MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrptlem2 Structured version   Visualization version   GIF version

Theorem dchrptlem2 25523
Description: Lemma for dchrpt 25525. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrpt.g 𝐺 = (DChr‘𝑁)
dchrpt.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrpt.d 𝐷 = (Base‘𝐺)
dchrpt.b 𝐵 = (Base‘𝑍)
dchrpt.1 1 = (1r𝑍)
dchrpt.n (𝜑𝑁 ∈ ℕ)
dchrpt.n1 (𝜑𝐴1 )
dchrpt.u 𝑈 = (Unit‘𝑍)
dchrpt.h 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈)
dchrpt.m · = (.g𝐻)
dchrpt.s 𝑆 = (𝑘 ∈ dom 𝑊 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))))
dchrpt.au (𝜑𝐴𝑈)
dchrpt.w (𝜑𝑊 ∈ Word 𝑈)
dchrpt.2 (𝜑𝐻dom DProd 𝑆)
dchrpt.3 (𝜑 → (𝐻 DProd 𝑆) = 𝑈)
dchrpt.p 𝑃 = (𝐻dProj𝑆)
dchrpt.o 𝑂 = (od‘𝐻)
dchrpt.t 𝑇 = (-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))
dchrpt.i (𝜑𝐼 ∈ dom 𝑊)
dchrpt.4 (𝜑 → ((𝑃𝐼)‘𝐴) ≠ 1 )
dchrpt.5 𝑋 = (𝑢𝑈 ↦ (℩𝑚 ∈ ℤ (((𝑃𝐼)‘𝑢) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))))
Assertion
Ref Expression
dchrptlem2 (𝜑 → ∃𝑥𝐷 (𝑥𝐴) ≠ 1)
Distinct variable groups:   ,𝑘,𝑚,𝑛,𝑥, 1   𝑢,,𝐴,𝑘,𝑚,𝑛,𝑥   ,𝐼,𝑘,𝑚,𝑢   𝑥,𝐵   𝑥,𝐺   ,𝐻,𝑘,𝑚,𝑛,𝑢,𝑥   𝑥,𝑁   ,𝑊,𝑘,𝑚,𝑛,𝑢,𝑥   · ,,𝑘,𝑚,𝑛,𝑢,𝑥   𝑥,𝑋   𝑃,,𝑚,𝑢   𝑆,,𝑘,𝑚,𝑛,𝑢,𝑥   ,𝑍,𝑘,𝑚,𝑛,𝑢,𝑥   𝑥,𝐷   𝜑,,𝑘,𝑚,𝑛,𝑥   𝑇,,𝑚,𝑢   𝑈,,𝑚,𝑢,𝑥
Allowed substitution hints:   𝜑(𝑢)   𝐵(𝑢,,𝑘,𝑚,𝑛)   𝐷(𝑢,,𝑘,𝑚,𝑛)   𝑃(𝑥,𝑘,𝑛)   𝑇(𝑥,𝑘,𝑛)   𝑈(𝑘,𝑛)   1 (𝑢)   𝐺(𝑢,,𝑘,𝑚,𝑛)   𝐼(𝑥,𝑛)   𝑁(𝑢,,𝑘,𝑚,𝑛)   𝑂(𝑥,𝑢,,𝑘,𝑚,𝑛)   𝑋(𝑢,,𝑘,𝑚,𝑛)

Proof of Theorem dchrptlem2
Dummy variables 𝑎 𝑏 𝑣 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchrpt.g . . 3 𝐺 = (DChr‘𝑁)
2 dchrpt.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
3 dchrpt.b . . 3 𝐵 = (Base‘𝑍)
4 dchrpt.u . . 3 𝑈 = (Unit‘𝑍)
5 dchrpt.n . . 3 (𝜑𝑁 ∈ ℕ)
6 dchrpt.d . . 3 𝐷 = (Base‘𝐺)
7 fveq2 6538 . . 3 (𝑣 = 𝑥 → (𝑋𝑣) = (𝑋𝑥))
8 fveq2 6538 . . 3 (𝑣 = 𝑦 → (𝑋𝑣) = (𝑋𝑦))
9 fveq2 6538 . . 3 (𝑣 = (𝑥(.r𝑍)𝑦) → (𝑋𝑣) = (𝑋‘(𝑥(.r𝑍)𝑦)))
10 fveq2 6538 . . 3 (𝑣 = (1r𝑍) → (𝑋𝑣) = (𝑋‘(1r𝑍)))
11 dchrpt.2 . . . . . . . . 9 (𝜑𝐻dom DProd 𝑆)
12 zex 11838 . . . . . . . . . . . . 13 ℤ ∈ V
1312mptex 6852 . . . . . . . . . . . 12 (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))) ∈ V
1413rnex 7473 . . . . . . . . . . 11 ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))) ∈ V
15 dchrpt.s . . . . . . . . . . 11 𝑆 = (𝑘 ∈ dom 𝑊 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))))
1614, 15dmmpti 6360 . . . . . . . . . 10 dom 𝑆 = dom 𝑊
1716a1i 11 . . . . . . . . 9 (𝜑 → dom 𝑆 = dom 𝑊)
18 dchrpt.p . . . . . . . . 9 𝑃 = (𝐻dProj𝑆)
19 dchrpt.i . . . . . . . . 9 (𝜑𝐼 ∈ dom 𝑊)
2011, 17, 18, 19dpjf 18896 . . . . . . . 8 (𝜑 → (𝑃𝐼):(𝐻 DProd 𝑆)⟶(𝑆𝐼))
21 dchrpt.3 . . . . . . . . 9 (𝜑 → (𝐻 DProd 𝑆) = 𝑈)
2221feq2d 6368 . . . . . . . 8 (𝜑 → ((𝑃𝐼):(𝐻 DProd 𝑆)⟶(𝑆𝐼) ↔ (𝑃𝐼):𝑈⟶(𝑆𝐼)))
2320, 22mpbid 233 . . . . . . 7 (𝜑 → (𝑃𝐼):𝑈⟶(𝑆𝐼))
2423ffvelrnda 6716 . . . . . 6 ((𝜑𝑣𝑈) → ((𝑃𝐼)‘𝑣) ∈ (𝑆𝐼))
2519adantr 481 . . . . . . 7 ((𝜑𝑣𝑈) → 𝐼 ∈ dom 𝑊)
26 oveq1 7023 . . . . . . . . . . 11 (𝑛 = 𝑎 → (𝑛 · (𝑊𝑘)) = (𝑎 · (𝑊𝑘)))
2726cbvmptv 5061 . . . . . . . . . 10 (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))) = (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝑘)))
28 fveq2 6538 . . . . . . . . . . . 12 (𝑘 = 𝐼 → (𝑊𝑘) = (𝑊𝐼))
2928oveq2d 7032 . . . . . . . . . . 11 (𝑘 = 𝐼 → (𝑎 · (𝑊𝑘)) = (𝑎 · (𝑊𝐼)))
3029mpteq2dv 5056 . . . . . . . . . 10 (𝑘 = 𝐼 → (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝑘))) = (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝐼))))
3127, 30syl5eq 2843 . . . . . . . . 9 (𝑘 = 𝐼 → (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))) = (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝐼))))
3231rneqd 5690 . . . . . . . 8 (𝑘 = 𝐼 → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))) = ran (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝐼))))
3332, 15, 14fvmpt3i 6640 . . . . . . 7 (𝐼 ∈ dom 𝑊 → (𝑆𝐼) = ran (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝐼))))
3425, 33syl 17 . . . . . 6 ((𝜑𝑣𝑈) → (𝑆𝐼) = ran (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝐼))))
3524, 34eleqtrd 2885 . . . . 5 ((𝜑𝑣𝑈) → ((𝑃𝐼)‘𝑣) ∈ ran (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝐼))))
36 eqid 2795 . . . . . 6 (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝐼))) = (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝐼)))
37 ovex 7048 . . . . . 6 (𝑎 · (𝑊𝐼)) ∈ V
3836, 37elrnmpti 5714 . . . . 5 (((𝑃𝐼)‘𝑣) ∈ ran (𝑎 ∈ ℤ ↦ (𝑎 · (𝑊𝐼))) ↔ ∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)))
3935, 38sylib 219 . . . 4 ((𝜑𝑣𝑈) → ∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)))
40 dchrpt.1 . . . . . 6 1 = (1r𝑍)
41 dchrpt.n1 . . . . . 6 (𝜑𝐴1 )
42 dchrpt.h . . . . . 6 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈)
43 dchrpt.m . . . . . 6 · = (.g𝐻)
44 dchrpt.au . . . . . 6 (𝜑𝐴𝑈)
45 dchrpt.w . . . . . 6 (𝜑𝑊 ∈ Word 𝑈)
46 dchrpt.o . . . . . 6 𝑂 = (od‘𝐻)
47 dchrpt.t . . . . . 6 𝑇 = (-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))
48 dchrpt.4 . . . . . 6 (𝜑 → ((𝑃𝐼)‘𝐴) ≠ 1 )
49 dchrpt.5 . . . . . 6 𝑋 = (𝑢𝑈 ↦ (℩𝑚 ∈ ℤ (((𝑃𝐼)‘𝑢) = (𝑚 · (𝑊𝐼)) ∧ = (𝑇𝑚))))
501, 2, 6, 3, 40, 5, 41, 4, 42, 43, 15, 44, 45, 11, 21, 18, 46, 47, 19, 48, 49dchrptlem1 25522 . . . . 5 (((𝜑𝑣𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)))) → (𝑋𝑣) = (𝑇𝑎))
51 neg1cn 11599 . . . . . . . . 9 -1 ∈ ℂ
52 2re 11559 . . . . . . . . . . 11 2 ∈ ℝ
535nnnn0d 11803 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ0)
542zncrng 20373 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
55 crngring 18998 . . . . . . . . . . . . . 14 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
5653, 54, 553syl 18 . . . . . . . . . . . . 13 (𝜑𝑍 ∈ Ring)
574, 42unitgrp 19107 . . . . . . . . . . . . 13 (𝑍 ∈ Ring → 𝐻 ∈ Grp)
5856, 57syl 17 . . . . . . . . . . . 12 (𝜑𝐻 ∈ Grp)
592, 3znfi 20388 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝐵 ∈ Fin)
605, 59syl 17 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ Fin)
613, 4unitss 19100 . . . . . . . . . . . . 13 𝑈𝐵
62 ssfi 8584 . . . . . . . . . . . . 13 ((𝐵 ∈ Fin ∧ 𝑈𝐵) → 𝑈 ∈ Fin)
6360, 61, 62sylancl 586 . . . . . . . . . . . 12 (𝜑𝑈 ∈ Fin)
64 wrdf 13712 . . . . . . . . . . . . . 14 (𝑊 ∈ Word 𝑈𝑊:(0..^(♯‘𝑊))⟶𝑈)
6545, 64syl 17 . . . . . . . . . . . . 13 (𝜑𝑊:(0..^(♯‘𝑊))⟶𝑈)
6665fdmd 6391 . . . . . . . . . . . . . 14 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
6719, 66eleqtrd 2885 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ (0..^(♯‘𝑊)))
6865, 67ffvelrnd 6717 . . . . . . . . . . . 12 (𝜑 → (𝑊𝐼) ∈ 𝑈)
694, 42unitgrpbas 19106 . . . . . . . . . . . . 13 𝑈 = (Base‘𝐻)
7069, 46odcl2 18422 . . . . . . . . . . . 12 ((𝐻 ∈ Grp ∧ 𝑈 ∈ Fin ∧ (𝑊𝐼) ∈ 𝑈) → (𝑂‘(𝑊𝐼)) ∈ ℕ)
7158, 63, 68, 70syl3anc 1364 . . . . . . . . . . 11 (𝜑 → (𝑂‘(𝑊𝐼)) ∈ ℕ)
72 nndivre 11526 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ (𝑂‘(𝑊𝐼)) ∈ ℕ) → (2 / (𝑂‘(𝑊𝐼))) ∈ ℝ)
7352, 71, 72sylancr 587 . . . . . . . . . 10 (𝜑 → (2 / (𝑂‘(𝑊𝐼))) ∈ ℝ)
7473recnd 10515 . . . . . . . . 9 (𝜑 → (2 / (𝑂‘(𝑊𝐼))) ∈ ℂ)
75 cxpcl 24938 . . . . . . . . 9 ((-1 ∈ ℂ ∧ (2 / (𝑂‘(𝑊𝐼))) ∈ ℂ) → (-1↑𝑐(2 / (𝑂‘(𝑊𝐼)))) ∈ ℂ)
7651, 74, 75sylancr 587 . . . . . . . 8 (𝜑 → (-1↑𝑐(2 / (𝑂‘(𝑊𝐼)))) ∈ ℂ)
7747, 76syl5eqel 2887 . . . . . . 7 (𝜑𝑇 ∈ ℂ)
7877ad2antrr 722 . . . . . 6 (((𝜑𝑣𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)))) → 𝑇 ∈ ℂ)
7951a1i 11 . . . . . . . . 9 (𝜑 → -1 ∈ ℂ)
80 neg1ne0 11601 . . . . . . . . . 10 -1 ≠ 0
8180a1i 11 . . . . . . . . 9 (𝜑 → -1 ≠ 0)
8279, 81, 74cxpne0d 24977 . . . . . . . 8 (𝜑 → (-1↑𝑐(2 / (𝑂‘(𝑊𝐼)))) ≠ 0)
8347neeq1i 3048 . . . . . . . 8 (𝑇 ≠ 0 ↔ (-1↑𝑐(2 / (𝑂‘(𝑊𝐼)))) ≠ 0)
8482, 83sylibr 235 . . . . . . 7 (𝜑𝑇 ≠ 0)
8584ad2antrr 722 . . . . . 6 (((𝜑𝑣𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)))) → 𝑇 ≠ 0)
86 simprl 767 . . . . . 6 (((𝜑𝑣𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)))) → 𝑎 ∈ ℤ)
8778, 85, 86expclzd 13365 . . . . 5 (((𝜑𝑣𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)))) → (𝑇𝑎) ∈ ℂ)
8850, 87eqeltrd 2883 . . . 4 (((𝜑𝑣𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)))) → (𝑋𝑣) ∈ ℂ)
8939, 88rexlimddv 3254 . . 3 ((𝜑𝑣𝑈) → (𝑋𝑣) ∈ ℂ)
90 fveqeq2 6547 . . . . . 6 (𝑣 = 𝑥 → (((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)) ↔ ((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼))))
9190rexbidv 3260 . . . . 5 (𝑣 = 𝑥 → (∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)) ↔ ∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼))))
9239ralrimiva 3149 . . . . . 6 (𝜑 → ∀𝑣𝑈𝑎 ∈ ℤ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)))
9392adantr 481 . . . . 5 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ∀𝑣𝑈𝑎 ∈ ℤ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)))
94 simprl 767 . . . . 5 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑥𝑈)
9591, 93, 94rspcdva 3565 . . . 4 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)))
96 fveqeq2 6547 . . . . . . 7 (𝑣 = 𝑦 → (((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)) ↔ ((𝑃𝐼)‘𝑦) = (𝑎 · (𝑊𝐼))))
9796rexbidv 3260 . . . . . 6 (𝑣 = 𝑦 → (∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)) ↔ ∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑦) = (𝑎 · (𝑊𝐼))))
98 oveq1 7023 . . . . . . . 8 (𝑎 = 𝑏 → (𝑎 · (𝑊𝐼)) = (𝑏 · (𝑊𝐼)))
9998eqeq2d 2805 . . . . . . 7 (𝑎 = 𝑏 → (((𝑃𝐼)‘𝑦) = (𝑎 · (𝑊𝐼)) ↔ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))
10099cbvrexv 3404 . . . . . 6 (∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑦) = (𝑎 · (𝑊𝐼)) ↔ ∃𝑏 ∈ ℤ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼)))
10197, 100syl6bb 288 . . . . 5 (𝑣 = 𝑦 → (∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)) ↔ ∃𝑏 ∈ ℤ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))
102 simprr 769 . . . . 5 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑦𝑈)
103101, 93, 102rspcdva 3565 . . . 4 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ∃𝑏 ∈ ℤ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼)))
104 reeanv 3328 . . . . 5 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))) ↔ (∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ∃𝑏 ∈ ℤ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))
10577ad2antrr 722 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → 𝑇 ∈ ℂ)
10684ad2antrr 722 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → 𝑇 ≠ 0)
107 simprll 775 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → 𝑎 ∈ ℤ)
108 simprlr 776 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → 𝑏 ∈ ℤ)
109 expaddz 13323 . . . . . . . . 9 (((𝑇 ∈ ℂ ∧ 𝑇 ≠ 0) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑇↑(𝑎 + 𝑏)) = ((𝑇𝑎) · (𝑇𝑏)))
110105, 106, 107, 108, 109syl22anc 835 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → (𝑇↑(𝑎 + 𝑏)) = ((𝑇𝑎) · (𝑇𝑏)))
111 simpll 763 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → 𝜑)
11256ad2antrr 722 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → 𝑍 ∈ Ring)
11394adantr 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → 𝑥𝑈)
114102adantr 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → 𝑦𝑈)
115 eqid 2795 . . . . . . . . . . 11 (.r𝑍) = (.r𝑍)
1164, 115unitmulcl 19104 . . . . . . . . . 10 ((𝑍 ∈ Ring ∧ 𝑥𝑈𝑦𝑈) → (𝑥(.r𝑍)𝑦) ∈ 𝑈)
117112, 113, 114, 116syl3anc 1364 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → (𝑥(.r𝑍)𝑦) ∈ 𝑈)
118107, 108zaddcld 11940 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → (𝑎 + 𝑏) ∈ ℤ)
119 simprrl 777 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → ((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)))
120 simprrr 778 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼)))
121119, 120oveq12d 7034 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → (((𝑃𝐼)‘𝑥)(.r𝑍)((𝑃𝐼)‘𝑦)) = ((𝑎 · (𝑊𝐼))(.r𝑍)(𝑏 · (𝑊𝐼))))
12211, 17, 18, 19dpjghm 18902 . . . . . . . . . . . . 13 (𝜑 → (𝑃𝐼) ∈ ((𝐻s (𝐻 DProd 𝑆)) GrpHom 𝐻))
12321oveq2d 7032 . . . . . . . . . . . . . . 15 (𝜑 → (𝐻s (𝐻 DProd 𝑆)) = (𝐻s 𝑈))
12442ovexi 7049 . . . . . . . . . . . . . . . 16 𝐻 ∈ V
12569ressid 16388 . . . . . . . . . . . . . . . 16 (𝐻 ∈ V → (𝐻s 𝑈) = 𝐻)
126124, 125ax-mp 5 . . . . . . . . . . . . . . 15 (𝐻s 𝑈) = 𝐻
127123, 126syl6eq 2847 . . . . . . . . . . . . . 14 (𝜑 → (𝐻s (𝐻 DProd 𝑆)) = 𝐻)
128127oveq1d 7031 . . . . . . . . . . . . 13 (𝜑 → ((𝐻s (𝐻 DProd 𝑆)) GrpHom 𝐻) = (𝐻 GrpHom 𝐻))
129122, 128eleqtrd 2885 . . . . . . . . . . . 12 (𝜑 → (𝑃𝐼) ∈ (𝐻 GrpHom 𝐻))
130129ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → (𝑃𝐼) ∈ (𝐻 GrpHom 𝐻))
1314fvexi 6552 . . . . . . . . . . . . 13 𝑈 ∈ V
132 eqid 2795 . . . . . . . . . . . . . . 15 (mulGrp‘𝑍) = (mulGrp‘𝑍)
133132, 115mgpplusg 18933 . . . . . . . . . . . . . 14 (.r𝑍) = (+g‘(mulGrp‘𝑍))
13442, 133ressplusg 16441 . . . . . . . . . . . . 13 (𝑈 ∈ V → (.r𝑍) = (+g𝐻))
135131, 134ax-mp 5 . . . . . . . . . . . 12 (.r𝑍) = (+g𝐻)
13669, 135, 135ghmlin 18104 . . . . . . . . . . 11 (((𝑃𝐼) ∈ (𝐻 GrpHom 𝐻) ∧ 𝑥𝑈𝑦𝑈) → ((𝑃𝐼)‘(𝑥(.r𝑍)𝑦)) = (((𝑃𝐼)‘𝑥)(.r𝑍)((𝑃𝐼)‘𝑦)))
137130, 113, 114, 136syl3anc 1364 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → ((𝑃𝐼)‘(𝑥(.r𝑍)𝑦)) = (((𝑃𝐼)‘𝑥)(.r𝑍)((𝑃𝐼)‘𝑦)))
13858ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → 𝐻 ∈ Grp)
13968ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → (𝑊𝐼) ∈ 𝑈)
14069, 43, 135mulgdir 18013 . . . . . . . . . . 11 ((𝐻 ∈ Grp ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ (𝑊𝐼) ∈ 𝑈)) → ((𝑎 + 𝑏) · (𝑊𝐼)) = ((𝑎 · (𝑊𝐼))(.r𝑍)(𝑏 · (𝑊𝐼))))
141138, 107, 108, 139, 140syl13anc 1365 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → ((𝑎 + 𝑏) · (𝑊𝐼)) = ((𝑎 · (𝑊𝐼))(.r𝑍)(𝑏 · (𝑊𝐼))))
142121, 137, 1413eqtr4d 2841 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → ((𝑃𝐼)‘(𝑥(.r𝑍)𝑦)) = ((𝑎 + 𝑏) · (𝑊𝐼)))
1431, 2, 6, 3, 40, 5, 41, 4, 42, 43, 15, 44, 45, 11, 21, 18, 46, 47, 19, 48, 49dchrptlem1 25522 . . . . . . . . 9 (((𝜑 ∧ (𝑥(.r𝑍)𝑦) ∈ 𝑈) ∧ ((𝑎 + 𝑏) ∈ ℤ ∧ ((𝑃𝐼)‘(𝑥(.r𝑍)𝑦)) = ((𝑎 + 𝑏) · (𝑊𝐼)))) → (𝑋‘(𝑥(.r𝑍)𝑦)) = (𝑇↑(𝑎 + 𝑏)))
144111, 117, 118, 142, 143syl22anc 835 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → (𝑋‘(𝑥(.r𝑍)𝑦)) = (𝑇↑(𝑎 + 𝑏)))
1451, 2, 6, 3, 40, 5, 41, 4, 42, 43, 15, 44, 45, 11, 21, 18, 46, 47, 19, 48, 49dchrptlem1 25522 . . . . . . . . . 10 (((𝜑𝑥𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)))) → (𝑋𝑥) = (𝑇𝑎))
146111, 113, 107, 119, 145syl22anc 835 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → (𝑋𝑥) = (𝑇𝑎))
1471, 2, 6, 3, 40, 5, 41, 4, 42, 43, 15, 44, 45, 11, 21, 18, 46, 47, 19, 48, 49dchrptlem1 25522 . . . . . . . . . 10 (((𝜑𝑦𝑈) ∧ (𝑏 ∈ ℤ ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼)))) → (𝑋𝑦) = (𝑇𝑏))
148111, 114, 108, 120, 147syl22anc 835 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → (𝑋𝑦) = (𝑇𝑏))
149146, 148oveq12d 7034 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → ((𝑋𝑥) · (𝑋𝑦)) = ((𝑇𝑎) · (𝑇𝑏)))
150110, 144, 1493eqtr4d 2841 . . . . . . 7 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))))) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
151150expr 457 . . . . . 6 (((𝜑 ∧ (𝑥𝑈𝑦𝑈)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
152151rexlimdvva 3257 . . . . 5 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
153104, 152syl5bir 244 . . . 4 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑥) = (𝑎 · (𝑊𝐼)) ∧ ∃𝑏 ∈ ℤ ((𝑃𝐼)‘𝑦) = (𝑏 · (𝑊𝐼))) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
15495, 103, 153mp2and 695 . . 3 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
155 id 22 . . . . 5 (𝜑𝜑)
156 eqid 2795 . . . . . . 7 (1r𝑍) = (1r𝑍)
1574, 1561unit 19098 . . . . . 6 (𝑍 ∈ Ring → (1r𝑍) ∈ 𝑈)
15856, 157syl 17 . . . . 5 (𝜑 → (1r𝑍) ∈ 𝑈)
159 0zd 11841 . . . . 5 (𝜑 → 0 ∈ ℤ)
160 eqid 2795 . . . . . . . 8 (0g𝐻) = (0g𝐻)
161160, 160ghmid 18105 . . . . . . 7 ((𝑃𝐼) ∈ (𝐻 GrpHom 𝐻) → ((𝑃𝐼)‘(0g𝐻)) = (0g𝐻))
162129, 161syl 17 . . . . . 6 (𝜑 → ((𝑃𝐼)‘(0g𝐻)) = (0g𝐻))
1634, 42, 156unitgrpid 19109 . . . . . . . 8 (𝑍 ∈ Ring → (1r𝑍) = (0g𝐻))
16456, 163syl 17 . . . . . . 7 (𝜑 → (1r𝑍) = (0g𝐻))
165164fveq2d 6542 . . . . . 6 (𝜑 → ((𝑃𝐼)‘(1r𝑍)) = ((𝑃𝐼)‘(0g𝐻)))
16669, 160, 43mulg0 17988 . . . . . . 7 ((𝑊𝐼) ∈ 𝑈 → (0 · (𝑊𝐼)) = (0g𝐻))
16768, 166syl 17 . . . . . 6 (𝜑 → (0 · (𝑊𝐼)) = (0g𝐻))
168162, 165, 1673eqtr4d 2841 . . . . 5 (𝜑 → ((𝑃𝐼)‘(1r𝑍)) = (0 · (𝑊𝐼)))
1691, 2, 6, 3, 40, 5, 41, 4, 42, 43, 15, 44, 45, 11, 21, 18, 46, 47, 19, 48, 49dchrptlem1 25522 . . . . 5 (((𝜑 ∧ (1r𝑍) ∈ 𝑈) ∧ (0 ∈ ℤ ∧ ((𝑃𝐼)‘(1r𝑍)) = (0 · (𝑊𝐼)))) → (𝑋‘(1r𝑍)) = (𝑇↑0))
170155, 158, 159, 168, 169syl22anc 835 . . . 4 (𝜑 → (𝑋‘(1r𝑍)) = (𝑇↑0))
17177exp0d 13354 . . . 4 (𝜑 → (𝑇↑0) = 1)
172170, 171eqtrd 2831 . . 3 (𝜑 → (𝑋‘(1r𝑍)) = 1)
1731, 2, 3, 4, 5, 6, 7, 8, 9, 10, 89, 154, 172dchrelbasd 25497 . 2 (𝜑 → (𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0)) ∈ 𝐷)
17461, 44sseldi 3887 . . . . 5 (𝜑𝐴𝐵)
175 eleq1 2870 . . . . . . 7 (𝑣 = 𝐴 → (𝑣𝑈𝐴𝑈))
176 fveq2 6538 . . . . . . 7 (𝑣 = 𝐴 → (𝑋𝑣) = (𝑋𝐴))
177175, 176ifbieq1d 4404 . . . . . 6 (𝑣 = 𝐴 → if(𝑣𝑈, (𝑋𝑣), 0) = if(𝐴𝑈, (𝑋𝐴), 0))
178 eqid 2795 . . . . . 6 (𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0)) = (𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0))
179 fvex 6551 . . . . . . 7 (𝑋𝑣) ∈ V
180 c0ex 10481 . . . . . . 7 0 ∈ V
181179, 180ifex 4429 . . . . . 6 if(𝑣𝑈, (𝑋𝑣), 0) ∈ V
182177, 178, 181fvmpt3i 6640 . . . . 5 (𝐴𝐵 → ((𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0))‘𝐴) = if(𝐴𝑈, (𝑋𝐴), 0))
183174, 182syl 17 . . . 4 (𝜑 → ((𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0))‘𝐴) = if(𝐴𝑈, (𝑋𝐴), 0))
18444iftrued 4389 . . . 4 (𝜑 → if(𝐴𝑈, (𝑋𝐴), 0) = (𝑋𝐴))
185183, 184eqtrd 2831 . . 3 (𝜑 → ((𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0))‘𝐴) = (𝑋𝐴))
186 fveqeq2 6547 . . . . . 6 (𝑣 = 𝐴 → (((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)) ↔ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼))))
187186rexbidv 3260 . . . . 5 (𝑣 = 𝐴 → (∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝑣) = (𝑎 · (𝑊𝐼)) ↔ ∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼))))
188187, 92, 44rspcdva 3565 . . . 4 (𝜑 → ∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))
1891, 2, 6, 3, 40, 5, 41, 4, 42, 43, 15, 44, 45, 11, 21, 18, 46, 47, 19, 48, 49dchrptlem1 25522 . . . . . . . 8 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → (𝑋𝐴) = (𝑇𝑎))
19047oveq1i 7026 . . . . . . . 8 (𝑇𝑎) = ((-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))↑𝑎)
191189, 190syl6eq 2847 . . . . . . 7 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → (𝑋𝐴) = ((-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))↑𝑎))
19248ad2antrr 722 . . . . . . . 8 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → ((𝑃𝐼)‘𝐴) ≠ 1 )
19358ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → 𝐻 ∈ Grp)
19468ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → (𝑊𝐼) ∈ 𝑈)
195 simprl 767 . . . . . . . . . . 11 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → 𝑎 ∈ ℤ)
19669, 46, 43, 160oddvds 18406 . . . . . . . . . . 11 ((𝐻 ∈ Grp ∧ (𝑊𝐼) ∈ 𝑈𝑎 ∈ ℤ) → ((𝑂‘(𝑊𝐼)) ∥ 𝑎 ↔ (𝑎 · (𝑊𝐼)) = (0g𝐻)))
197193, 194, 195, 196syl3anc 1364 . . . . . . . . . 10 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → ((𝑂‘(𝑊𝐼)) ∥ 𝑎 ↔ (𝑎 · (𝑊𝐼)) = (0g𝐻)))
19871ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → (𝑂‘(𝑊𝐼)) ∈ ℕ)
199 root1eq1 25017 . . . . . . . . . . 11 (((𝑂‘(𝑊𝐼)) ∈ ℕ ∧ 𝑎 ∈ ℤ) → (((-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))↑𝑎) = 1 ↔ (𝑂‘(𝑊𝐼)) ∥ 𝑎))
200198, 195, 199syl2anc 584 . . . . . . . . . 10 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → (((-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))↑𝑎) = 1 ↔ (𝑂‘(𝑊𝐼)) ∥ 𝑎))
201 simprr 769 . . . . . . . . . . 11 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))
20240, 164syl5eq 2843 . . . . . . . . . . . 12 (𝜑1 = (0g𝐻))
203202ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → 1 = (0g𝐻))
204201, 203eqeq12d 2810 . . . . . . . . . 10 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → (((𝑃𝐼)‘𝐴) = 1 ↔ (𝑎 · (𝑊𝐼)) = (0g𝐻)))
205197, 200, 2043bitr4d 312 . . . . . . . . 9 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → (((-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))↑𝑎) = 1 ↔ ((𝑃𝐼)‘𝐴) = 1 ))
206205necon3bid 3028 . . . . . . . 8 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → (((-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))↑𝑎) ≠ 1 ↔ ((𝑃𝐼)‘𝐴) ≠ 1 ))
207192, 206mpbird 258 . . . . . . 7 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → ((-1↑𝑐(2 / (𝑂‘(𝑊𝐼))))↑𝑎) ≠ 1)
208191, 207eqnetrd 3051 . . . . . 6 (((𝜑𝐴𝑈) ∧ (𝑎 ∈ ℤ ∧ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)))) → (𝑋𝐴) ≠ 1)
209208rexlimdvaa 3248 . . . . 5 ((𝜑𝐴𝑈) → (∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)) → (𝑋𝐴) ≠ 1))
21044, 209mpdan 683 . . . 4 (𝜑 → (∃𝑎 ∈ ℤ ((𝑃𝐼)‘𝐴) = (𝑎 · (𝑊𝐼)) → (𝑋𝐴) ≠ 1))
211188, 210mpd 15 . . 3 (𝜑 → (𝑋𝐴) ≠ 1)
212185, 211eqnetrd 3051 . 2 (𝜑 → ((𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0))‘𝐴) ≠ 1)
213 fveq1 6537 . . . 4 (𝑥 = (𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0)) → (𝑥𝐴) = ((𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0))‘𝐴))
214213neeq1d 3043 . . 3 (𝑥 = (𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0)) → ((𝑥𝐴) ≠ 1 ↔ ((𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0))‘𝐴) ≠ 1))
215214rspcev 3559 . 2 (((𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0)) ∈ 𝐷 ∧ ((𝑣𝐵 ↦ if(𝑣𝑈, (𝑋𝑣), 0))‘𝐴) ≠ 1) → ∃𝑥𝐷 (𝑥𝐴) ≠ 1)
216173, 212, 215syl2anc 584 1 (𝜑 → ∃𝑥𝐷 (𝑥𝐴) ≠ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1522  wcel 2081  wne 2984  wral 3105  wrex 3106  Vcvv 3437  wss 3859  ifcif 4381   class class class wbr 4962  cmpt 5041  dom cdm 5443  ran crn 5444  cio 6187  wf 6221  cfv 6225  (class class class)co 7016  Fincfn 8357  cc 10381  cr 10382  0cc0 10383  1c1 10384   + caddc 10386   · cmul 10388  -cneg 10718   / cdiv 11145  cn 11486  2c2 11540  0cn0 11745  cz 11829  ..^cfzo 12883  cexp 13279  chash 13540  Word cword 13707  cdvds 15440  Basecbs 16312  s cress 16313  +gcplusg 16394  .rcmulr 16395  0gc0g 16542  Grpcgrp 17861  .gcmg 17981   GrpHom cghm 18096  odcod 18383   DProd cdprd 18832  dProjcdpj 18833  mulGrpcmgp 18929  1rcur 18941  Ringcrg 18987  CRingccrg 18988  Unitcui 19079  ℤ/nczn 20332  𝑐ccxp 24820  DChrcdchr 25490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461  ax-addf 10462  ax-mulf 10463
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-iin 4828  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-of 7267  df-om 7437  df-1st 7545  df-2nd 7546  df-supp 7682  df-tpos 7743  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-2o 7954  df-oadd 7957  df-omul 7958  df-er 8139  df-ec 8141  df-qs 8145  df-map 8258  df-pm 8259  df-ixp 8311  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-fsupp 8680  df-fi 8721  df-sup 8752  df-inf 8753  df-oi 8820  df-card 9214  df-acn 9217  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-z 11830  df-dec 11948  df-uz 12094  df-q 12198  df-rp 12240  df-xneg 12357  df-xadd 12358  df-xmul 12359  df-ioo 12592  df-ioc 12593  df-ico 12594  df-icc 12595  df-fz 12743  df-fzo 12884  df-fl 13012  df-mod 13088  df-seq 13220  df-exp 13280  df-fac 13484  df-bc 13513  df-hash 13541  df-word 13708  df-shft 14260  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-limsup 14662  df-clim 14679  df-rlim 14680  df-sum 14877  df-ef 15254  df-sin 15256  df-cos 15257  df-pi 15259  df-dvds 15441  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-starv 16409  df-sca 16410  df-vsca 16411  df-ip 16412  df-tset 16413  df-ple 16414  df-ds 16416  df-unif 16417  df-hom 16418  df-cco 16419  df-rest 16525  df-topn 16526  df-0g 16544  df-gsum 16545  df-topgen 16546  df-pt 16547  df-prds 16550  df-xrs 16604  df-qtop 16609  df-imas 16610  df-qus 16611  df-xps 16612  df-mre 16686  df-mrc 16687  df-acs 16689  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-mhm 17774  df-submnd 17775  df-grp 17864  df-minusg 17865  df-sbg 17866  df-mulg 17982  df-subg 18030  df-nsg 18031  df-eqg 18032  df-ghm 18097  df-gim 18140  df-cntz 18188  df-oppg 18215  df-od 18387  df-lsm 18491  df-pj1 18492  df-cmn 18635  df-abl 18636  df-dprd 18834  df-dpj 18835  df-mgp 18930  df-ur 18942  df-ring 18989  df-cring 18990  df-oppr 19063  df-dvdsr 19081  df-unit 19082  df-rnghom 19157  df-subrg 19223  df-lmod 19326  df-lss 19394  df-lsp 19434  df-sra 19634  df-rgmod 19635  df-lidl 19636  df-rsp 19637  df-2idl 19694  df-psmet 20219  df-xmet 20220  df-met 20221  df-bl 20222  df-mopn 20223  df-fbas 20224  df-fg 20225  df-cnfld 20228  df-zring 20300  df-zrh 20333  df-zn 20336  df-top 21186  df-topon 21203  df-topsp 21225  df-bases 21238  df-cld 21311  df-ntr 21312  df-cls 21313  df-nei 21390  df-lp 21428  df-perf 21429  df-cn 21519  df-cnp 21520  df-haus 21607  df-tx 21854  df-hmeo 22047  df-fil 22138  df-fm 22230  df-flim 22231  df-flf 22232  df-xms 22613  df-ms 22614  df-tms 22615  df-cncf 23169  df-limc 24147  df-dv 24148  df-log 24821  df-cxp 24822  df-dchr 25491
This theorem is referenced by:  dchrptlem3  25524
  Copyright terms: Public domain W3C validator