈) |
| 118 | 107, 108 | zaddcld 12706 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃‘𝐼)‘𝑥) = (𝑎 · (𝑊‘𝐼)) ∧ ((𝑃‘𝐼)‘𝑦) = (𝑏 · (𝑊‘𝐼))))) → (𝑎 + 𝑏) ∈ ℤ) |
| 119 | | simprrl 780 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃‘𝐼)‘𝑥) = (𝑎 · (𝑊‘𝐼)) ∧ ((𝑃‘𝐼)‘𝑦) = (𝑏 · (𝑊‘𝐼))))) → ((𝑃‘𝐼)‘𝑥) = (𝑎 · (𝑊‘𝐼))) |
| 120 | | simprrr 781 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃‘𝐼)‘𝑥) = (𝑎 · (𝑊‘𝐼)) ∧ ((𝑃‘𝐼)‘𝑦) = (𝑏 · (𝑊‘𝐼))))) → ((𝑃‘𝐼)‘𝑦) = (𝑏 · (𝑊‘𝐼))) |
| 121 | 119, 120 | oveq12d 7428 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃‘𝐼)‘𝑥) = (𝑎 · (𝑊‘𝐼)) ∧ ((𝑃‘𝐼)‘𝑦) = (𝑏 · (𝑊‘𝐼))))) → (((𝑃‘𝐼)‘𝑥)(.r‘𝑍)((𝑃‘𝐼)‘𝑦)) = ((𝑎 · (𝑊‘𝐼))(.r‘𝑍)(𝑏 · (𝑊‘𝐼)))) |
| 122 | 11, 17, 18, 19 | dpjghm 20051 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑃‘𝐼) ∈ ((𝐻 ↾s (𝐻 DProd 𝑆)) GrpHom 𝐻)) |
| 123 | 21 | oveq2d 7426 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐻 ↾s (𝐻 DProd 𝑆)) = (𝐻 ↾s 𝑈)) |
| 124 | 42 | ovexi 7444 |
. . . . . . . . . . . . . . . 16
⊢ 𝐻 ∈ V |
| 125 | 69 | ressid 17270 |
. . . . . . . . . . . . . . . 16
⊢ (𝐻 ∈ V → (𝐻 ↾s 𝑈) = 𝐻) |
| 126 | 124, 125 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ (𝐻 ↾s 𝑈) = 𝐻 |
| 127 | 123, 126 | eqtrdi 2787 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐻 ↾s (𝐻 DProd 𝑆)) = 𝐻) |
| 128 | 127 | oveq1d 7425 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐻 ↾s (𝐻 DProd 𝑆)) GrpHom 𝐻) = (𝐻 GrpHom 𝐻)) |
| 129 | 122, 128 | eleqtrd 2837 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑃‘𝐼) ∈ (𝐻 GrpHom 𝐻)) |
| 130 | 129 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃‘𝐼)‘𝑥) = (𝑎 · (𝑊‘𝐼)) ∧ ((𝑃‘𝐼)‘𝑦) = (𝑏 · (𝑊‘𝐼))))) → (𝑃‘𝐼) ∈ (𝐻 GrpHom 𝐻)) |
| 131 | 4 | fvexi 6895 |
. . . . . . . . . . . . 13
⊢ 𝑈 ∈ V |
| 132 | | eqid 2736 |
. . . . . . . . . . . . . . 15
⊢
(mulGrp‘𝑍) =
(mulGrp‘𝑍) |
| 133 | 132, 115 | mgpplusg 20109 |
. . . . . . . . . . . . . 14
⊢
(.r‘𝑍) = (+g‘(mulGrp‘𝑍)) |
| 134 | 42, 133 | ressplusg 17310 |
. . . . . . . . . . . . 13
⊢ (𝑈 ∈ V →
(.r‘𝑍) =
(+g‘𝐻)) |
| 135 | 131, 134 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
(.r‘𝑍) = (+g‘𝐻) |
| 136 | 69, 135, 135 | ghmlin 19209 |
. . . . . . . . . . 11
⊢ (((𝑃‘𝐼) ∈ (𝐻 GrpHom 𝐻) ∧ 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈) → ((𝑃‘𝐼)‘(𝑥(.r‘𝑍)𝑦)) = (((𝑃‘𝐼)‘𝑥)(.r‘𝑍)((𝑃‘𝐼)‘𝑦))) |
| 137 | 130, 113,
114, 136 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃‘𝐼)‘𝑥) = (𝑎 · (𝑊‘𝐼)) ∧ ((𝑃‘𝐼)‘𝑦) = (𝑏 · (𝑊‘𝐼))))) → ((𝑃‘𝐼)‘(𝑥(.r‘𝑍)𝑦)) = (((𝑃‘𝐼)‘𝑥)(.r‘𝑍)((𝑃‘𝐼)‘𝑦))) |
| 138 | 58 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃‘𝐼)‘𝑥) = (𝑎 · (𝑊‘𝐼)) ∧ ((𝑃‘𝐼)‘𝑦) = (𝑏 · (𝑊‘𝐼))))) → 𝐻 ∈ Grp) |
| 139 | 68 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃‘𝐼)‘𝑥) = (𝑎 · (𝑊‘𝐼)) ∧ ((𝑃‘𝐼)‘𝑦) = (𝑏 · (𝑊‘𝐼))))) → (𝑊‘𝐼) ∈ 𝑈) |
| 140 | 69, 43, 135 | mulgdir 19094 |
. . . . . . . . . . 11
⊢ ((𝐻 ∈ Grp ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ (𝑊‘𝐼) ∈ 𝑈)) → ((𝑎 + 𝑏) · (𝑊‘𝐼)) = ((𝑎 · (𝑊‘𝐼))(.r‘𝑍)(𝑏 · (𝑊‘𝐼)))) |
| 141 | 138, 107,
108, 139, 140 | syl13anc 1374 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃‘𝐼)‘𝑥) = (𝑎 · (𝑊‘𝐼)) ∧ ((𝑃‘𝐼)‘𝑦) = (𝑏 · (𝑊‘𝐼))))) → ((𝑎 + 𝑏) · (𝑊‘𝐼)) = ((𝑎 · (𝑊‘𝐼))(.r‘𝑍)(𝑏 · (𝑊‘𝐼)))) |
| 142 | 121, 137,
141 | 3eqtr4d 2781 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃‘𝐼)‘𝑥) = (𝑎 · (𝑊‘𝐼)) ∧ ((𝑃‘𝐼)‘𝑦) = (𝑏 · (𝑊‘𝐼))))) → ((𝑃‘𝐼)‘(𝑥(.r‘𝑍)𝑦)) = ((𝑎 + 𝑏) · (𝑊‘𝐼))) |
| 143 | 1, 2, 6, 3, 40, 5,
41, 4, 42, 43, 15, 44, 45, 11, 21, 18, 46, 47, 19, 48, 49 | dchrptlem1 27232 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥(.r‘𝑍)𝑦) ∈ 𝑈) ∧ ((𝑎 + 𝑏) ∈ ℤ ∧ ((𝑃‘𝐼)‘(𝑥(.r‘𝑍)𝑦)) = ((𝑎 + 𝑏) · (𝑊‘𝐼)))) → (𝑋‘(𝑥(.r‘𝑍)𝑦)) = (𝑇↑(𝑎 + 𝑏))) |
| 144 | 111, 117,
118, 142, 143 | syl22anc 838 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃‘𝐼)‘𝑥) = (𝑎 · (𝑊‘𝐼)) ∧ ((𝑃‘𝐼)‘𝑦) = (𝑏 · (𝑊‘𝐼))))) → (𝑋‘(𝑥(.r‘𝑍)𝑦)) = (𝑇↑(𝑎 + 𝑏))) |
| 145 | 1, 2, 6, 3, 40, 5,
41, 4, 42, 43, 15, 44, 45, 11, 21, 18, 46, 47, 19, 48, 49 | dchrptlem1 27232 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝑥) = (𝑎 · (𝑊‘𝐼)))) → (𝑋‘𝑥) = (𝑇↑𝑎)) |
| 146 | 111, 113,
107, 119, 145 | syl22anc 838 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃‘𝐼)‘𝑥) = (𝑎 · (𝑊‘𝐼)) ∧ ((𝑃‘𝐼)‘𝑦) = (𝑏 · (𝑊‘𝐼))))) → (𝑋‘𝑥) = (𝑇↑𝑎)) |
| 147 | 1, 2, 6, 3, 40, 5,
41, 4, 42, 43, 15, 44, 45, 11, 21, 18, 46, 47, 19, 48, 49 | dchrptlem1 27232 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑈) ∧ (𝑏 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝑦) = (𝑏 · (𝑊‘𝐼)))) → (𝑋‘𝑦) = (𝑇↑𝑏)) |
| 148 | 111, 114,
108, 120, 147 | syl22anc 838 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃‘𝐼)‘𝑥) = (𝑎 · (𝑊‘𝐼)) ∧ ((𝑃‘𝐼)‘𝑦) = (𝑏 · (𝑊‘𝐼))))) → (𝑋‘𝑦) = (𝑇↑𝑏)) |
| 149 | 146, 148 | oveq12d 7428 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃‘𝐼)‘𝑥) = (𝑎 · (𝑊‘𝐼)) ∧ ((𝑃‘𝐼)‘𝑦) = (𝑏 · (𝑊‘𝐼))))) → ((𝑋‘𝑥) · (𝑋‘𝑦)) = ((𝑇↑𝑎) · (𝑇↑𝑏))) |
| 150 | 110, 144,
149 | 3eqtr4d 2781 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃‘𝐼)‘𝑥) = (𝑎 · (𝑊‘𝐼)) ∧ ((𝑃‘𝐼)‘𝑦) = (𝑏 · (𝑊‘𝐼))))) → (𝑋‘(𝑥(.r‘𝑍)𝑦)) = ((𝑋‘𝑥) · (𝑋‘𝑦))) |
| 151 | 150 | expr 456 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((((𝑃‘𝐼)‘𝑥) = (𝑎 · (𝑊‘𝐼)) ∧ ((𝑃‘𝐼)‘𝑦) = (𝑏 · (𝑊‘𝐼))) → (𝑋‘(𝑥(.r‘𝑍)𝑦)) = ((𝑋‘𝑥) · (𝑋‘𝑦)))) |
| 152 | 151 | rexlimdvva 3202 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (((𝑃‘𝐼)‘𝑥) = (𝑎 · (𝑊‘𝐼)) ∧ ((𝑃‘𝐼)‘𝑦) = (𝑏 · (𝑊‘𝐼))) → (𝑋‘(𝑥(.r‘𝑍)𝑦)) = ((𝑋‘𝑥) · (𝑋‘𝑦)))) |
| 153 | 104, 152 | biimtrrid 243 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → ((∃𝑎 ∈ ℤ ((𝑃‘𝐼)‘𝑥) = (𝑎 · (𝑊‘𝐼)) ∧ ∃𝑏 ∈ ℤ ((𝑃‘𝐼)‘𝑦) = (𝑏 · (𝑊‘𝐼))) → (𝑋‘(𝑥(.r‘𝑍)𝑦)) = ((𝑋‘𝑥) · (𝑋‘𝑦)))) |
| 154 | 95, 103, 153 | mp2and 699 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → (𝑋‘(𝑥(.r‘𝑍)𝑦)) = ((𝑋‘𝑥) · (𝑋‘𝑦))) |
| 155 | | id 22 |
. . . . 5
⊢ (𝜑 → 𝜑) |
| 156 | | eqid 2736 |
. . . . . . 7
⊢
(1r‘𝑍) = (1r‘𝑍) |
| 157 | 4, 156 | 1unit 20339 |
. . . . . 6
⊢ (𝑍 ∈ Ring →
(1r‘𝑍)
∈ 𝑈) |
| 158 | 56, 157 | syl 17 |
. . . . 5
⊢ (𝜑 → (1r‘𝑍) ∈ 𝑈) |
| 159 | | 0zd 12605 |
. . . . 5
⊢ (𝜑 → 0 ∈
ℤ) |
| 160 | | eqid 2736 |
. . . . . . . 8
⊢
(0g‘𝐻) = (0g‘𝐻) |
| 161 | 160, 160 | ghmid 19210 |
. . . . . . 7
⊢ ((𝑃‘𝐼) ∈ (𝐻 GrpHom 𝐻) → ((𝑃‘𝐼)‘(0g‘𝐻)) = (0g‘𝐻)) |
| 162 | 129, 161 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((𝑃‘𝐼)‘(0g‘𝐻)) = (0g‘𝐻)) |
| 163 | 4, 42, 156 | unitgrpid 20350 |
. . . . . . . 8
⊢ (𝑍 ∈ Ring →
(1r‘𝑍) =
(0g‘𝐻)) |
| 164 | 56, 163 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (1r‘𝑍) = (0g‘𝐻)) |
| 165 | 164 | fveq2d 6885 |
. . . . . 6
⊢ (𝜑 → ((𝑃‘𝐼)‘(1r‘𝑍)) = ((𝑃‘𝐼)‘(0g‘𝐻))) |
| 166 | 69, 160, 43 | mulg0 19062 |
. . . . . . 7
⊢ ((𝑊‘𝐼) ∈ 𝑈 → (0 · (𝑊‘𝐼)) = (0g‘𝐻)) |
| 167 | 68, 166 | syl 17 |
. . . . . 6
⊢ (𝜑 → (0 · (𝑊‘𝐼)) = (0g‘𝐻)) |
| 168 | 162, 165,
167 | 3eqtr4d 2781 |
. . . . 5
⊢ (𝜑 → ((𝑃‘𝐼)‘(1r‘𝑍)) = (0 · (𝑊‘𝐼))) |
| 169 | 1, 2, 6, 3, 40, 5,
41, 4, 42, 43, 15, 44, 45, 11, 21, 18, 46, 47, 19, 48, 49 | dchrptlem1 27232 |
. . . . 5
⊢ (((𝜑 ∧ (1r‘𝑍) ∈ 𝑈) ∧ (0 ∈ ℤ ∧ ((𝑃‘𝐼)‘(1r‘𝑍)) = (0 · (𝑊‘𝐼)))) → (𝑋‘(1r‘𝑍)) = (𝑇↑0)) |
| 170 | 155, 158,
159, 168, 169 | syl22anc 838 |
. . . 4
⊢ (𝜑 → (𝑋‘(1r‘𝑍)) = (𝑇↑0)) |
| 171 | 77 | exp0d 14163 |
. . . 4
⊢ (𝜑 → (𝑇↑0) = 1) |
| 172 | 170, 171 | eqtrd 2771 |
. . 3
⊢ (𝜑 → (𝑋‘(1r‘𝑍)) = 1) |
| 173 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
89, 154, 172 | dchrelbasd 27207 |
. 2
⊢ (𝜑 → (𝑣 ∈ 𝐵 ↦ if(𝑣 ∈ 𝑈, (𝑋‘𝑣), 0)) ∈ 𝐷) |
| 174 | 61, 44 | sselid 3961 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| 175 | | eleq1 2823 |
. . . . . . 7
⊢ (𝑣 = 𝐴 → (𝑣 ∈ 𝑈 ↔ 𝐴 ∈ 𝑈)) |
| 176 | | fveq2 6881 |
. . . . . . 7
⊢ (𝑣 = 𝐴 → (𝑋‘𝑣) = (𝑋‘𝐴)) |
| 177 | 175, 176 | ifbieq1d 4530 |
. . . . . 6
⊢ (𝑣 = 𝐴 → if(𝑣 ∈ 𝑈, (𝑋‘𝑣), 0) = if(𝐴 ∈ 𝑈, (𝑋‘𝐴), 0)) |
| 178 | | eqid 2736 |
. . . . . 6
⊢ (𝑣 ∈ 𝐵 ↦ if(𝑣 ∈ 𝑈, (𝑋‘𝑣), 0)) = (𝑣 ∈ 𝐵 ↦ if(𝑣 ∈ 𝑈, (𝑋‘𝑣), 0)) |
| 179 | | fvex 6894 |
. . . . . . 7
⊢ (𝑋‘𝑣) ∈ V |
| 180 | | c0ex 11234 |
. . . . . . 7
⊢ 0 ∈
V |
| 181 | 179, 180 | ifex 4556 |
. . . . . 6
⊢ if(𝑣 ∈ 𝑈, (𝑋‘𝑣), 0) ∈ V |
| 182 | 177, 178,
181 | fvmpt3i 6996 |
. . . . 5
⊢ (𝐴 ∈ 𝐵 → ((𝑣 ∈ 𝐵 ↦ if(𝑣 ∈ 𝑈, (𝑋‘𝑣), 0))‘𝐴) = if(𝐴 ∈ 𝑈, (𝑋‘𝐴), 0)) |
| 183 | 174, 182 | syl 17 |
. . . 4
⊢ (𝜑 → ((𝑣 ∈ 𝐵 ↦ if(𝑣 ∈ 𝑈, (𝑋‘𝑣), 0))‘𝐴) = if(𝐴 ∈ 𝑈, (𝑋‘𝐴), 0)) |
| 184 | 44 | iftrued 4513 |
. . . 4
⊢ (𝜑 → if(𝐴 ∈ 𝑈, (𝑋‘𝐴), 0) = (𝑋‘𝐴)) |
| 185 | 183, 184 | eqtrd 2771 |
. . 3
⊢ (𝜑 → ((𝑣 ∈ 𝐵 ↦ if(𝑣 ∈ 𝑈, (𝑋‘𝑣), 0))‘𝐴) = (𝑋‘𝐴)) |
| 186 | | fveqeq2 6890 |
. . . . . 6
⊢ (𝑣 = 𝐴 → (((𝑃‘𝐼)‘𝑣) = (𝑎 · (𝑊‘𝐼)) ↔ ((𝑃‘𝐼)‘𝐴) = (𝑎 · (𝑊‘𝐼)))) |
| 187 | 186 | rexbidv 3165 |
. . . . 5
⊢ (𝑣 = 𝐴 → (∃𝑎 ∈ ℤ ((𝑃‘𝐼)‘𝑣) = (𝑎 · (𝑊‘𝐼)) ↔ ∃𝑎 ∈ ℤ ((𝑃‘𝐼)‘𝐴) = (𝑎 · (𝑊‘𝐼)))) |
| 188 | 187, 92, 44 | rspcdva 3607 |
. . . 4
⊢ (𝜑 → ∃𝑎 ∈ ℤ ((𝑃‘𝐼)‘𝐴) = (𝑎 · (𝑊‘𝐼))) |
| 189 | 1, 2, 6, 3, 40, 5,
41, 4, 42, 43, 15, 44, 45, 11, 21, 18, 46, 47, 19, 48, 49 | dchrptlem1 27232 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝐴) = (𝑎 · (𝑊‘𝐼)))) → (𝑋‘𝐴) = (𝑇↑𝑎)) |
| 190 | 47 | oveq1i 7420 |
. . . . . . . 8
⊢ (𝑇↑𝑎) = ((-1↑𝑐(2 / (𝑂‘(𝑊‘𝐼))))↑𝑎) |
| 191 | 189, 190 | eqtrdi 2787 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝐴) = (𝑎 · (𝑊‘𝐼)))) → (𝑋‘𝐴) = ((-1↑𝑐(2 /
(𝑂‘(𝑊‘𝐼))))↑𝑎)) |
| 192 | 48 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝐴) = (𝑎 · (𝑊‘𝐼)))) → ((𝑃‘𝐼)‘𝐴) ≠ 1 ) |
| 193 | 58 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝐴) = (𝑎 · (𝑊‘𝐼)))) → 𝐻 ∈ Grp) |
| 194 | 68 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝐴) = (𝑎 · (𝑊‘𝐼)))) → (𝑊‘𝐼) ∈ 𝑈) |
| 195 | | simprl 770 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝐴) = (𝑎 · (𝑊‘𝐼)))) → 𝑎 ∈ ℤ) |
| 196 | 69, 46, 43, 160 | oddvds 19533 |
. . . . . . . . . . 11
⊢ ((𝐻 ∈ Grp ∧ (𝑊‘𝐼) ∈ 𝑈 ∧ 𝑎 ∈ ℤ) → ((𝑂‘(𝑊‘𝐼)) ∥ 𝑎 ↔ (𝑎 · (𝑊‘𝐼)) = (0g‘𝐻))) |
| 197 | 193, 194,
195, 196 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝐴) = (𝑎 · (𝑊‘𝐼)))) → ((𝑂‘(𝑊‘𝐼)) ∥ 𝑎 ↔ (𝑎 · (𝑊‘𝐼)) = (0g‘𝐻))) |
| 198 | 71 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝐴) = (𝑎 · (𝑊‘𝐼)))) → (𝑂‘(𝑊‘𝐼)) ∈ ℕ) |
| 199 | | root1eq1 26722 |
. . . . . . . . . . 11
⊢ (((𝑂‘(𝑊‘𝐼)) ∈ ℕ ∧ 𝑎 ∈ ℤ) →
(((-1↑𝑐(2 / (𝑂‘(𝑊‘𝐼))))↑𝑎) = 1 ↔ (𝑂‘(𝑊‘𝐼)) ∥ 𝑎)) |
| 200 | 198, 195,
199 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝐴) = (𝑎 · (𝑊‘𝐼)))) →
(((-1↑𝑐(2 / (𝑂‘(𝑊‘𝐼))))↑𝑎) = 1 ↔ (𝑂‘(𝑊‘𝐼)) ∥ 𝑎)) |
| 201 | | simprr 772 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝐴) = (𝑎 · (𝑊‘𝐼)))) → ((𝑃‘𝐼)‘𝐴) = (𝑎 · (𝑊‘𝐼))) |
| 202 | 40, 164 | eqtrid 2783 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 =
(0g‘𝐻)) |
| 203 | 202 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝐴) = (𝑎 · (𝑊‘𝐼)))) → 1 =
(0g‘𝐻)) |
| 204 | 201, 203 | eqeq12d 2752 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝐴) = (𝑎 · (𝑊‘𝐼)))) → (((𝑃‘𝐼)‘𝐴) = 1 ↔ (𝑎 · (𝑊‘𝐼)) = (0g‘𝐻))) |
| 205 | 197, 200,
204 | 3bitr4d 311 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝐴) = (𝑎 · (𝑊‘𝐼)))) →
(((-1↑𝑐(2 / (𝑂‘(𝑊‘𝐼))))↑𝑎) = 1 ↔ ((𝑃‘𝐼)‘𝐴) = 1 )) |
| 206 | 205 | necon3bid 2977 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝐴) = (𝑎 · (𝑊‘𝐼)))) →
(((-1↑𝑐(2 / (𝑂‘(𝑊‘𝐼))))↑𝑎) ≠ 1 ↔ ((𝑃‘𝐼)‘𝐴) ≠ 1 )) |
| 207 | 192, 206 | mpbird 257 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝐴) = (𝑎 · (𝑊‘𝐼)))) → ((-1↑𝑐(2
/ (𝑂‘(𝑊‘𝐼))))↑𝑎) ≠ 1) |
| 208 | 191, 207 | eqnetrd 3000 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃‘𝐼)‘𝐴) = (𝑎 · (𝑊‘𝐼)))) → (𝑋‘𝐴) ≠ 1) |
| 209 | 208 | rexlimdvaa 3143 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → (∃𝑎 ∈ ℤ ((𝑃‘𝐼)‘𝐴) = (𝑎 · (𝑊‘𝐼)) → (𝑋‘𝐴) ≠ 1)) |
| 210 | 44, 209 | mpdan 687 |
. . . 4
⊢ (𝜑 → (∃𝑎 ∈ ℤ ((𝑃‘𝐼)‘𝐴) = (𝑎 · (𝑊‘𝐼)) → (𝑋‘𝐴) ≠ 1)) |
| 211 | 188, 210 | mpd 15 |
. . 3
⊢ (𝜑 → (𝑋‘𝐴) ≠ 1) |
| 212 | 185, 211 | eqnetrd 3000 |
. 2
⊢ (𝜑 → ((𝑣 ∈ 𝐵 ↦ if(𝑣 ∈ 𝑈, (𝑋‘𝑣), 0))‘𝐴) ≠ 1) |
| 213 | | fveq1 6880 |
. . . 4
⊢ (𝑥 = (𝑣 ∈ 𝐵 ↦ if(𝑣 ∈ 𝑈, (𝑋‘𝑣), 0)) → (𝑥‘𝐴) = ((𝑣 ∈ 𝐵 ↦ if(𝑣 ∈ 𝑈, (𝑋‘𝑣), 0))‘𝐴)) |
| 214 | 213 | neeq1d 2992 |
. . 3
⊢ (𝑥 = (𝑣 ∈ 𝐵 ↦ if(𝑣 ∈ 𝑈, (𝑋‘𝑣), 0)) → ((𝑥‘𝐴) ≠ 1 ↔ ((𝑣 ∈ 𝐵 ↦ if(𝑣 ∈ 𝑈, (𝑋‘𝑣), 0))‘𝐴) ≠ 1)) |
| 215 | 214 | rspcev 3606 |
. 2
⊢ (((𝑣 ∈ 𝐵 ↦ if(𝑣 ∈ 𝑈, (𝑋‘𝑣), 0)) ∈ 𝐷 ∧ ((𝑣 ∈ 𝐵 ↦ if(𝑣 ∈ 𝑈, (𝑋‘𝑣), 0))‘𝐴) ≠ 1) → ∃𝑥 ∈ 𝐷 (𝑥‘𝐴) ≠ 1) |
| 216 | 173, 212,
215 | syl2anc 584 |
1
⊢ (𝜑 → ∃𝑥 ∈ 𝐷 (𝑥‘𝐴) ≠ 1) |